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Chapter 1

Introduction

The main goal of this book is to revisit the proof of the global stability of
the Minkowski space by D.Christodoulou and S.Klainerman, [Ch-KI]. We
provide a new self contained proof of the main part of that result, concern-
ing the full solution of the radiation problem in vacuum ', for arbitrary
asymptotically flat initial data sets. The proof, which is a significant modi-
fication of the arguments in [Ch-KI], is based on a “double null foliation” of
the spacetime instead of the mized “null-mazimal foliation” used in [Ch-KIJ.
This approach is more naturally adapted with the radiation features of the
Einstein equations and leads to important technical simplifications. For the
convenience of the reader we supplement the proof with two introductory
chapters concerning the Cauchy problem in General Relativity.

In this first chapter we review some basic notions of differential geometry
which will be systematically used in all the remaining chapters. We then
introduce the Einstein equations, initial data sets and discuss some of the
basic features of the Initial Value Problem in General Relativity. We shall
review, without proofs, well established results concerning local and global
existence and uniqueness and formulate our main result.

The second chapter provides the technical motivation for the proof of our
main theorem. We start by reviewing the standard proof of local existence
and uniqueness for systems of nonlinear wave equations. We then discuss
methods for proving global existence results stressing the importance of
symmetries. We also emphasize the importance of a structural condition,
called the null condition, in establishing global results in 3 + 1 dimensions.

!'Following the terminology introduced in [Ch-Mu]. As explained in Chapter 8 this
can also be interpreted as a proof of the global stability of the external region of the
Schwarzschild spacetime.
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The cancellation encompassed in this formal condition illustrates the need
to work with null frames. An essential ingredient in these results is the
derivation of uniform decay estimates for the linearized equations using only
energy inequalities and the symmetries of the Minkowski spacetime. We
proceed to show how the same method can be used to get full decay estimates
for the electromagnetic and Weyl fields verifying the linear Maxwell and
Bianchi equations in flat spacetime. The latter provides a crucial stepping
stone to the Einstein equations. Finally we provide the reader with a detailed
discussion of the main ideas in the proof of the Main Theorem. We also
compare it to the proof of the D.Christodoulou and S.Klainerman theorem,
hereafter called C-K Theorem, in [Ch-KI]. All the remaining chapters, with
the exception of the last, are dedicated to the proof of our main theorem.
The proof is essentially self contained, except for a few topics which are
treated in [Ch-Kl] and to which we provide ample reference. In the last
Chapter we derive the most important consequences of our Main Theorem,
in particular we give a rigorous derivation of the Bondi mass law and discuss
the asymptotic properties of our spacetime. Due to our approach, based on
the double null foliation, we are able to provide a straightforward definition
of the outgoing null infinity. This makes the derivation of our asymptotic
results simpler and more intuitive than the corresponding ones in the last
chapter of [Ch-KI]. In particular we are able to give a simple derivation of
the connection between the Bondi mass and the ADM mass.

Acknowledgments: We want to thank D. Christodoulou for discussing
with us many important ideas concerning our work. While we regret his deci-
siton to discontinue the original collaboration we would like to acknoweledge
his essential role in the original setup of our proof of the main theorem. This
s particularly true in connection with Chapter 7 in which we follow his sug-
gestions concerning the formulation of the last slice problem and the proof
of local existence. We are also happy to acknowledge a set of personal notes
regarding the setup of the double null foliation. Their content is reflected in
section 3.1 of our book.
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1.1 Generalities about Lorentz manifolds

1.1.1 Lorentz metric, vector and tensor fields, covariant deriva-
tive, Lie derivative

A Lorentzian manifold 2, or simply a spacetime, consist of a pair (M,g)
where M is an orientable n + 1-dimensional manifold, whose points corre-
spond to physical events, and g is a Lorentzian metric defined on it, that
is a smooth, non degenerate, 2-covariant symmetric tensor field of signature
(n,1). This means that at each point p € M one can choose a basis of n + 1
vectors, {e(q)}, belonging to the tangent space T'M,,, such that

8(e(): €(3)) = Map (1.1.1)

forall «, 6=0,1,...,n , where n is the diagonal matrix with entries —1, 1, ..., 1.
If X is an arbitrary vector at p expressed, in terms of the basis {e(q)}, as
X = X%¢(y), we have

g(X, X) = 7as X XP = —(X°)2 + (X2 4+ (X2 + ... + (X™)? (1.1.2)

The primary example of a spacetime is the Minkowski spacetime, the space-
time of Special Relativity. It plays the same role, in Lorentzian geometry, as
the Euclidean space in Riemannian geometry. In this case the manifold M
is diffeomorphic to R™*! and there exists globally defined systems of coor-
dinates, %, relative to which the metric takes the diagonal form —1,1, ..., 1.
All such systems are related through Lorentz transformations and are called
inertial. We shall denote the Minkowski spacetime of dimension n 4+ 1 by
( Mn+1’ ,)7) .

In view of 1.1.2 we see that the Lorentzian metric divides the vectors in
the tangent space T'M,, at each p, into timelike, null or spacelike according
to whether the quadratic form

(XaX) :guVXMXV (1.1.3)

is, respectively, negative zero or positive. The set of null vectors NN, form
a double cone, called the null cone of the corresponding point p. The set
of timelike vectors I, form the interior of this cone. The vectors in the
union of I, and N,, are called causal. The set S, of spacelike vectors is the
complement of I, U IN,,.

2We assume that our reader is already familiar with the basics concepts of differential
geometry such as manifolds, tensor fields, covariant, Lie and exterior differentiation. For
a short introduction to thes concepts see Chapter 1 of [Haw-El].
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Together with the orthonormal fames we will use in the following the
null frames?, {e3, e4, €.}, satisfying

g(es,e3) = gles,eq) =0, gles,eq) = —2
gles,eq) = gles,eq) =0, gleq, ) = dap

where e, are orthonormal spacelike vectors with ¢ = 1,...,n — 2

Notations: We will use systematically throughout the book the following
notational conventions:

We shall use boldface characthers to denote the spacetime metric g, the
Riemann curvature tensor R, its conformal part C, as well as the connection
D.

Their components relative to arbitrary frames will also be denoted by bold-
face characthers. Thus given a frame {e.)} we write g,3 = g(ea,es),
Rasys = R(ea,€p, ey, €;5) and, for an arbitrary tensor T,

Taﬁ'y5... = T(@a, €5, €y, €5, )
DaDﬁ...D(sTe___)\ = (DD ...D.T)(ea,eﬁ, ey €5, E¢, ...,6)\) .

On the other hand we do not use boldface characthers for the components
of all tensors, relative to a generic system of coordinates. Thus, for instance,
in 1.1.3 g = 8(3%, 72)-

We use the first greek letters a, 3,4, ... to denote the indices associated
to arbitrary frames and the greek letters u, v, p,o,... whenever we refer to
spacetime coordinates.

When we refer to tensor quantities defined on a spacelike three dimensional
hypersurface, 3, we use the latin letters 4, 7,1, k,.... In this case it will be
clear from the text which kind of components we are using.

When we consider tensors restricted to two dimensional surfaces S, diffeo-
morphic to S%, we use the latin letters a,b,c,d,... only to indicate their
components with respect the an adapted orthonormal frame {e,}. We will
point out explicitly the cases when the components are written with respect
to a generic frame or to a set of coordinates of S.

We will, however, in the sequel, restrict ourselves mainly to orthonormal or
null frames and, of course, ton =3 .

We conclude this part stating, without proof, a proposition which shows
already at this level, the fundamental role played by the null cones in the
Lorentz geometry, see for its proof [Haw-El], Chapter 1.

3We often write e, instead of €(a) tO simplify the notations.
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Proposition 1.1.1 The specification of the null cones N, uniquely deter-
mines the metric up to a factor of proportionality. In other words any two
Lorentzian metrics on M which have the same structure are conformally
equivalent.

We recall the three fundamental operators of the differential geometry
on a Riemann or Lorentz manifold, the exterior derivative, the Lie derivative
and the connection with its associated covariant derivative.

The exterior derivative

Given a scalar function f its differential df is the 1-form defined by

for any vector field X. This definition can be extended for all differential
forms on M in the following way:

Definition 1.1.1

i) d is a linear operator defined from the space of all k-forms to that of
k + 1-forms on M. Thus for all k-forms A,B and real numbers A, i

d(AA + puB) = MdA + pdB
ii) For any k-form A and arbitrary form B
d(ANB)=dAAB+(-1)*AAdB

ii1) For any form A
*A=0.

We recall that, if ® is a smooth map defined from M to another manifold
M’ then
d(®*A) = ®*(dA) .

Finally if A is a one form and X,Y arbitrary vector fields, we have the
equation
1
dACXY) = 3 (XA - Y (A40) - (L. VD))

which can be easily generalised to arbitrary k forms, see [Sp], Vol.I, Chapter
7, Theorem 13.
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The Lie derivative

Consider an arbitrary vector field X. In the local coordinates z*, the flow
of X is given by the system of differential equations

B (), 0)

The corresponding curves, z#(t), are the integral curves of X. For each
point p € M there exists an open neighborood U, a small € > 0 and a family
of diffeomorphism ®; : Y — M, |t| < ¢, obtained by taking each point in
U to a parameter distance t, along the integral curves of X. We use these
diffeomorphisms to construct, for any given tensor T at p, the family of
tensors (®;).T at ®.(p) .

Definition 1.1.2 The Lie derivative LxT of a tensor field T', with respect
to X, 1s:

.1
LxT|p = %1_1;% n (Tlp = (®4),T'[p) -
It has the following properties:
i) Lx maps linearly (p, q)-tensor fields into tensor fields of the same type.

ii) Lx commutes with contractions.

i1i) For any tensor fields S, T,

ﬁx(S®T):£Xs®T+S®[,XT.

If X is a vector field we easily check that
LxY =[X,Y].

If A is a k-form we have, as a consequence of the commutation formula of
the exterior derivative with the pull-back ®*,

d(LxA) = Lx(dA) .

We remark that the Lie bracket of two coordinate vector fields vanishes,
[&%, %] = 0. The converse is also true, namely, see [Sp], Vol.I, Chapter 5,
Proposition 1.1.2 If X(g),...., X(x) are linearly independent vector fields
in a neighbourhood of a point p and the Lie bracket of any two of them is
zero then there exists a coordinate system z¥, around p such that X, = 3%,,
for each p=0,...,k .
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The above proposition is the main step in the proof of Frobenius Theorem.
To state the theorem we recall the definition of a k-distribution in M. This
is an arbitrary smooth assignement of a k-dimensional plane m, at every
point in a domain U of M. The distribution is said to be involute if, for
any vector fields X,Y on U with X|,,Y|, € m,, for any p € U, we have
[X,Y]|, € mp. This is clearly the case for integrable distributions?. Indeed
if X|,,Y|, € TN, for all p € N, then X,Y are tangent to N and so is
also their commutator [X,Y]. The Frobenius Theorem establishes that the
converse is also true®, that is being in involution is also a sufficient condition
for the distribution to be integrable,

Theorem 1.1.1 (Frobenius Theorem) A necessary and sufficient condition
for a distribution (mp),,, to be integrable is that it is involute.
The connection and the covariant derivative

Definition 1.1.3 A connection® D at a point p € M, is a rule which as-
signes to each X € TM, a differential operator Dx. This operator maps
vector fields Y into vector fields DxY in such o way that, with o, € C
and f,g scalar functions on M,

a) Dfx+gyZ = fDxZ + ¢DyZ
b) Dx(aY +B7) = aDxY + Dy 2 (1.1.4)
¢) DxfY = X(f)Y + [DyY

Therefore, at a generic point p,
DY =Y560%) ® e(a (1.1.5)

where the 8% are the one forms of the dual basis respect to the orthonormal
frame eg) 7. On the other side, from c),

DfY =df ® Y + fDY

so that
DY = D(Yae(a)) =dY*Q® €(a) T YO‘De(a)

*Recall that a distribution 7 on I is said to be integrable if through every point p € U
there passes a unique submanifold N, of dimension k, such that m, = TN,.

®For a proof see [Sp], Vol.I, Chapter 6.

®Recall that the notion of affine connection does not depend on the metric of M.

"Immediately Y5 = 9(Q)(D8(B)Y)'



14 CHAPTER 1. INTRODUCTION

and finally 8
DY = (e(5) (Y*) + Y70 (De () 0) @ () (1.1.6)
Therefore
5= <€(ﬁ>(Ya) + 1‘%%’”)
and the connection is, therefore, determined by its connection coefficients,
5, =0 (D, e0) (1.1.7)

which, in a coordinate basis, are the usual Christoffel symbols and have the
expression

0
B gt il
Iy, =dr (Da%’ 6(1,‘/’)
Finally
DY = (X(Ya) + rgvxﬁw) C(a) (1.1.8)
In the particular case of a coordinate frame we have
oYy 0
— 1Y v pyo 7
DxY = <X pyr + I XY ) e

Definition 1.1.4 The Levi-Civita connection on M is the unique connec-
tion on M which satisfies Dg = 0.

Thus for any three vector fields X,Y, Z
Z(g(X,Y)) = g(DzX,Y) + g(X, DY)

and relative to a system of coordinates, z#, the Christoffel symbol of the
connection is given by the standard formula

1
Fgu = 59”7— (8/)91/7' + aung - 87—91//)) .

The Levi-Civita connection is torsion free namely
DxY -DyX =[X,Y].
This allows to connect it to the Lie derivative. Thus if T" is a k-covariant
tensor we have, in a coordinate basis,
(LxT)oy..on = X' oy opip + X, Tpos ooy + oo + X Ty iyt -

The covariant derivative is also connected to the exterior derivative accord-
ing to the following simple formula. If A is a k-form, we have ? A

010311

Using that, from the previous definitions, df(-) = e(a)(f)8'™ ().
9o1...0k; ] indicates the antisimmetrisation with respect to all indices and , p indicates
the ordinary derivative with respect to z*.
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A[Ul---akaﬂ] and

dA = ZAO'I---O'dex# ANdz® ANdz® A ... ANdz%F .

Definition 1.1.5 Given a smooth curve x : [0,1] — M, parametrized by t,

let T = (%) be the corresponding tangent vector field. A wvector field X,
X

defined on the curve, is said to be parallel transported along it if DX = 0.

Let the curve have the parametric equations ¥ = x¥(t), then TH = dg—: and
the components X* = X*(x(t)) satisfy the ordinary differential system of

equations
D dX* dxP
— Xt =" + I‘go'(x(t))ﬂ

X7=0.
dt dt 0

The curve is said to be geodesic if, at every point of the curve, DpT is
tangent to the curve, DT = AT. In this case one can reparametrize the
curve such that, relatively to the new parameter s, the tangent vector S =

(%) satisfies DgS=0 . Such a parameter is called an “affine parameter”.
X

The affine parameter is defined up to a transformation s = as’ + b for a,b
constants. Relative to an affine parameter s and arbitrary coordinates x*
the geodesic curves satisfy the equations

dQIE“ + © @dia

ds? P ds ds
A geodesic curve parametrized by an affine parameter is simply called a
geodesic. Timelike geodesics correspond to histories of particles freely falling
in the gravitational field represented by the connection coefficients. In this
case the affine parameter s is called the proper time of the particle.

Given a point p € M and a vector X in the tangent space T, M, let
x(t) be the unique geodesic starting at p with “velocity” X. We define the
exponential map:

exp, : oM — M .

This map may not be defined for all X € T, M. The theorem of existence for
systems of ordinary differential equations implies that the exponential map
is defined in a neighbourhood of the origin in 7, M. If the exponential map
is defined for all T}, M, for every point p the manifold M is said geodesically
complete. In general if the connection is a C" connection!® there exists an
open neighbourhood Uy of the origin in 7, M and an open neighbourhood
of the point p in M, V), such that the map exp, is a C" diffeomorphism of
Uy onto V,. The neighbourhood V, is called a normal neighbourhood of p'!.

10A C" connection is such that if Y is a C" ™! vector field then DY is a C" vector field.
"For a more general discussion of the exponential map see [Sp], Vol.I and [Haw-El].
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1.1.2 Riemann curvature tensor, Ricci tensor, Bianchi iden-
tities

In the flat spacetime if we parallel transport a vector along any closed curve

we obtain the vector we have started with. This fails in general because the

second covariant derivatives of a vector field do not commute. This lack of
commutation is measured by the Riemann curvature tensor,

R(X,Y)Z =Dx(DyZ) - Dy(DxZ) - Dixy|Z (1.1.9)
or written in components relative to an arbitrary frame,
R%.; =0 ((D,Ds — DyD,)egs) ) (1.1.10)

Relatively to a coordinate system z# and written in terms of the g,, com-
ponents, the Riemann components have the expression

ort or#
Rﬁmzzagf_éhf4Jygﬁy—r;F; (1.1.11)
The fundamental property of the curvature tensor, first proved by Riemann,
states that if R vanishes identically in a neighbourhood of a point p one
can find families of local coordinates such that, in a neighbourhood of p,

_ 12
Guv = Ny~~~

The trace of the curvature tensor, relative to the metric g, is a symmetric
tensor called the Ricci tensor '3,

Raﬁ = gfwsRa'yﬁé
The scalar curvature is the trace of the Ricci tensor
R=g"Rgs .

The Riemann curvature tensor of an arbitrary spacetime (M, g) has the

following symmetry properties ',

Raﬂfy(ﬁ = _Rﬂa'ﬁ = _Raﬁé'y = Rfyéaﬁ
Ragys + Raysg + Rasgy =0 (1.1.12)
2For a thorough discussion and proof of this fact we refer to the book of Spivak, [Sp],
Vol.II.
¥In a generic frame Rqs = Ricci(e(a), e(p)), 8°° = g;ﬁ,l
14The second ones are called: first Bianchi identities.




1.1. GENERALITIES ABOUT LORENTZ MANIFOLDS 17

It also satisfies the second Bianchi identities, which we refer here as Bianchi
equations and, in a generic frame, have the form:

DR 505 =0 (1.1.13)

The traceless part of the curvature tensor, C, has the following expression,
in a generic frame,

1
Casys = Rapys — 1 (gafyR;35 + 8gsRay — 85, Ras — ga(SR’/B’Y)
1

+ m(gwgﬁa — 8083, R (1.1.14)

Observe that C verifies all the symmetry properties of the Riemann tensor:
Capys = =Cpays = ~Capsy = Cosap
Capys + Carip + Caspy =0 (1.1.15)

and, in addition, g7Cu8y =0 .

We say that two metrics g and & are conformal if § = A\?g for some non zero
differentiable function A\. Then the following theorem holds, see [Haw-El],
chapter 1,

Theorem 1.1.2 Let § = \2g, C the Weyl tensor relative to g and C the
Weyl tensor relative to g. Then

CB5y5 = Chys »
showing that C is conformally invariant.

1.1.3 Isometries and conformal isometries, Killing and con-
formal Killing vector fields

Definition 1.1.6 A diffeomorphism ® : U C M — M is said to be a
conformal isometry if, at every point p, ®.g = A’g, that is,

(2*8)(X,Y)]p = (2. X, .Y )|a(p) = A’8(X,Y)],
with A #£0. If A =1, ® is called an isometry of M.

Definition 1.1.7 A wvector field K which generates a one parameter group
of isometries, respectively, conformal isometries is called a Killing, respec-
tively, conformal Killing vector field.
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Let K be such a vector field and ®; the corresponding one parameter group.
Since the (®;), are conformal isometries, we infer that £xg must be pro-
portional to the metric g. Moreover Lxg = 0 if K is a Killing vector field.

Definition 1.1.8 Given an arbitrary vector field X we denote X the de-
formation tensor of X defined by the formula

e = (Lx9)ap =DaXp +DsXa .
(X) 7 measures, in a precise sense, how much the diffeomorphism generated
by X differs from an isometry or a conformal isometry. The following Propo-
sition holds, see [Haw-El], chapter 1, page 43,

Proposition 1.1.3 The vector field X is Killing if and only if Xn =0. It
is conformal Killing if and only if ) x is proportional to g.

