Symmetries and Critical Phenomena in Fluids
Symmetries and Critical Phenomena in Fluids
We describe recent results on studying the dynamics of fluid equations in critical spaces. While it is known that the incompressible Euler equation is ill-posed in the class of Lipschitz velocity fields (even when the data is taken to be smooth away from the origin), we prove well-posedness (global in 2d and local in 3d) for merely Lipschitz data which is smooth away from the origin and satisfies a mild symmetry assumption. To do this requires a deep understanding of the nature of unboundedness of singular integrals on $L^\infty$. After this, we extract a simplified equation which is satisfied by "scale invariant" solutions which lie within the setting of our local well-posedness theory. These scale-invariant solutions, in the 2d Euler setting, can be shown to have very interesting dynamical properties. Moreover, these scale-invariant solutions (while having infinite energy) can be used to prove the existence of finite-energy solutions with the "same" dynamical properties. The talk is based on joint work with I. Jeong.