Remark: One can choose local coordinates 2%, 2!, ..., £ such that X = %.
It then immediately follows that, relative to these coordinates the metric g
is independent of z°.

Proposition 1.1.4  On any spacetime M, of dimension n+ 1, there can
be no more than +(n + 1)(n +2) linearly independent Killing vector fields.

Proof: Proposition 1.1.4 is an easy consequence of the following relation,
valid for an arbitrary vector field X, obtained by a straightforward compu-
tation and the use of the Bianchi identities.

DsDo Xy = Raass X2 + X050 (1.1.16)

where
S N :%(DMMJFDMM—DMM) (1.1.17)
and 7 = (X1 is the X deformation tensor. In fact, if X is a Killing vector

field the previous equation 1.1.16 becomes
Dj(DaX)) = Ragps X’ (1.1.18)

and this implies that any Killing vector field is completely determined by the
2(n 4+ 1)(n + 2) values of X and DX at a given point. Then the argument
goes in this way: let p,q be two points connected by a curve z(t) with
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tangent vector T'. Let L,g = DoXp; along x(t), X, L verify the system of
differential equations

D D
—X=T-L , —L=R(,"X,T
dt 7 dt (77 ? )

therefore the values of X, L along the curve are uniquely determined by their
values at p.

The spacetime which possesses the maximum number of Killing and
conformal Killing vector fields is the Minkowski spacetime M"*!. Let us
review their associated isometries and conformal isometries.

Let " be an inertial coordinate system, positively oriented, we have:

1. Translations: for any given vector a = (a°,a',....,a") € M"*!,
zt — at + at
2. Lorentz rotations: Given any A = A2 € O(1,n),
zt — Abz?
3. Scalings: Given any real number \ # 0,
xt — Azt

4. Inversion: Consider the transformation z# — I(x*), where

I(z") =

(z,z)
defined for all points x € M"*! such that (z,z) # 0.

The first two sets of transformations are isometries of M™*!, the group
generated by them is called the Poincare group. The last two type of trans-
formations are conformal isometries. the group generated by all the above
transformations is called the Conformal group. In fact the Liouville theo-
rem, whose infinitesimal version will be proved later on, states that it is the
group of all the conformal isometries of M™*1.

Let us list the Killing and conformal Killing vector fields which generate the
above transformations.

i. The generators of translations in the z* directions, p =0,1,...,n:

0

N Y
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ii. The generators of the Lorentz rotations in the (u,r) plane:
L,, =z,0, —x,0,

iii. The generators of the scaling transformations:

S =4z,
iv. The generators of the inverted translations !5:
0 0
- P (P _
K, =2z,x oy (x x")axu

We also list below the commutator relations between these vector fields,

,

a3y 76] = 77047L66 77,87La6 + 77,86La7 - 77a6L,3'y
afBs ] = navTﬁ ngyTa
Ta,Tg]

TomK,B] = 2(77a,BS + La,@’)
aB,S] [KCHKﬂ] =0

L
7
$ [T, S]= (1.1.19)
[
L
[Lap, Ky] = 10y Kig = 15y Ka

\

Denoting P(1,n) the Lie algebra generated by the vector fields T, Lg, and
K(1,n) the Lie algebra generated by all the vector fields Ty, Lg,, S, K5 we
state the following version of the Liouville theorem,

Theorem 1.1.3

1) P(1,n) is the Lie algebra of all Killing vector fields in M™1,

2) If n > 1, K(1,n) is the Lie algebra of all conformal Killing vector fields
in ML

3) If n = 1, the set of all conformal Killing vector fields in M'T! is given
by the following expression

f(@+ 2" (00 + 01) + g(z° — ) (9 — D)

where f, g are arbitrary smooth functions of one variable.

5Observe that the vector fields K, can be obtained applying I. to the vector fields T.
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Proof: The proof for part 1 of the theorem follows immediately, as a par-
ticular case, from Proposition 1.1.4. From 1.1.16 as R = 0 and X is Killing
we have

DD, X, =0.

Therefore, there exist constants a,,,b, such that X* = a,,2" + b,. Since
X is Killing D, X, = —D, X,, which implies a,,, = —a,,. Consequently X
can be written as a linear combination, with real coefficients, of the vector
fields T, Lg,.

Let now X be a conformal Killing vector field. There exists a function (2
such that

e = Qjpy (1.1.20)

From 1.1.16 and 1.1.17 it follows that

1
D,D, Xy =

9 (Q,;ﬂ?m + Q’llnuA - Q,X’?l/u) (1.1.21)

Taking the trace with respect to u, v, on both sides of 1.1.21 we infer that

1
OX,=-—2_-Q,

1
D'X, = "; Q (1.1.22)

and applying D* to the first equation, [ to the second one and subtracting
we obtain

O0Q=0 (1.1.23)

Applying D,, to the first equation of 1.1.22 and using 1.1.23 we obtain

n—1
(’I’L - I)DMD/\Q = 5 (DMD)\Q + D)\DMQ) =—-04 (DHX)\ + D/\XM)

= (O =0 (1.1.24)

Hence for n # 1, D, D,£2 = 0. This implies that £ must be a linear function
of z#. We can therefore find a linear combination, with constant coefficients,
¢S + d*K, such that the deformation tensor of X — (¢S + d*K,) must be
zero. This is the case because I = 2p and Kulr = 4x,n. Therefore
X — (¢S + d*K,) is Killing which, in view of the first part of the theorem,
proves the result.
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Part 3 can be easily derived by solving 1.1.20. Indeed posing X = ady+ b0,
we obtain 2Dy Xy = —Q, 2D1X; = Q and DyX; + D1 Xy = 0. Hence a,b
verify the system

da ob 0b da

910~ 9zl 9x0  dal

Hence the one form adz® +bdz' is exact, adz® +bdz' = d¢, and
that is ™ ¢ = 0. In conclusion

_1(9¢ | 94 199 09
X —<@ @)(30+31)+5<@—@>(30—31)

S 2
which proves the result.

8%a __ 9%b
02

F) et

1.2 The Einstein equations

The Einstein equations links the metric g,, to the matter fields ¢, with
energy-momentum tensor 7'(¢),.,, by

G = 81Ty,
F() =0 (1.2.1)

where G, = R, — %gWR is the Einstein tensor, R, the scalar curvature,
is the trace of the Ricci tensor, R = ¢"”R,,,; the second line of 1.2.1 sum-
marizes the dynamical equations of the matter fields. As a consequence of
the twice contracted Bianchi identities the energy momentum tensor 7},
satisfies the local conservation laws,

DT, =0 .

It is also important to emphasize that a solution of the coupled Einstein-
matter field equations is, in fact, a class of equivalence of solutions. More
precisely if ® is a diffeomorphism of M then {M, g, v} and {M, &*g, d*¢)}
describe the “same” solution of the Einstein equations.

1.2.1 The initial value problem, initial data sets, constraint
equations

The general formulation of the initial value problem is given in the definitions
below:
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Definition 1.2.1 An initial data set is given by a set {3,g,k, ¢} where ¥
is a three-dimensional manifold, v the prescribed matter fields on T, G a
Riemannian metric 'S and k a covariant symmetric tensor field satisfying
the constraint equations 17 :

Vik;; — Vitrk = 8mj;
R — k> + (trk)* = 167p (1.2.2)

Two initial data sets {3, Gy, k1,0, } and {2, Gy, ko, ¥y} are said to be equiva-
lent if there exists a diffeomorphism x of 3 such that go = x*g1, ke = x* k1,
P2 = X*1h1.

Definition 1.2.2 (The Cauchy problem) To solve the Einstein-matter
field equations with a given initial data set means to find a four dimensional
manifold M, a Lorentz metric g and fields 1 satisfying the coupled Einstein-
matter equations as well as an imbedding

7: 0 - M

such that i*(g) = g, i*(k) =k, i*(3) = 1 where g is the induced metric and
k is the second fundamental form (the extrinsic curvature) of the submanifold
i(X) € M. The constraint equations for § and k are thus the pull back of
the Codazzi and Gauss equations induced on i(X). Two equivalent initial
data sets are supposed to lead to equivalent solutions.

Definition 1.2.3 The spacetime manifold M defined above is called a de-
velopment of the initial data set {3, G, k,v}.

Definition 1.2.4 If the spacetime M is globally hyperbolic 18 it is called a
Cauchy development of the initial data set {¥,g,k,1}.

From now on we will restrict ourselves to the Einstein equations in the
vacuum case. In other words we assume everywhere T'(¢)) = 0. Therefore
the Einstein equations take the form

Ry, =0.

16The differentiability class of g and k will be discussed later on.

"Here ji = Toi (E), p = Too (E) Also Rij denotes the Ricci curvature of ¥ with the
metric §, R the scalar curvature.

18 A spacetime M is globally hyperbolic if it contains a Cauchy surface, see [Haw-El],
chapter 6.
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1.3 Local existence for the Einstein’s vacuum equa-
tions

1.3.1 Reduction to the non linear wave equations

The first successfull approach to the general initial value problem in General
Relativity is due to Y.Choquet-Bruhat, [Brl], [Br2]. She made use of wave-
like coordinates in order to get round the diffeomorphism invariance and to
write the Einstein equations as an hyperbolic system in the sense of Leray,
[Le], so to obtain local in time existence and uniqueness. Later the result
was revisited and improved by many authors, see in particular the result
of Hughes, Kato and Marsden, [Hu-Ka-Ms| and of A.Fisher and J.Mardsen
[F-Msl], [F-Ms2], who expressed the reduced equations, 1.3.1, in the form of
a symmetric hyperbolic system to which they could apply the general theory
developed by T.Kato, see also [Ch-Mul].

In what follows we shall give a short review of the wave-like coordinates and
the derivation of the reduced Einstein equations.

Let g be a given Lorentz metric on M. For a metric ¢ on M, we
introduce!”

Ve = guu (qu - fzu)
and define, with D the covariant deivative associated to the metric g,
RY = Ros — L (1 b
op = Bap = 5(DaVs + DsVa) -

A simple calculation shows,

h 1
Rgﬁ) = —5 B9ap + Haslg, 99)
with H a quadratic expression depending on ¢ and its first derivatives?® and

Dggaﬁ = g””au&,gaﬁ .
The condition V* = 0 is satisfied if and only if the identity map

Id: (M, g) = (M,g)

191—\?“/ and f‘fj,, are not tensors, but their difference is.
200f course, depending also on §, 8§ and 8%§.
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is a wave map. This means that x has to satisfy the following equation

Ogz® + fgyawﬁa*:ﬂ =—(*-1* =0

In that case, the vacuum equations are “reduced” to R&hﬁ) = 0, that is to

O 990 = 2Hap(g, 09) (1.3.1)

which is a “weakly coupled” system?' of non linear wave equations. The
general case described above was used in the work of Friedrich, see [Fr3] and
also [Frd4].

In the case the background metric is the Minkowski one, §og = 705, We
have f‘ij =0, and V* = g"'T'};, = I'*. The condition (1.3.1) reduces to the
more familiar wave-like coordinates condition

O,2%=0, «a=0,1,2,3. (1.3.2)

In what follows we restrict ourselves to the choice gog = 145. To construct
solutions of the Einstein equations one solves the reduced equations 1.3.1,
subject to initial conditions satisfying the constraint equations G’Ou =0,
where G, is the Einstein tensor. Observe that in the constraint equations
the second derivatives with respect to ¢t of the metric are absent. Moreover if
we choose X as the hyperplane t = 0 and define k;; = —% 35? they coincide
with equations 1.2.2 with p = j; = 0.

The main goal of the approach described above is, therefore, to reduce
the general system of the Einstein equations R(g),, = 0 to the hyperbolic
system

R™(g),, =0 (1.3.3)

This has to be connected with the initial value formulation. In this re-
spect the crucial observation is that if the constraints and the condition
I'* = 0 are satisfied by the initial data then they are automatically propa-
gated by the solutions of the reduced equation, 1.3.1. The precise statement
is given by the following Proposition whose proof is in [Ch-Mu] and [F-Ms1],
see also [Br-Fo].

Proposition 1.3.1 Let g, be the components of a metric tensor g written
in a specific set of coordinates, x*, with z° = t, x = (z', 2%, 2%), such that:

21The system has a diagonal structure with respect to the highest order terms.
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i) On M %2 it satisfies the “reduced” Einstein equations Rgf,) (9) =0.
ii) On X = Xy—g it satisfies the initial conditions

(9000, 2), 22220,2)) = (B (&), Yy ()

where {¢u (1), ()} satisfy the conditions T"(z*) = 0 and the constraints
7% Gyu(x) = 0. Then I*(z*) = 0 on the whole M and, therefore, Guv 18
also a solution of the Finstein equations Ry, (g) = 0.

The proof of the proposition is achieved in two steps which we sketch below,
see also [Hu-Ka-Ms]|, [Wa2],

Step 1: Let {¥,g,k} be an initial data set. Let us require that the
coordinate system is also Gaussian on ¥, adding therefore to g;; = g;;(0, z),

go0(0,z) = =1, go;(0,z) = 0. There exists a coordinate transformation ¢,
2 = 2" = ¢} (x®), such that on ¥:

o¢° Ot

(50(071‘)76‘7(07]7)) = (vaj) ) (E(OVIL‘), E(O,JT)) = (1,0)
625/\ B 1
5z (0,2) = WFA(UJ) (1.3.4)

In the new coordinates =’ we have

gluu(ovx) = gull(oax) ) k,ij(oax) = kij(ovx)

19q; 1 .
Koi(0,2) = 5 gt?l (0,) = koi(0,2) + Sgij(0,2)T7 (0,2)  (1.3.5)
104
Koo(0,2) = 5 g 10.(0,2) = koo(0, ) — T°(0,)
and, from the transformation rule of I'“,
65(1 62504
M= —gPr7——> _ — _ [, 1.3.6
oxP 0xPOx° o8 ( )

it follows that I"*(0,z) = 0. Moreover the conditions % =0 on X are
automatically fulfilled from the constraint equations Gg = 0 when g satisfies
the reduced equations.

Step 2: I'*(0,z) = 0 and 35—:(0,@ =0 imply I'* = 0 on the whole M.
This is achieved by observing that the twice contracted Bianchi equations
lead to the following system of linear equations satisfied by the I'®,

1 5 0T or”

< —0
0xP

B
59" 589 + A" (9,99)

*?Here with M we indicate the region of R**! where the reduced equations are satisfied.
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with g, solution of the reduced equations 1.3.3. The uniqueness properties
of the initial value problem for such system proves the result.

Therefore, given Proposition 1.3.1, to reduce the solution of the Einstein
vacuum equations to the solution of the “reduced system” 1.3.1, we need
initial data which satisfy the constraint equations and also the conditions
re=o0.

Let {¥,g,k} be an initial data set and let the initial conditions for the
reduced system 1.3.1 given by

oGy
guu(07$) = Qs;w ) a—‘;(o,l‘) = ¢MV , (137)

we have to connect the latter, {¢,,,%,.}, to the former, {gij,kij}. To
achieve that we restrict to a Gaussian coordinate system requiring that
doo = —1, ¢pg; = 0. Then from the first line of 1.3.5 we obtain immediately

bij = Gijy Yij = 2kij -

The remaining data 1yg, ¥o; are determined from the next two lines of 1.3.5
I'*|z, = 0. The result is:

"/)00 — —4t’f‘gEi]’ N ¢0i = Agxi (1.3.8)

Proof: The third line of 1.3.5 can be rewritten as

999 (1) — 20(0, ) = —4trsh

%UZW

where the last equality comes from the explicit computation of %0, z):
1900, 2) = $242(0, ) + 2trgk.
The second relation follows from the explicit computation of the second line

of 1.3.5
¢0i = gZ](O,IE)(?))F](O,I) = _Aggi

where )1V is the contracted Christoffel symbol relative to £. The last equal-

ilt};) Zrises from the definition Agé’i = g“%;xsfi — (3)Fj%£i and equation

In view of the fact that G’Ou does not depend on 0;gy,, it follows immedi-
ately that the constraint equations are also satisfied for this choice of initial
data.
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1.3.2 Local existence for the Einstein vacuum equations us-
ing wave coordinates

Before stating the local existence and uniqueness theorem?? for the Einstein
equations we briefly recall the definition of local Sobolev spaces H; .

Definition 1.3.1 Given a three dimensional Riemannian manifold 3 and
an integer’* s > 0 we say that f € H} . if, for any compact subset K C X,
we have [ |D*f]* < .

Theorem 1.3.1 (local existence) Let {%,g,k} an initial data set and as-
sume that ¥ admits a locally finite C* covering 25 by open coordinate charts
{Ua} such that (g, k) € H® x H*"! with some s > 2. There exists a globally
hyperbolic development (M, g) of (X,g,k) for which ¥ is a Cauchy hyper-
surface. Moreover, if s > g + 1, the above development is unique in the
sense that any other H® development must be diffeomorphic to it.

Sketch of the proof: According to the discussion of the previous section,
it suffices to prove existence of solutions to the reduced Einstein equations
1.3.1. By a simple domain of dependance argument it suffices to consider
that the initial data are supported in a fixed coordinate patch. One is
thus reduced to study the initial value problem for systems of non linear
wave equations. We shall discuss this issue in more detail in section 1 of
the next chapter. For a detailed account of the proof of Theorem 1.3.1
we refer the reader to [Hu-Ka-Ms], previous proofs of the local existence
theorem are in [Brl] and [F-Msl], for a survey see [Fr-Re]. The result
applies, in particular, to asymptotically flat initial data sets 26. More precise
information concerning the behavior at spacelike infinity, for asymptotically
flat initial data sets, can be derived by using weighted Sobolev spaces, see
[Ch-Mul].

Concerning the uniqueness we observe that the Cauchy development (M, g)
described above is not unique. In fact a coordinate transformation z = o(z),
which on 3 takes the form

oot Q2o
M — — g
g (ZE) =, 920 (IL‘) — Y0 > 63002

23This version is due to Hughes, Kato and Mardsen, see [Hu-Ka-Ms].

2The definition can be extended to nonintegers with the help of the Fourier transform.

Z5This means that any point in ¥ has a neighborhood which intersects only a finite
number of the open sets U,. The sets U, are related by C"! coordinate transformations.

Z6For these initial data sets one can derive a uniform existence time. The uniformity
of time can be made precise by using the geodesic distance function from a point of the
spacetime to the initial hypersurface.

(z) =0 (1.3.9)
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does not change I'* on 3y, nor the other initial conditions. Therefore, if
¢ is the transformation to the wavelike coordinates which on ¥ connects
{$,7,k} with the initial conditions (g, (0,2) = ¢, %(OJ) =), see
1.3.7, then also {0 o £} does.

Let gr. be the solution of the reduced equations 1.3.3 with initial data
(P Puv), then g(z) = {*gre(€(z)) and g(z) = (0 0 £)*gre(o 0 (z)) are
different solutions of the vacuum Einstein equations, R, = 0, correspond-
ing to the same initial data set.

To prove the uniqueness in the sense stated in the theorem, we have also to
show that any two developments of the Einstein equations, corresponding to
the same initial conditions 27, are connected by a coordinate transformation,
a diffeomorphism. The idea of the proof is very simple: If ¢ and g are two
spacetime metrics corresponding to the same initial data set, then on X
they share the same I'*. We then define, according to 1.3.7, the coordinate
transformations 5 and &, respectively, and check that the two sets of initial
conditions for the reduced equations 1.3.1 coincide. Therefore the spacetime
metrics g, § produce two solutions, £* 1g , £ 1§, of the reduced Einstein
equations 1.3.1, with the same initial conditions and satisfying I'® = 0.
In view of the uniqueness results for hyperbolic systems, the two solutions
coincide. Then the composition of the transformations 5_1 o £ gives the
diffeomorphism we are looking for.

We remark however, see [Hu-Ka-Ms] , that the proof of uniqueness, outlined
above, requires one degree more of differentiabilty than needed in the proof
of existence.

1.3.3 General foliations of the Einstein spacetime

We first recall the following result due to R.Geroch, [Ge], see also [Haw-El]
chapter 6.

Theorem 1.3.2 Assume that the spacetime (M,g) is globally hyperbolic,
then (M,g) can be foliated along a timelike direction and is diffeomorphic
to R x S where § is a three dimensional Riemannian manifold.

Sketch of the proof: To construct the diffeomorphism 7 : R x S - M
one proceeds in the following steps:

1) One shows first that there exists a continuous function #(-) on M such
that
Yo = {p € Mlt(p) = a}

2TThe same applies to equivalent initial data sets.
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is a Cauchy hypersurface. We identify S with 3. Then one proves, us-
ing a smoothing procedure in the definition of the time function, see [Se],
that there exists a global C? time function ¢ whose level sets are Cauchy
hypersurfaces.

2) One defines on M a timelike vector field V' such that, in view of the
properties of the Cauchy hypersurfaces, its integral curves ¥(s;p) solution

of
T = VE()

define a map : ¢ € M — [(q) € S through the relation

q="Y(506(q)) -

3) We define the diffeomorphism 7 through the relation

T (q) = (t(q), B(q)) -

Therefore the diffeomorphism 7T is specified once are defined on M the
function t(q) and the vector field

out| 0

q

In general the vector field V' is not orthogonal to the hypersurface ;. To
decompose it into its orthogonal and tangent components, let us introduce
the timelike vector field orthogonal to ¥,

ot 0
F=|g"—)— 1.3.10

(g 8:17”) oxH ( )
and define the future directed unit normal vector field to 3,

1
N=—— __F (1.3.11)

(~g(F,F))?

Then we decompose V in a component parallel to ¥ and in a orthogonal
one, V=1V + V, where

V,F
Vit =—(VYN,)NF = %EF’ F;l s (1.3.12)
V, 1 v vV vV
L||u— Vv g( )lu—gu (gup -“V‘“P) p—hﬁ L

g(F, F)
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where h¥ = (¢g# + N*N,) is the projection tensor on ;. The function

®(q) = (—g(q)(F, F))~3 (1.3.13)

is called the “lapse function” and the vector field, tangent to X,

Vi (q)
X"(q) = ———— (1.3.14)
gV, F)
is called the “shift vector”.
Lemma 1.3.1 The following relation holds
0
— =®dN + X .
ot *
Proof: Observe that from
t=1t(q) = t(z"(q)) = t(¥"(s(t,p);p)
we have
ot at oYt Os 0s
l=—=—-" " —9o(F — 1.3.1
ot~ oo o5 o 8 E Vg (13.15)
Therefore
o _ oo _osovto 1 1,
ot Ot ozk Ot 0s ozr  g(FV) = gFV)'|

F
_ X=0N+X .
g(F, F) " -

The next lemma, whose proof is in the appendix to this chapter, gives the
explicit form of the metric components in the coordinates (¢(q), 5(q)).

Lemma 1.3.2 Choosing as coordinates of the generic point ¢ € M
2%(q) = t(q) and 7'(q) = B'(q) ,
the metric tensor g has the following expression:
8(a)() = —®*(q)dt” + gij(¢)(dz’ + X'dt)(dz’ + X dt)

where
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In what follows we assume our spacelike foliation to be given by the level
hypersurfaces of the time function ¢. Let (g;;, kij) be the induced metric and
the second fundamental form on X, with k given by k;; = —%([,Ng)ij. Con-
sider a frame {eg = N,e1,eq,e3} satisfying [0, e;] = 0, and split the Ricci
tensor R,g into its various components. We obtain the following evolution
and constraint equations 28

Evolution equations:

0v9ij = —2®k;; + Lx gij (1.3.16)
Oikij = —ViV;® + &(—Rij + ORyj + trkkij — 2kim k™) + Lx ki

Constraint equations:

@GR — |k|? + (trk)?> = 2Rrr + R
Vitrk - ijij = RTi (1.3.17)

with (3)Rij denoting 2° the Ricci curvature of the induced metric.

1.3.4 Maximal foliations of the Einstein spacetime

Let us recall that in a Lorentz manifold a maximal hypersurface is one that
is spacelike and maximimizes the volume among all possible compact per-
turbations of it. It satisfies the equation trk = 0. The constraint equations
for the level hypersurfaces of a maximal foliation take, in this case, the form

GR — |k|> =2Rrr + R
Vik;; = Ry (1.3.18)
trk =0

1.3.5 A proof of the local existence using the maximal folia-
tion

We review the proof of local existence and uniqueness for the Einstein vac-
uum equations in the maximal foliation, [Ch-KI]. The specific gauge con-
ditions are X = 0, trk = 0. Thus the equations, 1.3.16, 1.3.17, in vacuum,
take the form 30

*8See [An-Mon].

29Whenever there is no danger of confusion we will omit the upper left index for ®)R.
30Everywhere here R;; = (B)Rij.
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Evolution equations:

99
at] = —20k;;
ot = _vjviq) + q)(R” - 2]{71[]{7]) (1319)
Constraint equations:
R—|k*=0
divk =0, trk =0 (1.3.20)
Lapse equation 3! :
AD = |k*® (1.3.21)

It is easy to check that the evolution-lapse equations preserve the constraint
equations, see Proposition 1.3.1, in other words it suffices to assume the
constraints satisfied by the initial data set {%, go, ko}*2. We can then try
to solve the evolution equations for g,k coupled with the elliptic equation
satisfied by ®. This system is however not in standard hyperbolic form.
This is due not only to the fact that the lapse equation is elliptic but also,
ignoring @, that the evolution system for g, k is not hyperbolic. Indeed, the
principal part of the Ricci curvature R;;, expressed relative to the metric
gij, is not elliptic. This problem can be overcome by differentiating the
evolution equation for £;; with respect to ¢.

The detailed proof is given in [Ch-KI], Chapter 10. The final result is as
follows:

Theorem 1.3.3 Let {X, go, ko} be an initial data set verifying the following
conditions:

1. {2, g0} is a complete Riemannian manifold diffeomorphic to R3.

2. The isoperimetric constant (X, go) is finite, where T is defined to be

sup )
& A(S)3/2
with S an arbitrary surface in X, A(S) its area and V (S) the enclosed

volume.

3In the asymptotically flat case one has to normalize ® by the condition & — 1 at
spacelike infinity.
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3. The Ricci curvature Ric(go) verifies, relative to the distance function
do from a given point O,

Ric(go) € H21(X, g0)

4. k is a 2-covariant symmetric trace-free tensorfield on 3 verifying
k € Hz1(%,90)

where for a given tensorfield h, ||h| g,  (5,4,) denotes 33 the norm
s 1/2
Wl 50 = (32 [ 721030, |
=0

and op = Ml—i—d%.

5. (90, ko) verify the constraint equations on 3.

Then there exists a unique, local in time smooth development, foliated by
a normal, mazimal time foliation t with range in some interval [0,t,] and
with ¢ = 0 corresponding to the initial slice . Moreover

g(t) —go € C([0,t.]; H31(%,90))
k(t) € CO([Oat*];Hi%,l(zng))

1.3.6 Maximal Cauchy developments

We recall the general result of Y.Choquet-Bruhat and R.Geroch, [Br-Ge],
concerning the existence and uniqueness of a maximal Cauchy development
of an initial data set. Without going into details®* it is intuitively clear what
it means for one Cauchy development to be an extension of another. An
extension is called proper if it strictly larger than the other development.
A Cauchy development which has no proper extensions is called maximal.
Check if the proof with s > 4 is the one in [Br-Ge|, or vicevers is
the one of Chruschel

33These weighted Sobolev norms, see [Ch-Mu] and [Br-Ch2], give more control on the
behavior of solutions at spacelike infinity. In particular they prove an H® version of the
propagation of asymptotically flatness condition.

34For a precise statement of the Bruhat-Geroch result see also [Br-Y].
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Theorem 1.3.4 Let {%,7,k} be an arbitrary H® initial data set with s > 4.
There exists a unique, future, mazimal globally hyperbolic vacuum extension,
MGHVE, (M*,g%).

Moreover the development can be represented by M* =[0,1) x ¥ and

g () € cO([o, 1);%8(2)) Yol ([o, 1);%8—1(2)>.

Though the result of Bruhat and Geroch can be deduced quite easily
from Theorem 1.3.1, it is conceptually very important as it allows us to
associate, to any initial data set, a unique maximal global hyperbolic space-
time. Therefore any construction, obtained by an evolutionary approach
from initial data, must necessarily be included in the corresponding MGHVE
spacetime which should, therefore, be viewed as our main object of study.

1.3.7 The Hawking-Penrose singularities, the cosmic censor-
ship

Soon after the formulation of the General Relativity theory it was real-
ized that the Einstein equations could lead to formation of singularities3®.
A standard example is given by the Friedman-Robertson-Walker spacetime
with positive curvature, which evolves from the “big bang singularity” to
the “big crunch” singularity. Therefore the question if singularities generally
occurr in vacuum Einstein spacetimes has been an important and open ques-
tion for years. This problem is considered, basically, satisfactorily settled
by Hawking and Penrose in their famous singularity teorems, see[Haw-El].

Rephrased in the langauge of the initial value problem the question
is that of timelike and null geodesic completeness of the maximal future
Cauchy vacuum development. The singularity theorems answer, therefore,
to this question in the negative. In particular we recall the Penrose theorem
[Pe3] which, in the vacuum Einstein case, can be stated in the following way

Theorem: If the initial data set {3,G,k} have ¥ non compact and, more-
over, ¥ contains a closed trapped surface 3% S, then the corresponding maz-
imal future development is incomplete.

The singularity theorems motivated some efforts in trying to formulate
some precise statements about the predictivity power of the Einstein equa-

35See [Chr] for a review of the problem.

36 A closed trapped surface is a C? compact, without boundary, spacelike two dimen-
sional surface such that a displacement of § in M along the congruence of the future
outgoing null directions decreases, pointwise, the area element.
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tions and the nature of the singularities. In this line of thought Penrose
proposed the following two “cosmic censorships conjectures” 37:

The first Penrose conjecture, called the “weak cosmic censorship”, can
be formulated in many ways. The version we state here 3® makes use of the
following result, a direct corollary of the result proved in this book 3.

Corollary 1.8.5 For any asymptotically flat initial data set {%,g,k} with
mazimal future development (M, g), one can find a suitable domain Qy with
compact closure in Y such that the boundary of its domain of influence
I7(Q0) in M has complete null generating geodesics.

The above corollary can be used to introduce the concept of complete future
null infinity 40

Definition 1.3.2 The mazimal future Cauchy development (M,g) of an
asymptotically flat initial data set possesses a complete future null infinity
if, for any positive real number A, we can find a domain Q containing the
set Qg of the previous corollary, such that the boundary D~ of the domain
of dependance of Q in M has the property that each of its null generating
geodesic has a total affine length, in D~ N1 (Qy), greater or equal to A.

The weak cosmic censorship (WCC): Generic asymptotically flat initial
data have mazimal future developments possessing a complete future null
infinity.
Remark: So far the only satisfactory rigorous proof of the conjecture ', due
to Christodoulou, was obtained for the special case of spherically symmetric
solutions of the Einstein equations coupled with a scalar field, see [Ch5].
Christodoulou had previously proved the existence of naked singularities for
his model, [Ch4], and thus had to show that the WCC conjecture holds true
only in a generic sense.

The weak cosmic censorship conjecture does not preclude, however, the
possibilities that singularities may be visible by local observers. This could

37There are many references on this subject, see for instance [An-Mon] and [Chr].

33Due to D.Christodoulou [Ch6].

39 A proof of Corollary 1.3.5 can be also derived indirectly from [Ch-KIl]. The result
proven in this book avoids however a great deal

40T his concept is usually defined in the General relativity literature through the concept
of a regular conformal compactification of a spacetime, by attaching a boundary at infinity.
(The notion of conformal compactification, due to Penrose, is discussed in [Haw-El] and
[Wa2].) The definition given here, due to [Ch6], avoids the technical issue of the specific
degree of smoothness of the compactification

“INevertheless see also [Chr], section 1.4.
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lead to the paradoxical situation of lack of unique predictability of outcomes
of observations made by such observers. Since predictability is a fundamen-
tal requirement of all classical physics it seems reasonable to want it valid
throughout the whole spacetime. Predictability is known to fail, however,
within the black hole of a Kerr solution in which case the maximal de-
velopment of any complete spacelike hypersurface has a future boundary,
called a Cauchy horizon, where the Kerr solution is perfectly smooth and
yet beyond which there are many possible smooth extensions. This failure
of predictability is due to a global pathology of the geometry of character-
istics and not to a loss of local regularity. It is to avoid this pathology and
ensure uniqueness that we want the maximal development of generic initial
data to be inextendible. Motivated by these considerations Penrose intro-
duced the strong cosmic censorship which forbids such undesirable feature
of singularities.

The strong cosmic censorship (SCC): Generic initial data sets have
maximal Cauchy future developments which are locally inextendible, in a
continuous manner, as Lorentz manifolds. In other words every mazimal
Hasdorff development of a generic initial data set, compact or asymptotically
flat, is a Cauchy development.

Remarks: In more technical terms this means that, disregarding some
possible exceptional initial conditions, the maximal future development of an
initial data set is such that along any future, inextendible, timelike geodesics
of finite length *2, the spacetime curvature components expressed relative to
a parallel transported orthonormal frame along the geodesic, must become
infinity as the value of the arclength tends to its limiting value.

The formulation above leads open the sense in which the maximal future
developments are inextendible. The precise notion of extendibility, which is
to be avoided by SCC, is a subtle issue which, probably, can only be settled
together with a complete solution of the conjecture.

Moreover if the strong cosmic censorship does not hold this implies the
existence of Cauchy horizons, which suggests that the uniqueness of (M, g)
is lost beyond them.

1.3.8 The statements of the C-K Theorem and of the K-N Main
Theorem

We conclude this first chapter stating the two theorems we are discussing.
The rest of the book is devoted to the proof of the second one, but at the

42That is of bounded proper time.
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end of Chapter 3 a survey of the first result is also given.

We preliminary introduce the definitions ** of the “asymptotically flat initial
data sets” and of the “strong asymptotically flat initial data sets” which
enter in the statement of both theorems and introduce also a functional
associated to these definitions which collects the initial data norms.

Definition 1.3.3 We say that a data set, {3,g,k}, is asymptotically flat
if there exists a coordinate system (z',x?,23) defined outside a sufficiently
large compact set such that, relative to this coordinate system

2M
gij = (1+ T)%’ +o(r )

kij = o(r—?) (1.3.22)

Definition 1.3.4 An initial data set {X,g,k} is “strongly asymptotically
flat”, if there exists a coordinate system (z',z%,2%) defined outside a suffi-
ciently large compact set such that, relative to this coordinate system

gij = (L +2M/r)ds; + 04(7"_%)

Fij = +os(r3) (1.3.23)

We also introduce the following functional associated to any asymptotically
flat initial data set,

Jo(S0rg.k) = sup ((d3+1)3|mc|2> (1.3.24)
)
3 1
+ Z(d3+1)l+1|vlk|2+/ S(d2 + 1) VB2
2o 1= Yo =9

where dy is the geodesic distance fom a fixed point O on ¥ and B is the

Bach tensor®?.

C-K Theorem (Global stability of the Minkowski space using a mazimal
foliation)

There exists an € sufficiently small such that if Jy(3¢,g,k) < € then the
initial data set {Xo,g,k}, strongly asymptotically flat and mazimal, has a

*3More precise definitions are given in Chapter 3, where the Main Theorem is stated in
every detail.
*4See [Ch-K]] for the definition of B and discussions about the quantity Jo.
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unique, globally hyperbolic, smooth, geodesically complete solution *>. This
development is globally asymptotically flat which means that the Riemann
curvature tensor tends to zero along any causal or spacelike geodesic. More-
over there exists a global mazimal time function t and an optical function u,
defined everywhere outside * an “internal region”. The outgoing null folia-
tion defined by u corresponds to the propagation properties of the spacetime.

Main Theorem (Global stability using a double null foliation)

Consider an initial data set {3g,g,k}, strongly asymptotically flat and
maximal, and assume Jo(Xo,g,k) bounded. Then, given a sufficiently large
compact set K C Xy such that o\ K is diffeomorphic to R?/By and under
additional smallness assumptions which are made precise in section 5.7,
there exists a unique development (M, g) 47 with the following properties

1) (M,g) can be foliated by a double null foliation {C(N\)} and {C (v)}

whose outgoing leaves C()\) are complete 8.

2) We have a detailed control of all the quantities associated to the double
null foliations of the spacetime and of the asymptotic behavior of the Rie-
mann curvature tensor along the null outgoing and the spacelike geodesics.

3)If J(X0, g, k) is small we can extend (M, g) to a smooth, complete solution
compatible with the global stability of the Minkowski space.

In this work we only provide complete proofs for 1) and 2), see section 3.7
for a complete discussion of our result.

1.4 Appendix

Proof of Lemma 1.3.2
The proof goes along the following three steps:

Step 1: As the coordinates (t,%') are the adapted coordinates of R x S,
we have to compute g(t,p) = T7*g(q), the metric induced on R x S. It is

45Which thus coincide with the maximally hyperbolic development of Choquet-Bruhat
and Geroch, [Br-Ge].

6See details in [Ch-KI].

4"Which coincides, roughly speaking, with the complement of the domain of influence
of the compact set K. This means, in particular, that for any point p € (M, g) any causal
curve passing through it intersects 3o\ K once and only once.

*®This definiton means that the null geodesics generating C'(\) can be indefinitely ex-
tended toward the future.
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defined through 7 in the following way,
&(t,p)((a,Y), (5,Y)) = g(a)(T(a,Y), To(b,Y)) -
Step 2: Let us consider the tangent space of R x Xg:

T(R x 3g) =TR x T
T(R X 20)(,5’1,) = R; x (TEO)p , PE Xy

The generic vector of T (R x ¥g) is

~ 0 ~; 0
(a,X)(typ) = (aa t,Xp BF p)
and®?
Te(a, X)(1p) € (TM)g , To(0,X) 1) € (TEr)g
where
tlq) =t, ¥(3,p) =¢q
We derive
Vi 0 ~ ~ QUM
_ q _ =Y?
Te(1,0) 1) = &(F,V) 07 |, T(0,Y )ty = Yy 5 - (1.4.1)
Step 3: Putting together Step 1 and Step 2 we obtain
doo(t,p) = —(—8(q)(F,F))"" +g(g)(X, X)
. ov
goilt.p) = 80X, 55) =X;
ov v
9ii(t,p) = glq) (@@) (1.4.2)

completing the proof of the lemma.

The more delicate part to prove is equation 1.4.1 of Step 2. Let f be a
function on M, then the vector Y; = Ti(a,Y) ), applied to f gives

0 8
Y,(f) = Yq“a_g:i :(a,Y)(t,p)(foT)
q
0 _. 0
= am(f o Dliy) + Yo gz (0 Tl (1.4.3)

*9Observe that, viceversa, T.(a,0) ) does not belong to (T'S:); .
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where
9 _Of | oTH
a&(foT”(t,p) - aaxu q ot (t.p)
and, using 1.3.15,
oTr| 0¥ty os| 1 o
o iy 05 |50tluy g(FV) 1
Moreover
o _of | ow#
so that finally
i v VE 9 ovH 0
* 1 0 = f = 2 -
T:(1,0) (1 ) g(F,V) g(F,V)oxkt|,  0Os |y 0zt
9 oV oUr 9
7;(0’ %)(tvp) - % q B 07! (g’p)% q ‘
Therefore,
Vi - OTH 0
Y = I ) A7
(vt 55 ,,) 25,

Step 3 is then simply achieved with the following substitutions,

goo(t,p) = 8&(t,p) ((1,6),(1,6)) - %

m g(a)(VL, V1) +g(a) (V). V)

= —(—g(@(F,F) " +glq)(X, X)

ait.) = 8(t.0) (0,220, 0, 52) ) = sla) (2 20

o7 53 05
Finally 50
- - ~ 0 V ov
antr) = E2)((10).0.55) = @) (7 5
1 ov ov

= SOV ) = 80X, 55) = Xi .

"0The vector components X; are relative to the (¢, ') coordinates.

41
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Chapter 2

Analytic methods in the
study of the initial value
problem

The goal of this chapter is to introduce the reader to the global analytic
methods which play a fundamental role in the remaining chapters of the
book. We start with a discussion of local and global existence results for
systems of non linear wave equations. As we have pointed out in the previous
sections, the Einstein vacuum equations can be reduced to such systems of
partial differential equations with the help of wavelike coordinates. Thus
the general framework of systems of nonlinear wave equations provides a
very convenient first introduction to some of the basic analytic tools in the
study of the evolution problem in General Relativity.

2.1 Local and global existence for systems of non-
linear wave equations
2.1.1 Local existence for the non linear wave equations

Recall that, written relative to a system of wavelike coordinates, the Einstein
equations take the reduced form:

1 s 0% gy

29 8$0‘8xﬂ :Huu(gaag)

where H is a quadratic expression relative to the first derivatives of g. Writ-
Ing gag = Nap+uaeg, with n the Minkowski metric and « a small perturbation

43
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we derive a system of equations of the form
0w = N(u, du, 0%u) (2.1.1)

where u = (u(l), e u(k)) is a vector € R*. We shall denote by 9 the space-
time gradient 0 = (0, 01, ...,0y), by D the space gradient D = (0, ..., 0y)
andby O = O, = 1% 94,0y the D’Alembertian with respect to the Minkowski
metric of R"*!'. The nonlinear part N of the Einstein equations consists of
a large number of terms which can be organized in two categories:

1. Terms wich can be written as a product of a real analytic function of
u, a component of v and a second partial derivative of a component

of u. Schematically,
F(u) - u - 0%u.

2. Terms wich can be written as a product between a real analytic func-
tion of 4 and a product of first derivatives of two components of w.

Schematically,
F(u) - 0u - Ou.

From the point of view of proving local and global existence results the

terms of the first type are considerably more difficult to treat. It makes
sense, therefore, to start with a treatment of equations which contain only
terms of the second type. In doing this we shall make, for the sake of clarity,
two more simplifications.
We will assume that the nonlinearity is quadratic in the first derivatives of
u, that is F'(u) constant and u a scalar function. Both simplifications are
irrelevant in so far as the main ideas of the proof are concerned. Indeed
it will be clear from our discussion how to extend the proof to the general
case. In fact we shall see that an appropriate modification of the argument
presented below will be used also in the global theory. We are therefore
reduced to an equation of the form:

Ou=N =0u-0u (2.1.2)

We have to solve 2.1.2 subject to the initial conditions at ¢ = 0,
uw(0,2) = f(z), Ou(0,2) = g(x). (2.1.3)
The solution of equations 2.1.2, 2.1.3 can be expressed in the following form:

u=u’+ O 'N. (2.1.4)
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0

Here w” is a solution of the homogeneous equation

Ou’ =0 (2.1.5)

subject to the initial conditions 2.1.3 and, for an arbitrary spacetime func-
tion F, O ~'F is defined to be the unique solution v of

Ov=F (2.1.6)

subject to zero initial data, that is v = v =0 at t = 0.

In view of the classical contraction argument to find a “local in time” so-
lution u of 2.1.2 amounts to find a 7' > 0 and a space of functions X = X (7'),
defined in the time slab [0,7] x R™, in which we can apply a contraction
mapping. In other words one has to find a space X verifying the following
properties:

I. The homogeneous solution u° belongs to X.
II. Ifu€ X then Rlu] = O~"!N(u) € X.
III. The mapping R: u — 07! N(u) is a contraction.

To achieve II and III we need “good estimates” for the inhomogeneous
problem 2.1.6. More precisely, since the nonlinear term F' depends on the
derivatives of u, we need estimates which gain a derivative. This means that
we need estimates for the first derivatives of u, in an appropriate norm, in
terms of estimates for F' itself. The energy estimate is precisely such an
estimate !

Lemma 2.1.1 Let u be a general solution of the inhomogeneous equation
Owu=F. Define

Qlu](t) = (% /Z |8u|2dx>% (2.1.7)

where |0u|?> = |Goul? + |O1ul? + ... + |Onul?. Then

Q[u](t) < Q[u](0) + /Ot ()l 2ds. (2.1.8)

In the particular case of the homogeneous wave equation [ u = 0 we have
the “energy identity”

1t is very important to remark that, for dimension n larger or equal to 2, the energy
estimate is, in fact, the only LP-type estimate with this property. This is easily seen in
the case of norms which are L? in space and uniform in time. The case of general local
spacetime LP norms is harder, see T.Wolff, [W].
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Q[u](t) = Q[u](0) (2.1.9)

Both inequalities follow easily by multiplying the wave equation by d,u and
then integrating on the spacetime slab [0, 7] x R™ where we perform a simple
integration by parts argument.

It thus makes sense to ask whether the space of functions u endowed
with the norm sup;cjo ) Q[u](#) satisfies the right properties. The answer is
clearly negative; property II fails due to the lack of sufficient differentiability.
The problem is that we cannot bound ||(u)?||z2 in terms of the energy norm
|0ull3 .. However the following modification works: consider the operators

D! = 9.0 with T = (y,...,ip) and |I| = iy + ---i,. Let’s define, for
i>0 1
2
@t = (3 Q') (2.1.10)
1<

In view of the fact that D! commutes with [0 we have, for the solutions of
Ou=F,

Q0 < QEl0) + [ 17 @2.111)

where H* = H*(R"™) denotes the Sobolev space 2 of functions f in R" en-
dowed with the norm

1

£l = (3 [ 10" 5(@)ds )" (2:1.12)

] <i

Moreover, for the solutions of the homogeneous problem 2.1.5,

Qi[u°](t) = Q;[u’](0) (2.1.13)
Motivated by this we define, in the slab [0,7] x R", the function space
X = X(T;s) of functions u € C! ([O,T];HS_I(R")> nco ([O,T];HS(R")>

endowed with the norm

Jullx = sup Qs—1[u] (2.1.14)
[0.7]

We claim that, for s > § + 1, the space X verifies both properties I, II. The
first property is obviously true, the second one follows from

2Sobolev type spaces play an important role in the subject because of the energy type
inequalities of Lemma 3.1. For a useful monograph on the subject see [Ad].
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Proposition 2.1.1 For s > 5 the Sobolev space H® = H*(R™) forms an
algebra, that is

1f - gllms < ellfllzs - lglls-

In fact let v = O "'N(u). In view of 2.1.11 and 2.1.13 and using Proposi-
tion 2.1.1 we derive, for s > 5 + 1,

[vllx < Qs—1[u’] + T |lull% (2.1.15)
To prove the contraction property III we restrict ourselves to the ball
lullx <A,

with A sufficiently large so that Q, 1[u’] < %A and then choose T suffi-
ciently small, proportional to A~!, such that A < Qs_1[u’] + cT'A%. With
this choice of T' and A the operator R maps the ball ||u||x < A into itself.
Finally, using the same argument as in the derivation of 2.1.15 we show that

IR[u1] — Rlug]|lx < cTAllur — usgl|x (2.1.16)

Therefore, for a small choice of T' > 0, we infer that the map R is a con-
traction proving, therefore, the following theorem:

Theorem 2.1.1 Assume that f € H*(R"), g € H*"Y(R") , with (f,g) the
initial data 2.1.8. Then, if s > so for a fived s > 5 + 1, there exists a
time T > 0, depending only on the size of ||f|lmgso(rny + 19l frso-1(rny and

a unique solution u € C! ([O,T]; HSI(R”)> nCo° ([O,T]; H? (R”)) verifying
2.1.2 and the initial conditions 2.1.3.

The proof of Proposition 2.1.1 is standard, it can for example be eas-
ily derived by Fourier transform methods; it can also be derived from the
following more general Moser type estimates, see e.g. [Ho],

Proposition 2.1.2 For every s > 0 the space H*(R™) N L*°(R™) forms an
algebra. Moreover we have the estimate

F - gllms < c([Ifllzellgllzs + llgllzellf|ms) (2.1.17)

together with the following classical version of the Sobolev inequality,
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Proposition 2.1.3 The Sobolev space H*(R"), for s > 5, is contained in

the space of bounded continuous functions in R" and we have the estimate

| fllnee < cl|f]]me (2.1.18)

Using Proposition 2.1.2 to estimate the term ||Qu - Qu|| ;i on the right hand
side of the inequality 2.1.11 and applying the standard Gronwall inequality?>,
we derive the following a priori estimates for solutions u of 2.1.2

Qulu(#) < ¢5Q4[u](0) exp ( /0 t ||8u(t)||Loodt> (2.1.19)

These estimates can be used to prove the following characterization of the
maximal time of existence in Theorem 2.1.1.

Theorem 2.1.2 Under the same assumptions as in the previous theorem,
the unique solution u can be extended in any slab [0,T] x R™ as long as

T
/ [|0u(s)||Leds < 0o.
0

Both Theorems 2.1.1 and 2.1.2 are valid for more general equations. In
fact the argument presented above extends easily over equations of the type
Owu = F(u)Ou - Qu. To treat the general quasilinear case, the previous
approach has to be somewhat modified. The idea is to appropriately modify
the energy norm 2.1.7 so that we can still rely on “energy type estimates”
as we have done before. Consider, first, scalar equations of the form

A% (1) 0 0pu = N (u, Ou) (2.1.20)
with A% a Lorentz metric depending on u. We define the mapping
u— R(u)=v (2.1.21)
where v is the unique solution of the linear wave equation
A (4)d;0;0 = N (u, du). (2.1.22)

subject to the given initial conditions. We are therefore reduced to prove
that the mapping R is a contraction. This can be done by following pre-
cisely the same steps as before. The only modification is in the definition

3The Gronwall inequality is a basic estimate used to study the dependence on initial
conditions which will be used repeatedly in this book, see e.g. [Ho].
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of the energy integral norm which can be defined now with the help of
the energy-momentum tensor Tog = 9,030 — Agg(u) A (u)0,v0,v associ-
ated to solutions v of the linear equation 2.1.22. The integral norm Q[v](t)
can now be defined on spacelike hypersurfaces 3; by integrating the energy
density T'(n,n), with n the future unit normal to ;. One then proceeds
precisely as in the case of the simple model equation 2.1.2 described above
and show that the results of both Theorems 2.1.1 and 2.1.2 hold true for
general equations of the type 2.1.1.

Discussion 2.1.1 The basic building blocks in the proof of the local exis-
tence theorem 2.1.1 were:

1. Basic energy estimate, see 2.1.8

2. Higher energy estimates, see 2.1.11
3. Sobolev inequality, see 2.1.18

4. Bootstrap estimate, see 2.1.15

5. Contraction estimate, see 2.1.16

These elements are typical to all local existence results, and we shall also
encounter them, in a modified form, in the global theory.

2.1.2 The global existence for the non linear wave equations

In trying to prove a global result for the Einstein equations it makes sense to
start with wavelike coordinates and therefore study the question of existence
of global smooth solutions for the reduced system 1.3.1. In the spirit of our
discussion in subsection 2.1.1 we first look at the scalar model equation,

O u = 0u - Ou, (2.1.23)

subject to the initial conditions v = f, dyu = ¢ at ¢t = 0, and ask whether
the local solutions can be continued for infinite time. In Theorem 2.1.2 we
have shown that the solution given by the local existence theorem can be
extended in any interval of time [0, 7] for which

T
/ 10u(s)|| oo ds < oo.
0
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In fact in the case of equations of the type 2.1.23 we had the precise estimate,
see 2.1.19,

T
Qs[u](t) < ¢;Qs[u](0) exp (/0 |I3U(t)||Loodt> (2.1.24)

with Qs the energy type norms introduced in 2.1.10. This suggests that, to
obtain a global solution, we have to control the asymptotic behaviour of the
L norm of Ju. If u is a solution of the linear wave equation

Hu=0
u(0) = f, ou(0) =g (2.1.25)

it is possible to show from the explicit form of the fundamental solution
that, as |t| goes to infinity

llu(t)||L < Clt] "7 (2.1.26)

where C' depends in a specific way on data f and g. This method of deriving
the asymptotic behaviour of u, based on the explicit form of the fundamental
solution, is very cumbersome in applications to non linear problems. It
would be particularly difficult to implement it for quasilinear wave equations
such as 1.3.1.

Another method for deriving the asymptotic behavior of solutions to
2.1.25 is the conformal method introduced by Penrose, [Pe2], to obtain the
asymptotic behaviour of linear, massless, field equations. This technique
was later developed by Christodoulou [Chl], [Ch2] and Friedrich [Fr1], [Fr2],
[Fr3]. The problem with the conformal method is that it requires a lot of
decay of the initial data f,g at spacelike infinity, incompatible with long
range properties of asymptotically flat initial data sets.

In what follows we give a short outline of a different method, see* [K14],
[K13] and [Ho], of deriving not only the uniform asymptotic behavior but also
the propagation properties of solutions to the linear wave equation based on
the conformal symmetries ® of the Minkowski spacetime. This method can
be easily generalized to non linear situations and its main ideas will turn
out to be central in our discussion of the Einstein vacuum equations.

“See also [K15] for new applications of this technique to Strichartz type inequalities
and improved regularity results for quasilinear wave equations.

5As in Penrose’s method the conformal structure is essential, however one has the
flexibilty to use it in a way which is best adapted to the problem at hand.
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The Minkowski spacetime is equipped with a family of Killing and con-
formal Killing vector fields

T, =D,

O = xﬂD,{ -z,D,

S = t0, + 710, (2.1.27)
Ko =t +r%) 2 + 2tz 2

K, =-2z,5+ <z,x > d,

The Killing vector fields 7, and O,,, commute with [0 while S preserves the
space of solutions in the sense that CJu = 0 implies OLgu =0 as [, 5] =
200 . Based on this observation we define the following “generalized Sobolev
norms”

Eolu](t) = [[u(t,)llr2(r2)
Eyult) = > Ey[Lx,, Lx,,...Lx, ul(t) (2.1.28)
Xiy X

with the sum taken over 0 < j < k and over all Killing vector fields T', €2 as
well as the scaling vector field S.
The crucial point of this method is that the generalized “energy type norms”

Qrlu](t) = Ey[Du](t) (2.1.29)

are conserved by solutions to equation 2.1.25. The desired decay estimates
of solutions to 2.1.25 can now be derived from the following global version®
of the Sobolev inequalities (compare it with Proposition 2.1.3),

Proposition 2.1.4 Let u be an arbitrary function in R"*' such that Es[u]
is finite for some s > 5. Then fort >0

1
(L4t +|2) T (1 + |t — |a|])?

lu(t,z)| <ec Eq[u] (2.1.30)

Therefore if the data f, g in 2.1.25 are such that the quantity Qs[u] < oo, it
follows that, for ¢ > 0,

1
(L4t + 2= (1+ |t - |a|))?

|Du(t,z)| < c

(2.1.31)

For details see [KI13].
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an estimate which fits very well the expected propagation properties of the
linear equation O wu = 0.

We can now proceed as in the derivation of the estimate 2.1.24 and prove
an estimate of the same type expressed in terms of the new generalized
energy norms defined by 2.1.29. Combining that estimate with the global
Sobolev inequality 2.1.31 one derives,

T n—1
Q(T) < Q(0) exp e (/0 (1 +t)_T> o(T) (2.1.32)
where
Q(T) = sup Qs[u](t) (2.1.33)
0.7]

for some s > % + 1. This leads to a global bound for Q provided that Q(0)
is small and n > 3. Therefore, for n > 3 and sufficiently small data, the
local solution provided by Theorem 2.1.1, can be extended for all time, see
[K14], [Ho].

For n = 3, the case of interest for General Relativity, the estimate in
2.1.32 leads to a logarithmic divergence’. Nevertheless there are still in-
teresting situations, in space dimension n = 3, where one can prove the
existence of small global solutions. One favorable situation is, for instance,
the case where the nonlinear part consists only of terms of order higher than
quadratic, such as Du - Du - Du. A much more interesting situation, which
turns out to be of great relevance in our discussion below, is when we allow
quadratic terms, but require that they satisfy the null condition, see [KI1],
[K12], [Ch2] and also [Ho]. Roughly speaking, see [K12] and [Ho] for details,
this means that the quadratic terms of the equation appear only through
the intermediary of the “null quadratic forms”

Qo(u,v) =1 daudgv (2.1.34)
Qap (u,v) = Oau0pv — 0gulav

with ), the Minkowski metric. If the null condition is satisfied one can prove
a small data global existence result® even for n = 3. The basic observation

"This logarithmic divergence is not an artifact of the proof. There are examples, see
[John1], [John2], of nonlinear wave equations in n = 3 for which all perturbations of the
trivial solution form singularity in finite time. Moreover this situation is generic.

8The result is proved for a general class of quasilinear systems of wave equations in
[K12], see also [Ho], based on the ideas sketched here and in [Ch2] with the help of the
conformal method. As we have remarked above the conformal method requires more
regularity for the data at spacelike infinity.
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at the origin of this result has to do with the propagation properties of waves
expressed relative to null frames.

Consider again the linear equation 2.1.25 and the estimate 2.1.31. The
derivatives of Du , expressed relative to the standard cartesian frame, do not
behave any better, along the null directions, than |t|_n771. We get, however,
a more detailed picture of the behavior of derivatives of u by considering a
null frame {e3, eq,e,} 2, with null vectors ez = % — a% , €4 = % + 8% and
e, an orthonormal frame spanning the orthogonal complement of {es,e4}.
It is in fact easy to prove, from 2.1.30, the following estimates, for ¢ > 0 and
s>4+1

1

De,u(t,x < ¢ — - Eglu
Pt S g
1
Peult. 0] = c(1+t+|x|)<”7’1+1>(1+|t—|x||)%Es[u](t)
Degult,a)] < . Bl(t)  (2.1.35)

¢ n—1 3 s
(L+t+z)) 2 1+t —|2]])>

Thus, for ¢ > 0, only D,, fails to improve. By symmetry D,, fails to improve
for ¢ < 0.

The null condition, for systems of wave equations of type 2.1.23, simply
prevents the presence of terms such as (De,u)? and (D.,u)?. This allows
us to overcome the logarithmic divergence in 2.1.32 and thus prove a small
data global existence result.

Discussion 2.1.2 The main ingredients in the proof of global existence dis-
cussed above were

a) Generalized energy type norms.

b) Killing and conformal Killing vector fields.

¢) Null frames.

d) Some appropriate version of the null condition.
The last point d) is crucial in 3 + 1 dimensions, without which there is
no global existence. It turns out, however, that the reduced FEinstein equa-
tions 1.3.1 do not satisfy such a condition. This was first pointed out by
Y. Choquet-Bruhat,[Br3] and later substantiated by L.Blanchet and T.Damour

9An explicit expression of a null frame in the Minkowski spacetime R3>*! is given by
es,eq as well as

10 1 0

= roe 0T rsinf d¢
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[BI-D]. The problem is connected with the wavelike gauge itself which be-
haves badly in the large. We have thus to abandon the wavelike coordinates
altogether. As we return to the Einstein equations we realize that the main
difficulties to face are:

1) The problem of coordinates.

2) The strong non linear features of the Einstein equations.

3) The long range terms in the initial data.

4) The non trivial propagation properties of the expected solutions.
The first two problems have already been discussed. The strongly non linear
character of the equations requires one to rely on a quite rigid analytic ap-
proach based on energy estimates, background symmetries and some subtle
cancellation properties manifest in the nonlinear structure of the equations.
This last point, in particular, calls for an invariant approach. But this is
not all. We can certainly not expect that the spacetime we plan to construct
admits any Killing and conformal Killing vector fields. The best we can
hope is that it admits some approximate ones, namely vector fields whose
deformation tensors are small in an appropriate way '°. In trying to do this
we encounter the difficulties 3) and 4). The 1/r decay of the metric, due
to the presence of the mass term, has the long range effect of changing the
asymptotic behavior of the null geodesics. Thus the causal structure of the
spacetime we construct is not asymptotic to that of the Minkowski spacetime.

To deal with these problems one has to devise a strategy which is inde-
pendent, as much as possible, of a specific choice of coordinates. From this
point of wiew it makes sense to try to derive the main propagation properties
of our solutions in terms of the Riemann curvature tensor. As it will turn
out the propagation properties of the Riemann curvature tensor are least
sensitive to problems 8 and 4 and best suited, as a starting point, to exhibit
the “null structure” properties of the Finstein equations. The key to doing
that are the Bianchi equations. In the next section we shall analyze the main
properties of that system of equations in the Minkowski spacetime.

2.2 Electromagnetic and Weyl fields, Maxwell and
Bianchi equations in the Minkowski spacetime

We start defining the Weyl tensor field as a tensor field with all the alge-
braic properties of the conformal part of the Riemann tensor field, see 1.1.14,

0\More precisely, for some of these vector fields X, the property that the null components
of their deformation tensors, as defined in 1.1.8, be asymptotically small.
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1.1.15. In this section we restrict ourselves to 3 + 1 dimensions. A more de-
tailed discussion about Weyl tensor fields appears in Chapter 3, section 3.2.
We intend this section as an introduction for it.

Definition 2.2.1 Given a spacetime (M,g), we call Weyl field a tensor
field W which satisfies the properties

Wa,B’ytS = _W,Ba’yé = _Waﬁé'y = W’y&aﬁ
Wapys + Waysp + Waspy =0 (2.2.1)
ga’YWa,B'y(S =0

We say that a Weyl tensor field is a solution of the Bianchi equation in
(M, g) if, relative to the Levi-Civita connection of g, it verifies the equation

DpWosjas =0 (2.2.2)

When the spacetime (M, g) is a solution of the Einstein vacuum equations
R.s = 0, the curvature tensor coincides with its conformal part C and it
is, therefore, a Weyl tensor field, which satisfies the Bianchi equations 2.2.2

In this section we review the main properties of Weyl tensor fields and of
the Bianchi equations 2.2.2 in a fixed background space (M, g), see [Ch-KI11].
We start recalling the following definition and properties of the Hodge duals
of a given Weyl field

x v1

1
aByd = §€a,3uVWW 76 Wagys = Wap " o Suyo
Proposition 2.2.1
L If W is a Weyl field then W* =* W and *(*W) = -W.
1I. The following four sets of equations are equivalent

DiyWogiag =0, DWiyap =0
D Wosap =0, DMWiyas =0

III. The Bianchi equations 3.2.1, are conformally invariant'' | see [Pel],
[Pe2] and also [Ch-Kl1], [Ch-K]I].

"' This means that whenever we perform a conformal transformation @ of the spacetime
(M, g) with g = ®&.g = A’g, then W = A~*®.W is a solution of the Bianchi equations
for the spacetime (M, g).
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IV. If W satisfies the Bianchi equations and X is a conformal Killing vector
field then the modified Lie derivative

LxW = LxW — %(X)[W] + gtr(X)wW (2.2.3)

s also a solution of these equations.

These equations look complicated, nevertheless they are quite similar to the
more familiar Maxwell equations. This becomes apparent if we decompose
W into its “electric and magnetic” parts. Given vector fields X,Y we in-
troduce i(x yy) through the relation (i(x y\W)u = Wypwe XPY7, then, with
X =Y =T, define

E — i(To,To)W ) H — i(To,To)*W' (224)

These two covariant symmetric and traceless tensor fields £ and H, tangent
to the hyperplanes ¥; = {p € M|t(p) = t}, determine completely the Weyl
tensor field. It is easy to write the Bianchi equations for this decomposition
and obtain the following “Maxwell-type equations”,

& 'OF + curlH = p(E, H)
& '9,H — curlE = o(E, H)
divE =kAH

divH = kAN E .

where V is the covariant derivative with respect to ¥;, (divE); = \i Eij,
(curlE);; = eéleEkj and the analogous expressions hold for H. Moreover
(kANE); = eim”knllEln and analogous expression for H.

This strong formal analogy with the Maxwell equations goes even further.
In fact, just like the Maxwell equations, the Bianchi equations possess an
analogue of the electromagnetic tensor, the Bel-Robinson tensor, see [Bel],
which allows to derive, in the case of the Minkowski spacetime, conserved
quantities.

Definition 2.2.2 The Bel-Robinson tensor of the Weyl field W is the four
covariant tensor field:

Qa575 = WOAP’YUWﬁp(SU + *Wap'ya*Wﬁp(;U- (2.2.5)

b A A A
IZ(X)[W]QB,Y(; = i Wagqs + (X)T('ﬁWa)\'yé' + (X)WWWQB,\g + 7S Wagqn, where X
is the deformation tensor relative to the vector field X.
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The Bel-Robinson tensor has the following important properties, which re-
call those of the energy momentum tensor of the Maxwell equations, see
[Ch-K]], [Ch-KI1]:

Proposition 2.2.2

a) Q is symmetric and traceless relative to all pairs of indices.

b) Q satisfies the following positivity condition: Q(X1,Xo, X3, X4) is non
negative '3 for any non spacelike future directed vector fields X1, X9, X3, X4.
c) If W is a solution of the Bianchi equations then

DaQa,B’y(S =0 (2.2.6)

Proposition 2.2.3 Let Q(W) be the Bel Robinson tensor of a Weyl field
W and X,Y, Z a triplet of vector fields. We define the covariant vector field
P associated to the triplet as

Py = Qups X Y Z°. (2.2.7)
Using all the symmetry properties of ) we have
DivP = DivQpsX°Y7Z° (2.2.8)
+ %Qaw <(X Py L T xB 78 4 <Z>7r°‘5XﬂY7>

Thus, to any X,Y, Z Killing or conformal Killing vectorfields we can asso-
ciate a conserved quantity. More precisely,

Theorem 2.2.1 Let W be a solution of Bianchi equations and X,Y, Z, V1, ..
be Killing or conformal Killing vector fields, then
a) DivP =0 where P is defined by 2.2.7

b) The integral [¢, QIW]|(X,Y, Z, To)dz is finite and constant for all t pro-
vided that it is finite at t = 0.

c) The integrals

g Q[Lv, Ly, ... Ly, W|(X,Y, Z, Ty)d*x
t

are finite and constant for all t provided that they are finite at t = 0.

131 we restrict to timelike vector fields Q(X1, X2, X3, X4) is positive.

Vi
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2.2.1 Asymptotic behaviour of the Weyl fields in the Minkowski
spacetime

The Minkowski spacetime is equipped with the following geometric struc-
tures

1) Hyperplanes: Consists of the level hypersurfaces of the time function ¢,
X = {p € Mlt(p) = t}.

2)  Canonical Null Foliations: consists of the double family null cones
{C(u),C(u)} defined as the level hypersurfaces of the functions v = ¢ —r
and ¢ 4.

C(u)
C(u)

u=t—r}, (outgoing)
u=t+r}, (incoming)

(2.2.9)

{p € Mlu(p) =
{p € Mlu(p)

3) Canonical Sphere Foliation: Consists of the family of 2-spheres S(t,u) =
YN C(u), or S(u,u) = C(u) N C(u). For each fixed ¢ the family {S(¢,u)}
produces an S?-foliation of the hyperplane ¥;. This coincides, of course,
with the standard foliation by the surfaces S;, = {(¢,z) € X||z| = r}

4) Canonical Null Pair: given by the vector fields
63:8t+ar, 64:8,5—&

We can complete the pair ez, eq to a null frame {ej, eq, e3,e4}, at a generic
point p, by chosing an orthonormal frame {e,} , a € (1,2) on the tangent
space to the sphere S(¢,u) passing through p.

5) Conformal Structure: The Minkowski spacetime has a family of Killing
and conformal Killing vector fields, see subsection 2.1.2, among which we
note

1 1 1

Ty = 5(63 +eq), S= §(ue3 +ueq) , Ko = §(u263 +u’es)  (2.2.10)

Ty corresponds to time translations, S to scaling transformations and Kj to
inverted time translations. In addition to these we shall also make use of
the rotation vector fields:

(Z)O = Eijk(xjak — :Ekaj) . (2.2.11)

We next define the null components '* of the Weyl tensor.

“This null decomposition of W originates in the work of E.T.Newman, R.Penrose,
[Ne-Pe2].
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Definition 2.2.3 Let ez, eq be a null pair and W a Weyl field. At a given
point p we introduce the following tensors defined on the tangent space to
the sphere S(t,u) passing through the point p,

a(W)(X,Y)=W(X,eq,Y,eq) , a(W
BW)X) = %W(X, e4,e3,eq) , PBW

)(X,Y) = W(X,€3,Y,63)
)(X) = 5W(X, e5,e5,0)

1 1 1*
,O(W) = —W(63,64,63,64) ) U(W) = Zp(*W) =7 W(63,64,63,64)

4 4
(2.2.12)

where X, Y are arbitrary vector fields tangent to S(t,u).

It is easy to verify that o and a are symmetric traceless tensors, 8 and
are vectors field and p, o are scalar fields. The total number of independerR
components is, as expected, ten and they completely describe the Weyl
tensor field. The Bianchi equations satisfied by W, see for instance [Ch-KI11],
expressed in terms of these components, are:

Bianchi equations:
Do+ gtrxya = -V®B  , D3f + 2try = —diva

Pip +trxf = ~Vp+'Vo , Dap+ jtrxp = —divf3

Dup + %trXP = divp , Dso+ %trxa = —div'g (2.2.13)
Dyo + Stryo = —div3  , Db +trxf = Vp+*Vo
Dy + 2trxp = diva , Dsa+ %trxa = V&4

where, here, try = —try = %, D, and D5 are the projection on the tangent
space to S(t,u), of the covariant derivatives along the null directions, div
and Y are the projection on the tangent space to S(t,u), of the divergence
and the covariant derivatives relative to ¥; and ® denotes twice the traceless
part of the symmetric tensor product. The Hodge operator * indicates the
dual of the tensor fields relative to the tangent space of S(¢,u).

Our first goal is to show how to derive the asymptotic properties of a
solution to the Bianchi equations in Minkowski spacetime for initial data
at t = 0, compatible with the assumptions we will use, later on, to study
the Einstein equations. From this perspective we expect that, for a given

[correction of the definition of
®, a factor 2 was missing]



60CHAPTER 2. ANALYTIC METHODS IN THE INITIAL VALUE PROBLEM

spacetime which satisfies the Einstein vacuum equations, the curvature ten-
sor R behaves, on the initial hypersurface, like 73 as r — oco. This is due to
the presence of an ADM mass term different from zero, see [Ar-De-Mi], in
the definition of the asymptotic flatness for the initial data of the Einstein
vacuum equations. Moreover, since the ADM mass is a time independent
constant, we expect that the time and the angular derivatives of R behave
better.

With this in mind it makes perfect sense to assume initial data for our
Bianchi equations in Minkowski spacetime such that all the terms in the
following sum are bounded at ¢ = 0.

Q(t) = - Q('&OW)(K()aKUaTOaTU)

~2
+ /E Q(LoW) (Ko, Ko, To, Ty)
t

+ [ Q(LsLoW) (Ko, Ko, Ty, Tp) (2.2.14)
t

+ g Q(L1, W) (Ko, Ko, Ko, Tp)
t

+ g Q(LoLn, W) (Ko, Ko, Ko, Tp)
t

with Lx defined by 2.2.3. Note also that [Lof|? = dic123 |z(i)0f|2-

To understand the meaning of this quantity one should observe that
Ko = 3(u®e3 + u’es) and Ty = (e3 + e4) are the only'® future directed,
causal conformal Killing vector fields in Minkowski spacetime. Thus the
only choices for the vector fields X,Y, Z in 3.2.7, such that Q(X,Y, Z,Ty)
be a positive quantity consistent with our above discussion, are between Tj
and K. In view of Theorem 2.2.1, we can conclude that Q(t) is conserved,
therefore bounded for all time. Using these conservation laws, combining
them with the global Sobolev inequalities, see Prop. 2.2.4 below, and taking
advantage of the Bianchi equations, 2.2.13, we prove the following

Theorem 2.2.2 Assume Q is finite at t = 0. Then,

(i) In the exterior region'® we have the following bounds for the various
null components of the Weyl tensor

supgarlrial < Co , supgalrr_ial < C

5see Liouville Theorem 1.1.3
6The exterior region refers to the set of points of M such that r > t. Its complement
will be called internal region or interior.
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7 3
suppa|r2 | < Cy supEmt|r27',2§| < Cy (2.2.15)
1 1 _
suppa|r’t 20| < Co , supgalr’t 2 (p - p)| < Co
where p is the average of p on the spheres S(t,u), 72 = 1 +u? and Cy is a
constant which depends on Q(t = 0).

(ii) In the interior region
W (t,2)| < c(1+1¢)%

(iii) The mass term p is in fact zero '7.

Since a result analogous to this for the full Einstein equations is at the heart
of the proofs of the C-K Theorem and of the present Main Theorem, we give
here the main ideas of the proof of Theorem 2.2.2. From the identities

Q(W)(€3,€3,63,€3) = 2|g|2
Q(W)(€4,64,64,64) = 2|05|2
Q(W)(€3,63,63,64) - 4=|é|2 (2216)
Q(W)(€3,64,64,64) = 4=|B|2
Q(W)(€3,63,64,64) = 4:(p2 —+ 0'2)
we obtain, by a straightforward calculation,
Logpe o boag o Loy 1o o0 0
QW) (Ko, Ko, To, To) = Y || +gu laf” + 5 (u” + Ju”u’)|B|
1 1 1
+ 5(24 +ut + u?u?) (p? + 0?) + §(u4 + §g2u2)|§|2
1 1 1
QW) (Ko, Ko, Ko, Ty) = §g6|a|2 + gu"’|g|2 + Z(g"’ +3utu?)|B)? (2.2.17)

3 1
+ Z(Q2+U2)Q2’U/2(PZ+UZ)+Z(U6+3Q2U4)|ﬁ|2

We sketch two different methods of proving the estimates 2.2.15. The
first based, on the maximal spacelike hypersurfaces t = const, corresponds
to the method used in the proof of C-K Theorem while the second, based

1" This is due to the fact that, relative to the “electro-magnetic” decomposition, divE =
0 and p = Enn, with N = %&, see [Ch-KI11]. In a general background spacetime, divE
has nontrivial source terms and consequently p fails to be zero. The asymptotic behavior
of p is, in fact, tied to the nontriviality of the ADM mass.
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on the null hyperurfaces ¢t —r = u, t +r = u, corresponds to the double null
foliation approach of the Main Theorem.

In the first approach, based on the maximal foliation, the proof uses the
conservation of the quantity Q(#), the null Bianchi equations 2.2.13 as well
as the following form of the global Sobolev inequalities '8

Proposition 2.2.4 Let F' be a smooth tensor field, tangent at each point
to the corresponding S = S(t,r). Denote by N the exterior unit normal to
S, V the induced covariant derivative and Y F the projection to S of the
normal deriwative VN F. We have

Nondegenerate version:
3
supsieo) (H1F) < o [ |FP (PR 4 27y PP
t

1
+ VPR 4 WY P (2.2.18)

Degenerate version:

1
supsiuy 2 \P) < e [ PP+ PPR 4 220 P
t

1
2

+ YR + TQTEWWNFF) (2.2.19)

In what follows we shall use all the results mentioned above in order to
derive the aymptotic properties of a.

We start by applying Prop. 2.2.4 to F = r?« and derive
supsi(r¥lal) < ([ vl + s Taf? +rf¥ ol
it

1
+ Vel + oY Yyal?)?
The integrals on the right hand side are controlled in terms of the quantity

Q as follows:

i) The integrals [y, *|a|* and [y r*|rVa|? are both bounded by
Js, Q(LoW)(Ky, Ko, Ty, Ty). This follows from eq. 2.2.17 and the following
simple identity, see [Ch-K11],

|Loal? = Z Lol = 4 Va)? + 4]af? (2.2.20)
i

18We do not give the proof of Proposition 2.2.4 because an analogous Proposition valid
in a general spacetime is proved in any detail in Chapter 4, Proposition 4.1.4. See also
[Ch-KIl], Proposition 3.2.3 .



2.2. ELECTROMAGNETIC AND WEYL FIELDS 63

ii) The integral [y, rr?2¥2a|? is bounded by Js, Q(ZéW)(KO,KO,TO,TO).

We are left with the integrals [y, ri|ry¥ yal? and s, rS|lryy yal?. We
indicate how to estimate the first, the second can, then, be dealt with in the
same way. Observe that

Vya =Drya— De,a

In view of this it suffices to estimate

/r6|1z)T0a|2 and/ P D, af?
Et 2:‘,

iii) The integral [y, r%Ppaf? is bounded by [, Q(Lr, W)(Ko, Ko, Ko, To).

This can be checked again with the help of 2.2.17.

v) To bound the last integral, [5;, 7%, a|?, we have to use the null Bianchi

equations, 2.2.13 to express D, in terms of %a and V(. It follows imme-

diately that these integrals are bounded by [y, Q(ﬁoW)(Kg, Ky, Ty, Tp).
The other components of the Weyl tensor can be treated in the same

manner. The results in the interior region are much easier to derive, see

[Ch-K11].

The proof of the asymptotic estimates of Theorem 2.2.2 described above
15 based on energy type estimates on the maximal spacelike hypersurfaces
t = const. This is the main reason why a mazimal spacelike foliation was
used in [Ch-KI].

In what follows we sketch a different approach to derive Theorem 2.2.2
using instead the double null foliation t —r = u, t + r = u, see 2.2.9. The
main idea of the new approach is to introduce some new quantities, analogous
to Q(t), see 2.2.15, associated to both families of null hypersurfaces. We call
these quantities “flux quantities” and we will use their boundedness in terms
of the initial data.

More precisely, denoting A,v the values taken by the functions u(p),u(p)
respectively, we define V' (A, v) as the causal past of S(\,v) = C(\) N C(v),

V) =J (SO ) .

We call K the region of the Minkowski spacetime, V(XAg,vy), for a fixed
couple (Ag, V).

K lies in the future of the initial hypersurface ¢ =0 and is foliated by the
two families of null hypersurfaces {C'()\) and {C(v)} with A and v varying
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in the finite intervals [A1, Ag] and [y, 1] respectively, where vy = —)\y and
v, =—\;. For simplicity we may assume \g=—1 = 0. We shall also call *
the null hypersurface C(v,) “the last slice” of the spacetime region X under
consideration and denote it by C.,.

K lies outside the domain of influence of the origin 2° and in the causal past
of the null hypersurface C,.

Remark: In the proof of the “Main Theorem?”, v, is finite and the central
part of the proof consists in showing that we can take the limit v, — oo. Here
we may, in fact, assume v, = co. In this case K is the whole complement
of the domain of depedence of the origin, J*(0).

To define the quantity analogous to the conserved quantity Q(#) used
in the previous proof, of Theorem 2.2.2, we go back to equation 2.2.8, see
Proposition 2.2.3, which we integrate on V (A, v).

If X,Y, Z are conformal Killing vector fields, we derive the identity:

QW)(X,Y, Z,e3) + /C iy QXY Z )

/Q(V)QV()\,V) NV (A\v)

= QW) (X,Y, Z,Tpy) (2.2.21)
SoNV(Ap)

Applying this identity to LW, LoW, Lolr,W, LsLim,W, LoW, with
X,Y,Z one of the conformal, timelike vectorfields Ty, Ky, we are led to
the following quantities:

O\ v) = Q1(\v)+ Qa(\v)

Q) = Q)+ Q(\v) (2.2.22)
where
Qi(\v) = / QL W) (K, K, K, e)
CONNV (M)
+ QLoW)(K, K. Ty, e1)
CONV(Aw)
(N, 1) = /C QLoln,W)(K, K, K, )

(MNV(Ap)
+ QUEGW)(R, K, Ty es)  (22.23)
CO)NV(A)

9For reasons which become clear in the next subsections.
*0The causal future of the origin J*(0).
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and
o0 = [ QLrW) (K, K. K, e3)
CeINVOw)
+ 20W)(K,K,T0,€3)
C(w)NV(Ap)
QQ(Aay) = Q(zOETQW)(KakaKae?))

Cw)NV(Av)
+ QUEOW)(R, K, Ty e5)  (22.24)
Cw)NV(Aw)

In view of the identity 2.2.21 we infer that both flux quantities Q(\, ) and
Q(A,v) are bounded by Q(t = 0). Assuming that the initial data are such
that Q(t = 0) is finite it follows that both quantities Q(\,r) and Q(\,v)
are finite and independent of the values of A\,v. We have thus derived the
following

Proposition 2.2.5 Consider the spacetime region K, as defined in the last
remark, and assume that the data satisfy the condition Qy = Q(t = 0) < co.
Then the following quantities are uniformly bounded for all A < 0 and v > 0.

/ QUELW)(K.K.T,er) . [ QLoW)(K, K. T.e3)
CANV(Aw) CwnNV(Aw)

/ QULIW)(K K K1) . | QULrW) (K, K, K, e3)
C)NV(Av) CW)NV(A\w)

/ QUW)(K,K,Tyer) . [ QULoW)(K, K, T,es)  (2.2.25)
cNV (Aw) C)NV(Ap)

/ QULoLrW)(K.K.K,e1) . | QLoLrW)(K. K. K. e3)
C(ANV (Av) Cw)NV (Aw)

In order to prove Theorem 2.2.2 we need, in addition to the above Proposi-
tion, the following analogue of Proposition 2.2.4

Proposition 2.2.6 Let F' be a smooth tensor field, tangent at each point
to the corresponding S(X\,v) passing through that point. The following esti-
mates hold uniformly with regard to A < 0,v > 0,

1 1

1 1

supsoun(rHFD < cf (/ r4|F|4> +(/ r4|w|4)
S(\wo) S(Avo)

+(/ |2+ 2|V F + 2Dy F?
CONNV ()

YR 4 r4|y71p4F|2> ’ } (2.2.26)
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and

1
1 4 1
supg( ) (rr2|F|) < c[ (/ 7“272|F|4> + </ r272|7“Y7F|4>

S(Avo) S(\vo0)

+(f (PP + (P + 72 [y P
CONNV(Aw)

1
+rt V2 F|? + r272l77ﬂ)4F|2> ’ } (2.2.27)

The previous computation can also be done to express the sup norms in terms
of integrals along the incoming null hypersurfaces C(v). The results are

1 1
1 1
supson (HIFY) < el (/ r4|F|4) +(/ r4|w|4)
S(Xo,v) S(Xo,v)
([ PP+ 77|V 4+
C¥)NV(Aw)
1
YRR 4 VD) | (2.2.28)

and

i i
supg ) (rr2|F|) < c[ </ 7"272|F|4> + (/ 7“272|7"Y7F|4>
S(Xo,v) S(Xo,v)

+(f B+ VP + 72 s PP
Cw)NV(Aw)

[SIE

PR 4 ) | (2.2.29)

We show how to use these new O quantities, introduced above, and Propo-
sition 2.2.6 to derive the asymptotic properties of « in the flat case.

Asymptotic behaviour of «:

We observe that the quantities Q(W) (K, K,T,eq), QW) (K, K, K, e4), for
an arbitrary Weyl field W, do not involve the null component o of W. This
follows easily from the expressions Ty = %(63 +ey), Ky = %(uQeg +u’ey) as
well as egs. 2.2.17. We are therefore obliged to look at the integrals along
C(w) in Prop. 2.2.5. On the other hand, according to Prop. 2.2.6, applied
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to 72, we have

1 1

4 4
c{ </ r2710|g|4> + </ r2710|ng|4>
S(Uﬂuo) S(Uﬂuo)

+ ( / al + 7 rVal + 75 Dol
CunV (u,u)

IA

5
SUPS (u,u) (TT—Z |g|)

1
+ Ve + Tﬁ|ry712)3gl2> 2} (2.2.30)

i) In view of the identity 2.2.20 the integrals [c )y (uu) f|g|2 as well as

fQ(g)ﬁV(u,g 74 |rYa|? can be estimated by the bounded 1ntegral

/ QLoW) (Ko, Ko, Tises) .
C(uw)NV(u,u)

ii) Similarily the integral [o(,)nv(u,u) 74|r2Y2a|? can be estimated by the
bounded integral [c(,)nv (uu) Q(ZZ?)W)(KO, Ko, Tp, e3).

iii) We are left with the integral o) Ay (uu) 78|D3a)? as well as the integral
Jow) v E|TY712)3Q|2. Observe that Dsa = Prya — Pya. In view of this
it Sufﬁces to estimate [r () (uu) 78| D7, af? and Jow) v E|D4g|2.

The first integral is bounded by Jownv (uw Q(ETOW)(KO,KO, Ky, e3). On
the other side, to bound the last 1ntegral Jownv () E|]Z)4g|2, we have to

use the null Bianchi equations,2.2.13, to express D4« in terms of r~1a and
Y. It follows that these integrals are bounded by fc )V (um) Q(LOW) (Ko, Ko, To, €3).

Finally, proceeding in the same way, one sees that fg AV (1) 8 rYDsal?
is bounded by the two integrals [c,)qv (uu) Q(Z,?)W)(KU,K(),T[],G:J,) and

fC NV (u,u) Q(»COETW)(Ko,KU,Ko,eg).

Therefore we have obtained the asymptotic result for « stated in Theorem
2.2.2. The other components of the Weyl tensor can be treated in the same
manner.

2.3 Global non linear stability of the Minkowski
spacetime

As we have mentioned earlier, the Bianchi equations provide the keystone
in the overall strategy of the proofs of both C-K Theorem and the present
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Main Theorem. They allow us to introduce the main energy type quantities
similar to the Es[Du](t) energy type norms, see 2.1.28, introduced in the
earlier discussion concerning global solutions of non linear wave equations.

More importantly they allow us to make an essential conceptual lin-
earization of the Einstein equations. This consists in the following bootstrap
scheme:

i) One can first assume given the spacetime with its well defined causal
structure and study the Bianchi equations as a linear system on the given
background spacetime. Unlike the case of the Minkowski spacetime we do
not have any symmetry at our disposal and, therefore, no conserved quanti-
tities Q. We can assume, however, and this will have to be justified as part
of our overall bootstrap argument, that our background spacetime comes
equipped with approzimate conformal Killing vector fields. By this we mean
in fact vector fields X whose traceless parts of their deformation tensors are
small in a appropriate way. Using this we can construct quantities anal-
ogous to the @Q’s introduced in the Minkowski spacetime and discussed in
the previous section. Instead of being conserved we need to prove that they
remain bounded by an universal constant times their value on the initial
hypersurface.

This leads, just as in the flat case, to precise asymptotic estimates for
the various components of the Riemann tensor.

ii) To close the bootstrap we then proceed in the opposite way. We
assume given a spacetime whose curvature tensor verifies the asymptotic
properties obtained in step i) and deduce from them the assumptions con-
cerning the causal structure made there.

The properties of the causal structure we construct have to be expressed
relative to a foliation induced by two functions. In C-K Theorem, for ex-
ample, one had to rely on a time function #(p) whose levels are maximal
spacelike hypersurfaces and an optical function u(p), whose levels are the
outgoing null hypersurfaces which play the role of the outgoing null cones
in the Minkowski spacetime.

The optical function u is by far the more important one as all the radi-
ation features of the Einstein equations depend heavily on it. The precise
definition of u as a solution of the eikonal equation,

g" Opud,u =0,

allows us to treat the non trivial asymptotic properties of the causal struc-
ture of a spacetime with non vanishing ADM mass.
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The maximal foliation seemed to be also important because of the tradi-
tional role played by the time ¢ in deriving energy estimates as, for instance,
in the case of the wave equations discussed in section 2.1. The non lo-
cal features of the maximal foliation lead, however, to enormous technical
complications which are not intrinsic to the real problem of evolution.

In the Main Theorem we rely instead on a double null foliation where u
is defined as before and the second function u is defined symmetrically as
an incoming solution of the eikonal equation, whose levels are incoming null
hypersurfaces. This procedure is naturally adapted to the local hyperbolic
features of the Finstein equations.

2.4 Structure of the work

In view of the previous discussion the plan of the remaining six chapters is
as follows:

e Chapter 3 contains all the main geometric constructions, the defini-
tions of the main quantities Q, a precise formulation of the Main
Theorem and a detailed description of the strategy of its proof.

We start with a discussion of the double null foliation, the canonical
null pairs and null frames and the associated Ricci coefficients. We
then present the null decomposition of the Weyl tensor followed by
the structure equations and the Bianchi equations expressed relative
to our null frames. The structure equations relative to a double null
foliation have been been previously derived by other authors, see for
example 7? put it and the references 2! therein.

We introduce then the important notion of the canonical double null
foliation defined in terms of initial data solutions of the last slice and
of the initial hypersurface problems. We also review the main proper-
ties of the Bel-Robinson tensor. This, together with the definition of
the vector fields T', S, Ky, ()0, related to the analogous vector fields in-
troduced in Minkowski space, see subsection 2.2.1, allows us to define
our main quantity Q.

In addition to the O norm we introduce the other two fundamental
family of norms, the R norms, which describe regularity and asymp-
totic properties of the null components of the Riemann tensor, and

21 The first systematic use of null tetrads, not necessarily tied to foliations, goes back to
E.T.Newman and R.Penrose, [Ne-Pel].
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the O norms which contain detailed regularity and asymptotic infor-
mations for the connection coefficients.

We introduce also a large family of norms describing the regularity and
the asymptotic properties of the null components of the deformation
tensors of T, S, Ky, P O. These norms are controlled in terms of the @
norms.

We state precise results concerning the relationship between R, the
O and the Q norms which form the heart of the proof of our main
theorem.

These above mentioned results require precise assumptions on the ini-
tial data. We describe in which sense these data have to be small.

Finally we give the precise statement of the Main Theorem and give a
detailed account of all the steps of the proof.

In the end of Chapter 3 we give, for comparison, a short review of the
proof of C-K Theorem.

e Chapter 4 contains all the results concerning the O norms. They are
obtained assuming that we control the R norms, as a bootstrap assump-
tion, and expressed in terms of and initial conditions on ¥y and on the
last slice. The crucial and delicate issue here is to control the regu-
larity and asymptotic behavior of the null structure coefficients with
respect to that of the null components of the curvature tensor. These
require subtle estimates depending heavily on the geometric proper-
ties of the null structure equations introduced in Chapter 3. Though
some of the main ideas we rely on are similar to those in [Ch-KI] we
encounter many additional difficulties as we have to estimate not only
the null connection coefficients associated to the null hypersurfaces
C(u) but also those associated to the incoming null hypersurfaces??
C(u); in fact these are heavily coupled in the null structure equations.

In the last section of this Chapter we obtain the estimates of the rota-

tion deformation tensors, based on the results of the previous sections.

e Chapter 5 is devoted to the control of the curvature tensor. Making
appropriate smallness assumptions for the © norms of the connection

21p [Ch-K]] these were replaced by the elliptic estimates of the geometric quantities
associated to the maximal time foliation. The additional difficulties of treating the null
structure equations are more than compensated by the avoidance of the very technical
elliptic estimates and the gain in symmetry.
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coefficients, we show how to control the R norms in terms of the Q
norms.

e Chapter 6, in which we establish the boundedness of the @ norms, is
central to the whole book. This requires the detailed analysis of the
large number of error terms generated because of the nontriviality of
the deformation tensors of the vector fields involved in the definition
of the Q norms introduced?® in Chapter 3, section 3.5.1.

e In Chapter 7 we discuss the solution of the so called nitial slice and
final slice problems. These are needed to define the canonical double
null foliation of the spacetime region we construct. As in [Ch-KI] the
canonical null foliation plays a fundamental role in our approach; we
explain this in more details in Chapter 3. The solution of the initial
slice problem is a simplified version of the analogous result proved in
[Ch-Kl], the final slice problem is however significantly different from
the last slice problem discussed in [Ch-KIl] and we discuss it in detail.

e Chapter 8 is devoted to collect some conclusions on the asymptotic
properties of these global solutions not discussed in the “Main Theo-
rem”. They do not differ significantly from those discussed in the last
chapter of [Ch-KI] except on the fact that, due to the kind of foliations
we have used here, they are obtained in a much simpler way.

23 Analogous to the definition 2.2.23 and 2.2.24 in the flat case.
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Chapter 3

Definitions and results

3.1 Connection coefficients

3.1.1 Null second fundamental forms and torsion of a space-
like 2-surface

Let S be a closed 2-dimensional surface embedded in a 3+1 dimensional
spacetime (M, g). We assume that S has a compact filling by which we
understand that there exists a Cauchy hypersurface > containing S and
such that S is the boundary of a compact region of 3.

Let v be the induced metric on S,
V(X,Y) =g(X,Y) (3.1.1)

for all X,Y € TS, the tangent space to S. We denote by du., the area ele-
ment and by €, its components relative to an orthonormal frame (eq)q=1,2-
We denote by |S| the area and by r(S) the radius of S,

r(S) = ,/i S| (3.1.2)

Let ¥ be the induced connection on S and K its the Gauss curvature. We
recall that, if R is the intrinsic Riemann curvature tensor, and X,Y, Z three
arbitrary vector fields tangent to S !:

'Relative to an arbitrary orthonormal frame (e4)q=1,2 of S

Rabcd = (é‘acé‘bd - 6ad6bC)K (313)

73
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At every point p in S we consider the orthogonal complement TpSL
relative to T, M. This intersects the null cone through p along two null
directions. Consider the future oriented half lines corresponding to these
directions and their projections to the tangent space of 3 at p. The half
line whose projection points towards the unbounded component of ¥ will
be called future outgoing, the other one future incoming, at p. Similarily
we define the past incoming and past outgoing directions. The past incom-
ing direction at p is complementary to the future outgoing while the past
outgoing is complementary to the future incoming. Remark also that these
definitions do not depend on the particular “fillings” of S, in other words
they do not depend on the choice of the hypersurface 3 passing through S.
At any point p € S we choose e4, e3 to be two future directed null vectors
corresponding to the outgoing and incoming directions and subject to the
normalization condition

gleq,e3) = —2 (3.1.4)

Here e4 corresponds to the future outgoing direction while es to the future
incoming one.

Definition 3.1.1 A smooth choice of such vectors will be called o null pair

of S.

According to our definitions a null pair is uniquely defined up to a scaling
transformation:
e) = aeq, e3' =ales (3.1.5)

for some smooth positive function a.
We should use systematically throughout the book the following notations

Definition 3.1.2 Given a tensor U defined on M and tangent to S, at any
point of S, we define D,U and P;U to be the projections to T'S of D4U and
DsU.

Definition 3.1.3 Corresponding to any normalized null pair eq, e3 we de-
fine the null second fundamental forms of S to be the 2-covariant tensors on

S':
x(X,Y) =g(Dxes,Y), x(X,Y)=g(Dxes,Y) (3.1.6)

where X, Y are vector fields tangent to S and D denotes the connection on
(M, g). Moreover we define the torsion of S to be the 1-form:

((X) = %Q(DX€4,€3) (3.1.7)
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Clearly, as [X,Y] € T'S, x,x are 2-covariant symmetric tensors 2on S.
Performing a scaling transformation of the form 3.1.5 we have

X' =ax, x =a"'yx (3.1.8)

Hence x, x are uniquely defined up to a transformation of the form 3.1.8.
Under the same scaling transformation the torsion ¢ transforms according
to the formula

¢'(X) = ¢(X) — a "X (a) (3.1.9)

Remark:

The covariant derivatives, intrinsic to S, of x and y are not invariant under
the scaling transformation 3.1.5. Nevertheless the following tensors trans-
form nicely under it:

Vix+<C(X)x , Vxx—C(X)x

where X is an arbitrary vectorfield on S. Indeed

Vix' + ¢ (X)X =a(Vxx+C(X)x)
YVix' = (X)X =a"" (Vxx — ((X)x)

We shall call the above quantities the conformal derivatives of x, x.

We denote by try, try the traces with respect to v of x, x and by X, x
their traceless parts
. 1
X(X,Y) = X(X,Y) - §tI'X’)’(X,Y)
1
X(X, Y) = X(X,Y) — §trX'y(X,Y) (3.1.10)

Observe that the product tryxtry is independent of the choice of the null
pair.

2If S is the the standard sphere, (z')?4(2?)?+(2)? = 72, on the spacelike hypersurface

2% = const in Minkowski spacetime, the standard choice of the null pair is eq = 0; + 0 ,
es =0, — Or. Inthis case try = —try =2 , x=x=0, (=0and K = 5.

In the Schwarzschild spacetime, where S is an orbit of the rotation group, a natural choice
of a null pair is: es = ¢_1(%+%),63 = @‘1(%—%) with r. = r 4+ 2mlog(5= —1),

P2 = (1 — ZTm) In this case, xap = 5ab% C X, = —&w%
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Definition 3.1.4 Given the one form & on S we define its Hodge dual 3:
*ga =Cab fb

If & is a symmetric, traceless, 2-tensor we define the following left, *¢, and
right £, Hodge duals:

Eab =€ac &b 5 Egp = &0 €

Remark: Clearly, if € is a one form, {(*¢) = —¢. If £ is a symmetric, trace-
less, 2-tensor observe that the tensors *¢, £* are also symmetric, traceless
and satisfy

==&, () =-¢
Remark: Another simple but important property is the following one: Let
&, n be 2-covariant symmetric traceless tensors, then:

gacncb + fbcnca = (f . ﬂ)(sab (3.1.11)

We always decompose a symmetric 2-tensor ¢ between its trace, tré = §9&,,
and traceless part. Thus if &, is such a tensor we write its traceless part:

- 1
Eab = Eab — 5131‘5(5@().

Given S C M and the fixed null pair {es,e3} we can associate two
triplets {N, L, ¢s}, {N, L, Qs} as follows: starting with the vector field ey
given on S, we introduce the one parameter flow ¢s(p) = I(s;p) where
I(s;p) denotes the null geodesic parametrized by the affine parameter * s
with initial conditions:

d
10)=p » (-D(0) = ey
We define L by

d%l(S;p) = L(s;p) -

Clearly L satisfies:

g(L,L)=0 D.L=0.

3here a,b are just coordinate indices
4This means that the the vector field L satisfies Ls = 1.
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The flow {¢,} generates, starting from S, a family of two dimensional sur-
faces {Ss}. The union of all future outgoing null geodesics initiating at
points in S forms a three dimensional null hypersurface which we denote by
N. The diffeomorphism ¢; can be extended from points on S to any point
g on N: given ¢ = I(s,p) € Ss, ¢ moves g, along I(s,p), as follows

b2 Neq— ¢lq) =l(s+tp) €N .

By replacing e4 with e3 we can repeat the same procedure and define the
triplet {\/, L, ¢ _}. Observe that the hypersurfaces N and A are independent
on the particular choice of the null pair.

Definition 3.1.5 Given S, we call N and N the outgoing and incoming
null hypersurfaces generated by S.

Let X be a vector field defined on S tangent to it, X € T'S. We extend it
to N (denoting it again by X) as follows

Xy =dos- X,

where p € S, g = ¢s(p) € Ss and d¢s is the differential of ¢s. The extension
is such that ¢, X = X holds for any s, where ¢;, is the standard push
forward. According to the definiton of the Lie derivative, it is immediate to
realize that on N:

11, Xy = (£4.X)g = limi o [Xg — (6. X)g] = 0.

This implies that the flows 1, and ¢ commute, 1; o s = ¢ 0 1, where 1,
is the flow generated by the extended X.

Let N be the corresponding outgoing null hypersurface generated by S
and U a tensor of type (2) defined ® on N and tangential to each S,, we
introduce the operation DU in the following way,

Definition 3.1.6 At each point of S

d
DU = —¢:U 3.1.12
dsqss s=0 ( )

where ¢:U is defined as usual
¢ZU(XI7’ = Zp) = U(d¢s : Xpa ey dops - Zp)

for Xy, ..., Zy in the tangent space to S.

°It is enough that U be defined in a neighborhood of S.
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The same definition can be given for D substituting L with L and N with
N

d .
DU = dsQSU . (3.1.13)
Remark that the operation D can be trivially extended to the whole of N/
and is intrinsic to A/. Observe also that D is essentially the Lie derivative
Lr. In fact if U is the restriction to N of a spacetime tensor field, then
DU = LrU. For example, denoting by = the restriction of the spacetime
metric g to the surfaces Sy C N, we have

Dy(X,Y) = (Lrg)(X,Y)=L(g(X,Y)) —g(LrX,Y) —g(X,LLY)
= g(DxL,Y)+g(X,DyL) =2x(X,Y)

and similarily for Dy. Therefore,
Dy=2x , Dy=2x (3.1.14)

To stress the geometric and physical importance of x and Y, it is appropriate
to recall the following properties:

Let |S|(s) = [qdu,, be the area of Sy with 7, the metric on S equal to
the pullback by (¢s)* of g restricted to Ss. Then

d d
—|Sls=0= [ t —|Sls=0= [t 3.1.15
SISlo = [ o LiSleo =[x (3115

In other words try, try measure the change of area of S in the direction of
e4, and e3 respectively. The null second fundamental forms x and y measure
also the change of the length of a curve I' on S when mapped by ¢, on the
surface Ss. In fact let I': ¢ — I'(¢) € S and let I's = ¢4(I"). The length |I'|,

of 'y satisfies the following equations, where V = ‘(ii—g,

d x(V,V) d /MKW
D50 = dt , —|T|s=o = [ = dt 3.1.16
d8| |3—0 / |V|2 ’ d§| |§—0 |V|2 ( )

3.1.2 Null decomposition of the curvature tensor

Consider a surface S and a fixed null pair {e4,e3}. Associated with this
we also consider a null frame {ey, e3,e1, ez}, where {ej,es} is an arbitrary
orthonormal frame for T'S. Remark that the quantities we define below
depend only on the choice of the null pair. We express, at each point of
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S, the various components of the Riemann curvature tensor of (M, g) with
respect to it. We recall that the curvature tensor has the following symmetry
properties:

Raﬁ’yé = _Rﬁa'yd = _Raﬁé'y = R’yéa,@’
Rosys + Raysg + Rasgy =0

The curvature tensor has 20 independent components. Half of these com-
ponents are taken into account by the Ricci curvature, the remaining ten
components correspond to the conformal curvature tensor C , see 1.1.14,

1
Casys = Rapgy — B (9a7R66 + 8ssRay — 85, Ras — gaéR/B’Y)

1
+ g(gaﬂw — 8a08sy)R

The conformal curvature tensor C is the primary example of what we call a
Weyl field namely a (2) tensorfield W verifying all the symmetry properties
of the Riemann curvature tensor:

Wagys = =Wsays = =Wapsy = Wysap
Wagys + Wansp + Waspy =0 (3.1.17)

and, in addition,
9 " Wagys =0 (3.1.18)

For a Weyl tensor field W the following definitions of left and right Hodge
duals are equivalent:

1
* afByé = Eeaﬂuuwuy v
1

— pv
a*ﬁw? = Waﬁ §5uw§
where €979 are the components of the volume element in M. One can easily

show that, *W = W™ is also a Weyl tensor field and that *(*W) = —-W.
Relative to the null frame we define the null components of the Weyl field:

Definition 3.1.7 Let e4,es be the null pair of the null frame. Let W be a
Weyl field and introduce the following tensor fields operating, at each p € S,
on the subspace T'S, of the tangent space TM,,
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a(W)(X,Y)=W(X,eq,Y,e4)
BW)(X) = %W(X, e, 3, 04)

1
pW) = ;W (es, eq, €3, 4) (3.1.19)
1 1

Q

(W) = 7p(W) = 7 W es, 1, ¢3, €4)

BW)(X) = %W(X, €3, €3, 4)
a(W)(X,Y)=W(X,e3,Y, e3)

where X, Y are arbitrary vectors tangent to S at p. We call the set

a(W), (W), p(W), B(W), p(W), a(W) (3.1.20)

the null decomposition of W relative to ey, es.

We easily check that, in view of 3.1.18, (W), a(W) are symmetric traceless
tensors, thus they have two independent components each. Together the
total number of independent components of the set in 3.1.20 accounts for
all the ten degrees of freedom of the Weyl tensorfield W.

The null components of W can be expressed in terms of the null decompo-
sition, denoting Wy,5 = W(ea, €3, €4, €5), in the following way:

Wazsh = =ty , Wasza =2,
Wasap = —aap , Waaaz = =20,
Wasbs = —pdap + 0€ap

Wazbe = =" ("W )azbe = enc'B, (3.1.21)
Waabe = =" (W) asbe = —€beBa

0abWasbe = B, » 6abWaabe = —Bec

Wicabddadeh = —2p , Waaza = —4p

Wabza = 2€qp0

where *a, *a, *3,* 3 are the Hodge duals of «, a, 3, B relative to T'S),. Thus,
according to definition 3.1.4,

= —'a(W) , B(W) = —BOV) . a(*W) = "a(W)

BEW) = —B(W) , p(*W) = o(W) , o(*W) = —p(WW) .
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Relative to a rescaling of the null pair,
/ / -1
eq ey =aeq, €3 >e3=a ez,

the null components of W change according to

i a2a /:a—2

o
'=af B =a"'B (3.1.22)
2

I

= Q
I
RS

Q

~

A
I

In view of this we associate to the null components of W the following
weights which we refer to as the “signature” of the corresponding component:

sign(a) = —2 sign(a) =2
sign(8) = -1 sign(8) =1 (3.1.23)
sign(p) =0 sign(oc) =0

We also remark that, under the interchange of the components 3,4 in the
null decomposition of W, we have:

a—a,B—-B,p—=p, 00 (3.1.24)

Remark: Throughout the remaining of this Chapter (M,g) refers to an
Einstein vacuum spacetime.

3.1.3 Null structure equations of a 2-surface S

The following equations associated to a fixed two surface S are a subset
of the whole set of the null structure equations relative to the spacetime

(M, g).

Proposition 3.1.1 The Gauss curvature K of S, as well as the null second
fundamental forms x,x and torsion ¢ corresponding to a null pair es,e3
verify the following null structure equations on S':

1. Gauss equation

1

1
K= —Ztrxtrx—i- X X—p

[\
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2. Null Codazzi equations

Jios + 5 C = 5 (Virx+ Cir) — B

3. Torsion equation

1
cdrlC+§)ZAX:U
The proof of this proposition is in the appendix to this chapter.

3.1.4 Integrable S-foliations of the spacetime

Assume that the spacetime (M, g) is foliated by a smooth, codimension
two, foliation whose leaves are compact, spacelike, 2-surfaces diffeomorphic
to S2. We shall refer to it as an S-foliation of the spacetime.

Definition 3.1.8 A tensor field on (M,g), which is tangent, at each point,
to the leaf of the foliation passing through that point, is called S-tangent.

At every point p € M we consider the future incoming and outgoing null
directions normal to the leaves of the foliation ¢ and choose, correspondingly,
a null pair ey, e3.

We introduce the following definition,

Definition 3.1.9 An “adapted” null frame consists, in addition to the null
pair e3, eq, of an orthonormal frame {e,}q—=12 tangent to the two dimensional
S-surfaces.

Definition 3.1.10 The S-foliation is said to be null outgoing, respectively
null incoming, integrable if the distribution formed by the tangent spaces of
S together with the null outgoing direction, respectively null incoming, is in-
tegrable. An S-foliation which is both null outgoing and incoming integrable
15 called double null integrable.

Proposition 3.1.2 An outgoing (incoming) null integrable foliation is lo-
cally given by the level hypersurfaces of a function u (u) which verifies the
etkonal equation

g" 0, wo,w =0 (3.1.25)

SWe will simply refer to them as the null directions of the foliation.
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We shall refer to u and u as outgoing, respectively, incoming optical func-
tions and denote their level surfaces by

C(A) ={p € Mlu(p) = A}
C(v) = {p € Mlu(p) = v} (3.1.26)

Proof: If the S-foliation is null-outgoing integrable the distribution made
by the linear span formed by T'S and ey,

PEM — A, ={TSDes}y,

is integrable which means that at each p there is a submanifold N' c¢ M
such that

TN, = A, .
Therefore the null hypersurface N’ can be expressed, locally, as the level
hypersurface of a function u. It follows that the covariant vector n defined
by n, = 0,u satisfies n(e,) = 0, n(es) =0, a € {1,2}. Therefore g"'n, =
g*” d,u is a null vector field proportional to eyq; this implies

g" 0 ud,u =0 .

Everything goes in the same way for the null incoming integrable foliation,
with the obvious substitutions, p € M — A, = {T'S D e3}, and N instead
of N.

The following corollary is an immediate consequence of Proposition 3.1.2

Corollary 3.1.1 A double null integrable S-foliation, can be locally de-
scribed by the level hypersurfaces C(\), C(v) associated to an outgoing opti-
cal function u and an incoming optical function u. The leaves of the foliation
take the form

S(\v) = C\)NC(v) (3.1.27)

Definition 3.1.11 The pair of foliations of the spacetime (M,g) defined
by the null hypersurfaces C(\) and C(v) is called the “double null foliation”
associated to u and wu.

We associate to u, u the null geodesic vector fields,
L? = —¢#0,u and L = —g¢""0,u (3.1.28)

They satisfy
D;L=0,D,L=0.

We refer to L, L as a null geodesic pair of the double null foliation. At each
point, L and L are proportional to e4 and e3, respectively.
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Definition 3.1.12 Given a double null foliation with associated null geodesic
vector fields L, L we define its “spacetime lapse function” € by

20% = —g(L, L)' = (9”7 8udyu) (3.1.29)

So far we have identified the null second fundamental forms and the tor-
sion as natural geometric objects corresponding to a given two dimensional
surface S embedded in the spacetime. We look now at the remaining con-
nection coefficients, associated to an arbitrary S-foliation with a fixed null
pair,

1 1
o = §g(De4e4,ea) ) §a = §g(Dege3aea)

1 1
Na = _Eg(Deaeaae4) v N, = —§g(De4€a,€3) (3'1'30)

1 1
w = —Zg(De4€3,€4) y W= —Zg(De:’)e‘l’e?’)

It is straightforward to check that, in the case of a double null integrable
foliation, £ = £ = 0.

The fact that a S-foliation is double null integrable does not depend on the
choice of the null pair {e4, e3}. In fact {e4, €3} can be subjected to a scaling
transformation

e) = aeq, e3' = a_leg .
In the following we make a specific choice of a null pair.

Definition 3.1.13 Given a double null foliation with its geodesic null pair
{L,L} and lapse Q we introduce,

es =N =20L, e3=N =20L (3.1.31)
which we call the “normalized null pair of the foliation”.
Indeed

g(N, ) = 40%(L, L) = —2.

Remark: Given a double null foliation, the scalar function Q2 and the nor-
malized null pair {N, N} are uniquely determined. This definition implies
that
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Recalling the definitions 3.1.30 of the connection coeflicients we find

¢ = %g(DEﬁ,ea) zéﬁ(logﬂ)g(ﬁaea) =0

£y = %g(DNN,ea) zéN(logQ)g(N,ea) =0

w = ig(DEﬁ,N):—%D:&(IOgQ)

w = SEDLN.A) = D, (log®) (3.1.32)
n, = —Ca+tV,logQ, 1o =Ca+ V,logQ

(o = %g(DeQN,E)

Thus all the connection coefficients of a double null integrable foliation,
can be expressed in terms of x,x,(,{. We also remark that, under the
interchange of the components 3,4 in the connection coefficients, we have

06x) = 6x) s (n) = n), (Ww) = (Ww), (= - (3.1.33)

The next definition introduces another important property of outgoing and
incoming null integrable foliations.

Definition 3.1.14 Consider an arbitrary S-foliation and a null outgoing
vector field N normal to each S. N is said to be equivariant, relative to the
foliation, if the leaves of the foliation are Lie transported by N. The same
definition applies to a null incoming vector field N.

This means that, in the first case, the 1-parameter family of diffeomorphisms
{¢:} generated by N maps the leaves of the foliations into themselves and,
in the second case, the same happens relatively to the 1-parameter family
of diffeomorphisms {¢,} generated by N.

Lemma 3.1.1 Let ¢y be the I-parameter family of diffeomorphisms gener-
ated by the equivariant vector field N mapping a given two surface S of the
foliation onto another leaf S'. Let X be a S-tangent vector field, defined
on M, then ¢, X is also S-tangent, at each point, to S = ¢(S) and so is
LyX =[N, X].

Proof: Let p € S and g = ¢(p) then:
(¢t X)q(f) = doy- Xp(f) = Xp(f o 1) (3.1.34)
= timaso (7 0 om0 67)(@) — £(a)]
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where 1/, is the one parameter diffeomorphism generated by the vector field
X and (¢ opp 0 ;') is a curve on S’ whose tangent vector at q is (¢, X)g-
Moreover, as

(ExX) = limy o7 (X, — (90 X))

it follows that Ly X =[N, X] is S tangent.

Lemma 3.1.2 For a double null integral S-foliation the outgoing null vector
field N = 2Q2L and the incoming null vector field N = 2Q°L are equivariant
relative to it.

Proof: Let {¢;} be the one parameter family of diffecomorphisms, generated
by a null vector field Ny such that:

Hence
Sulglp) = 1= 2000 p) = Nw
o
%U(d)t(p)) =0= ag; 8%Mu(p) = N(u) (3.1.35)

Therefore there must exist a scalar function a such that Ny = aL. Defining
in the same way ¢, as the diffeomorphism generated by the incoming null
normal vector field Ny, it follows also that Ny(u) = 1, Ng(u) = 0 and,
exactly as before, this implies the existence of a scalar function a such that
No=a L. From 3.1.35 we have

1= No(u) = N§Ouu=—guwN§ (9" 0pu) = —gu N{L" = —a 'g(No, Ny)

and from it
g(NOaMU) = —a.

Repeating the same calculation, interchanging Ny and N, we have also
—a=g(Ny,No) = —a .
From Ny =alL, Ny=alL and 3.1.32 we obtain

a=20° (3.1.36)
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Finally, recalling eq. 3.1.31,
No=QN =20°L=N , Ny=QN=20’L=N (3.1.37)

Next lemma is a simple generalization of equation 3.1.15. It will be sistem-
atically used in the next chapters.

Lemma 3.1.3 Let S a two dimensional surface diffeomorphic to S? , for
any scalar function f, the following equations hold:

d df
@ /S(u,g) fdﬂ”y B /S(u,g) (@ * QtrXf) dﬂ'y

d - af
du /S(w) fdpy = /S(w) (du + Qtrﬂ) dpi (3.1.38)

Proof: Explicit computation gives

d i 1
L djiy = / Y limsyos / djiy — / duy ) .
du /s<u ! % Jsuy du T ( Stwaes M s ? M)

P

where dji, the area form of S(u, w), is the two form dyu, = \/§d$1 Adz?. The

null vector field N = QN generates the diffeomorphism ¢5 sending S (u, v)
onto S(u,u + 6). Let ¢ = ¢5(p) € S(u,u+ ) with p € S(u,u), then the
following relation holds:

s T
/5 (w,u+9) Suw) °

It is easy to prove that
1
dpesy = dpy + 5‘51‘(§L]\m/)d,u7 + 0(8?) = (1 + 6Qtry)dp, + O(5?)

and, from this relation, the first line of 3.1.38 follows. The second equation
is proved exactly in the same way.

We recall the notion of “Fermi transported null frame”
Definition 3.1.15 Given a null pair es, e4, we say that a null frame {e4, €3, €4}

is Fermi transported along C(X) if D, eq = 0, we say that it is Fermi trans-
ported along C(v) if Pseq = 0.

Remark: As N, N do not commute we cannot simultaneously have a null
frame Fermi transported along both C'()\) and C(v).
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3.1.5 Null structure equations of a double null foliation

We assume that the spacetime (M, g) is foliated by a smooth S-foliation
whose leaves are compact, spacelike, 2-surfaces diffeomorphic to S?. We
consider the null frame {ey, e3, 1, e2}, adapted to the S-foliation, and write
the null structure equations satisfied by the connection coefficients with
respect to it. Denoting the null frame and its dual basis

{e(a)} = {ea} = {61762763764}

{0} = {0} = {6",6%,6°,0"}
we define

D..es =T3¢, , Rlea,ep)ey = Rgaﬁ es (3.1.39)

The connection coefficients, introduced above, are the nonvanishing compo-
nents of I') - The connection 1-form and curvature 2-form are

1
Qf = R0 N0 (3.1.40)

They satisfy 7, the first and the second structure equations &, see [Sp] ,
do* = —wi NO7
1) 1) 1)
dwy, = —w, Awy + (3.1.41)

We shall now specialize to the case of a double null foliation, with the nor-
malized null pair { N, N}, see definition 3.1.13. The first structure equations,
written explicitely in terms of the connection coefficients, take the form, see
3.1.30,

Dyey, = Y,ep+ %Xabe3 + %Xabezl

Dees = x,60+Ca€3 , Daes = xapep — Cals

Dse, = Dseq+mees , Daeq =Dueq +1 €4 (3.1.42)
Dses = (DslogQ)es , Dszes = —(DslogQ)es + 2mpey

Dyesy = (DylogQ)es , Dyes = —(DyglogQ)es + 2n,€b

"The structure equations can be stated in a more general framework for a general S-
foliation as discussed in the appendix to this chapter or even in the absence of a foliation,
see the general Newman-Penrose formalism, [Ne-Pe2].

8With the obvious modifications due to the Lorentzian metric.
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We also state the following commutation relations which will be often used
in the sequel

[N, eq] = Daeq — Xaver + (Y, log Q)N
[N, e,] = Dse, — X,e0 + (¥, log QN (3.1.43)
[N,N] = —(D4log Q)N + (D3log Q)N — 4(yey
and from it
[N eqa] = Q(Paeq — Xaves)
[N, eq] = 2(Pseq — x,,60) (3.1.44)
[N, N] = —49%Cye,
Recalling that all the connection coefficients of a double null foliation can

be expressed relatively to x, x, ¢, €2, the second null structure equations take
the following form:

Proposition 3.1.3 (Null structure equations) The coefficients x, x, ¢, {2

associated to a double null foliation and normalized null pair {e4 :N, e3 =
N}, verify the following equations

D3 +2x-¢C—D3VlogQ = —p

Di(+2x -+ P, VlogQ = —p

Dax + trxx —

1

Dytry + E(trx 2 _ (DylogQ)try +|x|> =0

Dsx + trxx — (D3logQ)x = —«

1
Dstryx + §(trx 2 _ (D3log Q)try + |X|2 =0 (3.1.45)

Dix + %trxz + %t@z + (D4log Q)X + VR — (&C¢
+2¢®Y log 2 — (YRY) log Q — V1og Q@Y log Q = 0

Dytry + %trxtrx + (Dylog Q)trx + X - X + 2div¢ — 2/Alog Q2
“2¢? — 4C - Vlog — 2|V log O = 2

Psx + it + 5 ik + (D3 log Q)¢ — ¥8¢ — (&
—20(®YlogQ — (YY) log 2 — V1og Q@Y log Q2 = 0

Dstry + %trxtrx + (D3log Q)try + x - X — 2div{ — 2|¢I?

—2/AlogQ —4¢ - ViogQ — 2|V 1og Q|? = 2p
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Virx — divx +¢-x — Ctrx = —f8
YViry — divx — (- x + Ctrx = 8
cyrl{ — %X/\)Zza (3.1.46)

1 1
K+ —trytry —=x-x=—
+4TXTX 2XX p

and, finally,

1
5 (D4D; log 2+D3Dy log ) + (D3 log ©2) (D4 log 0)+3[¢[* =V log Q* = —p
(3.1.47)

Remark: Recall that D4, D3 are the projections of Dy,D3 to T'S. More-
over, given U, V two covariant S tangent vector fields, UQV is defined as
twice the traceless part of their symmetric tensor product UV,

(URV)ap = Uy Vi + UpVy — U -V (3.1.48)

Proof: See the appendix to this chapter, subsection 3.8.1.

3.1.6 The Einstein equations relative to a double null folia-
tion

Among the complete set of structure equations, 3.1.45, 3.1.46, 3.1.47, we
identify those which do not depend on the null components of the curvature
tensor. They are the equations which correspond to R(eq,eg) = 0. In
other words they can be interpreted as the “Einstein vacuum equations”,
expressed relatively to the double null foliation:

(

Dutry + 3(trx)? + 2wtrx + |¥|*> =0

]D4X — 2wy = W@Q + Q@)Q — %(trx}% + trxi)

[ Pul+Cx + trx( = divy — Vitry — D,V log Q2
(3.1.49)

Dytry + trxtry — 2wtry = —2K + 2div (—¢ + Vlog Q) + 2| — ¢ + V1og Q|?
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Djtry + %trXQ + 2wtry + |X|2 =0
Dstry + trxtry — 2wtry = —2K + 2div (¢ + Vlog Q) + 2|¢ + YV log O

D3} — 2wx = Y&n + n®n — 3(trxg + trxx)

| P+ (x +trxC = —divy + Viry + PV log Q
(3.1.50)
and

1
§(D4D3 log Q + D3Dy log ) + (D3log Q) (D4 log Q) + 3[¢|? — |V log 2

1 1
=K+ Ztrxtrx - EX X (3.1.51)

Remark: the number of equations written in 3.1.49, 3.1.50, 3.1.51 is 13
instead of 10 as the independent components of the Ricci tensor. Therefore
three of them are not independent. A careful look shows that the three
equations Ricci(eg, €p) = 0 can be written as the equations

. . 5 ~ 1 . .
Dix — 2wy = VY@ +n®n — §(trxx + trxx)
Datry + trytry — 2wtry = —2K + 2div(—( + Vlog Q) + 2| — ¢ + V1og Q

or the equations

~ A~ _~ _~ ]. ~ ~
Dix — 2wx = Y®n + n®n — E(trxx + trxx)
Djtry + trytry — 2wtry = —2K + 2div (¢ + Vlog Q) + 2|¢ + Vlog 2

restoring to 10 the total number of the Einstein equations.

To look at these equations as partial differential equations it is appropriate
to rewrite them in terms of the D, D derivatives defined in subsection 3.1.1.
Recalling definitions 3.1.12, 3.1.13, it follows immediately that

Dtry = QDytry , Dirxy = QDytry
Dtry = QDstry , Dtry = QDstry

DC=Q(DiC+¢x) , DC=0 (DsC+C - x) (3.1.52)
DX =Q(Mix +2%-%) , Dx = (Pax +2% - X)
Dy =0 (Dsx +2%-%) » Dx =9 (Pox + 2% - X)
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Observe also that the equations for ¢ along the C'(A\) and C(v) null hyper-
surfaces can be replaced by similar equations relative to  and 7 in view of
the relations, see 3.1.32,

n=C+YVlogQ, n=—(+ YlogQ (3.1.53)

Thus the previous equations, 3.1.49, 3.1.50, take the following form
Dtryx — (Dlog Q)trx + %Qtrx2 + Qx> =0
Dtry + (Dlog Q)trx + Qtrxtry = 2Q (—K + divn + |Q|2)
Dx + (Dlog Q)x —2Qx - x = (W@ﬂ + Q@ﬂ - %(trxf( + trxX)) (3.1.54)
Dn + Qtryn = Q(divx — Viry) + Q ()2 -ViogQ + %trxvlog Q)
and
Dtrx — (D log Q)try + %Qter + Qx> =0
Dtrx + (Dlog Q)trx + Qtrytry = 22 (—K + divn + |7]|2)
Dx + (DlogQ)x — 2% - x = (W@Qn +n®n — %(trxX + try%)) (3.1.55)
Dn + Qtryn = Q(divx — Vtry) + Q (X -ViogQ + %trxvlog Q)
and

1 1
DDlog Q+DD log Q=202 <77 -n—2|n — Y log Q|2+K+Ztrxtrx—§z . )2) (3.1.56)

These equations form a closed system when supplemented by the equations
3.1.14,

Dy=2x, Dy=2x

Equations 3.1.54, 3.1.55, 3.1.56 and 3.1.14 can be expressed in terms of null
coordinates by supplementing v and u with additional angular coordinates
0, ¢.

We can define them as follows: we start with a fixed system of coordinates
0o, ¢y defined on S(\g,v.) = C, N Cy, where C, =C(u=v,), Co=C(u= o)
and define M as the causal past of S(\,v,). Consider any other surface
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S(A\,v) C M. We can transport the coordinates from S(Xg, v4) to S(A,v) in
two different ways, using the flows ¢; and ¢, associated to the equivariant
null pair N and IV,

Olsrw) = bo(@, o bt)
Plsoaw) = do(¢, o bt) (3.1.57)

or

Ols(aw) = bo(pro )
Plsonw) = ¢o(pro9,) (3.1.58)

where t = v, — v, s = Ag — A\. Recall that ¢, _, is the diffeomorphism
from S(\,v) to S(A,v.) and #5,_» 18 the diffeomorphism from S(A\v) to
S(Mo,v). Observe that the two definitions differ; indeed since N and N do
not commute

prop F P ot .

Since N and N are equivariant ° one of the two choice corresponds to write
N = 3% and the other one to N = 3%. Choosing N = 3%, we infer that [V

must have the form N = 3% + X. To determine the vector field X observe
that 10, see 3.1.44,

[N,N] = Z = —49%((ep)ey (3.1.59)

On the other hand, from the previous expressions for NV and N,

[N,N] = (%X“) aia (3.1.60)

where w! = 0, w? = ¢. Therefore in view of equation 3.1.59 we can uniquely
define the vector field X by !

0
%X“ = 7%= —4Q%y"¢, , X|¢. =0 (3.1.61)

With this choice of coordinates the metric g has the following expression

g(-,-) = =292 (dudu + dudu) + vap(dw® — X *du) (dw® — X du) (3.1.62)

“Recall that N(u) =1, N(u) = 0,N(u) =1, N(u) = 0.
1%We can also write [D,D] = Ly n] = Lz.
"Here a,b denote coordinates on S.
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3.1.7 The characteristic initial value problem for the Ein-
stein equations

In terms of the previous choices of coordinates we can now interpret equa-
tions 3.1.54 and 3.1.55 as equations for the six unknown 7., X, and Q of
the space time metric.

We consider given two null hypersurfaces we denote C,, C,, both originated
from a common two dimensional surface S, see definition 3.1.5. On C,UC, we
assume prescribed 745, X, and 2. How much freedom we have in assigning
these six quantities will be discussed later on.

This means that on C,, try, x and { are automatically determined as, see
3.1.14 and 3.1.61, 2x = Dy and ( = DX. Of course, in view of the relations
3.1.53 and of the definitions 3.1.32, n, n and w are also determined on Ci.

On C, try, X, w, n and 7 are automatically determined again as, see 3.1.14,
2x = D~y and using definitions 3.1.32 for w,n,n. X is given equal zero, as
allowed from our choice of coordinates, see 3.1.?51, 3.1.62.

Moreover on C, U, we can also determine the remaining connection coef-
ficients, trx, X on C', and try, x on Ci. In fact, using equations 3.1.54 and
3.1.55,

Dtry + (D log Q)try + Qtryxtry = 20 (—K + divn + |Q|2)

Dx + (DlogQ)x —2Qx - x = Q (W@Q + Q@JQ - %(trx)z + trxX))
Dtry + (D log Q)trx + Qtrytry = 22 (—K + divn + |7]|2)

DX + (Dlog Q)x — 2Qx - ¥ = Q (W@m +n&n — %(trxX + t@z)> :

these quantities are uniquely determined on C, and C, respectively, in terms
of their values on S. Therefore, once the 7,3, X, and 2 metric commponents
are assigned, all the null connection coefficients are specified, on C, U C,.

To determine the spacetime /C, given the “initial data” on C, U C,, we
proceed in the following way. The incoming evolution equations 3.1.55 for

X, trx, n
1 2 <12
Dtry — (Dlog Q)trx + §Qtrx + Qx| =0
Dtry + (Dlog Q)trx + Qtrytry = 22 (—K + divn + |7]|2)

N . . ~ ~ 1 . .
Dx + (DlogQ)x — 2% - x = (W@n + n®n — 5(157“)(& + tr&x))
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. 3
Dn + Qtrxn = Q(divx — Vtry) + Q (X - Vlog 2 + Etrxvlog Q)
and the equation 3.1.56, written as an evolution equation, along es, for w,

1 1 1 1
Dw—20ww= gQ|C|2+QC Y log 2=V log Q|2—§Q<K+Ztrxtrx— X" x) (3.1.63)

allows us to determine, from the initial conditions on Ci, ¥, trx, n and w.

Therefore it remains to determine y, w and 7, then knowing 1 and 7, ¥ log Q2
is also determined. This can be obtained from the outgoing evolution equa-
tions in 3.1.54 for X and n,

. . A ~ ~ 1 . .
Dx + (DlogQ)x —2Qx - x = Q (W@Q +n®n — §(trxx + trxx)>

3
Dn + Qtrxn = Q(divy — Vtry) + Q <>2 - Vlog 2+ Etrxvlog Q)

and from equation 3.1.56, written as an evolution equation, along ey, for w,

3 1 1 1 1
Dw—2Quww = §Q|C|2—QC . WlogQ—§Q|Y710g Q|2—§Q<K+Ztrxtrx—§f< . X) (3.1.64)

once their initial values are given on C,.

In fact all these equations have to be solved simultaneously since they are
heavily coupled 2.

The initial data costraints
Observe that the initial metric components v, X, Q on C, U C, cannot be
freely assigned. In fact let us recall the relations, see 3.1.14, 3.1.32 and
3.1.61,

0 0

G,
— X% = 402, Ay = 2Xap , — = —20° 3.1.65
6@ C ) 8u’7 b Xab > ag w ( )

and observe that, on C,, try and ¢ have to satisfy the equations '3

1
Dtry — (D log Q)try + 5QtrX? +Qx*=0 (3.1.66)
D¢+ Qtrx¢ =Q(dhvx —Virx+x - Viog Q)+ (VD log 2+42(Dlog )V log Q)

Therefore if we assigne on C\, freely, 2 and the traceless part of (-, ), Yap we
know on C, by simple derivation w and X4, and from the previous equations,

2See also on this subject [Ren].
13The outgoing equation for ¢ can be derived immediately from the one for 7.
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3.1.66, try and ¢ once they are given on S. Then by simple integration we
also know on C, the trace 4, and X, provided they are specified on S. In
conclusion the data we can assigne freely on C are 2 and the traceless part
of the two dimensional metric, 4.

The situation is similar on C,, the analogous of the equations 3.1.66 are

1
Dtry — (Dlog Q)try + 59@2 + Qx| =0 (3.1.67)
D¢+ Qtry ¢ =Q(—divx +YVtry —x - ¥log Q) — (YD log 2+2(D1og )V log 2)

Again we can assigne freely on C', Q and 9,4, and, knowing 7, and (, on S,
determine all the initial data on C,. The only relevant difference is that on
C, we can impose also X, = 0.

Remark: The Einstein equations written in the form 3.1.54, 3.1.55 are
highly non linear and manifestly non hyperbolic. The procedure to solve
them, we have outlined above, is very formal. It can only be implemented
locally, using a variant of the Cauchy Kowaleski method, in the class of
analytic spacetimes. This procedure is, however, completely inadequate
for studying global solutions. In fact in the proof of the Main Theorem we
circumvent them completely by relying instead on the full set of the structure
equations, 3.1.45, 3.1.46, 3.1.47, where the null components «, 3, p, 0, 3, «
of the curvature tensor are treated as external sources. Indeed we will show
that these curvature components can be estimated, separately, from the
Bianchi equations as will be discussed in the remaining part of this chapter,
see also the preliminary discussion in Chapter 2.

3.2 Bianchi equations in a Einstein vacuum space-
time

Definition 3.2.1 We say that a Weyl tensor field is a solution of the Bianchi
equation in (M, g) if, relative to the Levi-Civita connection D of g, it veri-

fies
Do W,s108 =0 (3.2.1)

Remarks:
a) If W verifies the equations 3.2.1 on a background spacetime (M, g),
then it must also satisfy the compatibility condition, see [Ch7],

RMO‘M*WWM - Ruam*Wuaﬁv :
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b) The primary example of a solution of 3.2.1 is the Riemann curvature
tensor of an Einstein vacuum spacetime (M, g).

We review the main properties of Weyl tensor fields and of the Bianchi
equations 3.2.1, see also the extended discussion in [Ch-KI].

Definition 3.2.2 Given a Weyl field W and X an arbitrary vector field,
we define the modified Lie derivative relative to X by

u 1
ExW = £xW — S O[W] + %tr(X)WW (3.2.2)

where
) [W]aﬁw = (X)Wg Wipys+ (X)Wg Wapns + (X)szaﬁw + (X)WgWaﬂw (3.2.3)

(X)

and \“*m is the deformation tensor of X.

Proposition 3.2.1
L. The following four sets of equations are equivalent
DieWos108 =0, D'Wap =0
D" W ppap =0, D" Wos08 =0 .
II. The Bianchi equations 3.2.1, are conformally covariant 4, see [Pel],
[Pe2] and also [Ch-Kl1], [Ch-K]I].
III. LxW is also a Weyl field and satisfies Lx*W = *CxW.

Proof: See [Ch-Kl], Chapter 7.

The Bianchi equations 3.2.1 look complicated, nevertheless they are quite
similar to the more familiar Maxwell equations. This is already obvious
formally, but it becomes even more apparent if we decompose W into its
“electric and magnetic” parts. Given vector fields X,Y we define i x y,)
through the relation (i(xy)W)u = WyawsX*YP, then, with X =Y =T,
define

E — i(T,T)W 3 H - i(T,T)*W' (324)

These two covariant symmetric, traceless tensor fields £ and H, tangent to
the hyperplanes >;, determine completely the Weyl tensor field. It is easy to

1This means that whenever we perform a conformal transformation ¢ of the spacetime
(M, g) with § = ¢.g = A®g, then W = A™*¢.W is a solution of the Bianchi equations for
the spacetime (M, g).
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write the Bianchi equations for this decomposition and obtain the following
“Maxwell-type” equations:

OO F + curlH = p(E, H)
& '0,H — curlE = o(E, H)
divE =k AH

divH = ~kANE .

where V is the covariant derivative with respect to X,
(leE)z = VjEij ) (curlE)ij = EéleEkj

and the corresponding expressions hold for H. The explicit expressions of
p(E,H) and o(E, H) can be found in [Ch-KI|, page 146.

The strong formal analogy with the Maxwell equations goes even further.
In fact, just like the Maxwell equations, the Bianchi equations possess an
analogous of the energy momentum tensor, the Bel-Robinson tensor, see
[Bel].

Definition 3.2.3 The Bel-Robinson tensor of the Weyl field W is the four
covariant tensor field

Qa575 = WCKP’YUWﬁp(iU + *Wap’ya*Wﬁp(ga (3.2.5)

The Bel-Robinson tensor has the following important properties, which re-
mind those of the energy momentum tensor of the Maxwell equations, see
[Ch-KI] Chapter 7,

Proposition 3.2.2

a) Q is symmetric and traceless relative to all pairs of indices.

b) Q satisfies the following positivity condition: Q(X1, Xa, X3, X4) is posi-
tive, unless W = 0, for any timelike vector fields .

c) If W is a solution of the Bianchi equations then

DaQa,B’y(S =0 (326)

Definition 3.2.4 Given a vector field X we denote by X = Lxg its the
deformation tensor. We denote by (i = ghv (X)WW its traceless part. They
measure in o precise sense how much the diffeomorphism generated by X

differs from an isometry or a conformal isometry.

'5We need this property when at most two of these vector fields are different, in which
case the proof is straightforward, see [Ch-KI].
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Proposition 3.2.3 Let Q(W) be the Bel Robinson tensor of a Weyl field
W and X,Y, Z a triplet of vector fields. We define the covariant vector field
P associated to the triplet as

Py = Qups XPY 2. (3.2.7)
Using all the symmetry properties of QQ we have
DivP = DivQgsX°Y12°
+ %Qaw <<X>7r“6 Y120 + W xBz0 4 (Z>7r“5XﬁY7>
Recall, see Chapter 2, section 2.2, that this expression can be used, if X,Y, 7

are Killing or conformal Killing vector fields, to construct conserved quan-
tities.

We assume that the Einstein vacuum spacetime, or more precisely a
region of it, is foliated by a smooth double null foliation. The Bianchi
equations can be expressed in terms of the null components «, 3, p, o, 8, @ of
the curvature tensor, according to the following proposition which extends
equations 2.2.13 of Chapter 2.

Proposition 3.2.4 Ezpressed relatively to an adapted null frame, the Bianchi
equations take the form

0, = Dra + %trxg = V8B + [4wa - 3(ip — Xo) + (¢ — 4B
By =3B +2try B = —diva - [2g§+ (=2¢ +n) -Q]

B, =Puf+trxB=~Vp+ 208+ 2% B+ Vo - 3(np — o]

s =Dap+ Sirxp = —diog - [ a-C-g 420

p4ED4p+;trxp:Jivﬁ— [%X-a—(-ﬁ—2ﬂ-ﬁ} (3.2.8)

1
03 = D30 + %trxa = —div’p + {—X'*Q— ("B — 277‘*§]

— DN

oy =Dyo + %trxg = —diviB + {EX Toa—C-"B-2n- *B]
Bz =3B+ trxf =Vp+ [2Q5 +'Vo +2x-B+ 3(77,04‘*770)]
Bs = Dy + 2trx S = dJiva — [2wﬁ —(2¢ + Q)a]

as = Dsa + %trxa = V®B + [4wa — 3(xp + o) + (¢ + 417)®0]
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These equations are similar to the ones in the Minkowski spacetime. The
terms in square brackets, absent in the flat case, are products between the
Weyl null components and the connection coefficients .

3.3 Canonical double null foliation of the space-
time

In this section we introduce the concept of a canonical double foliation which
plays an important role in the proof of the Main Theorem.

We start considering a bounded region of the spacetime, we denote by IC,
whose boundary is identified by:

e A finite region of a spacelike hypersurface Yg; K is in the future of
3.

e A portion of an incoming null hypersurface C,; C, N3y = Si(A1) is
diffeomorphic to S2.

¢ A portion of an outgoing null hypersurface Co; Cp N Xg = S(g)(v0) is
diffeomorphic to S?. Also Cy N C, is a two surface diffeomorphic to
S2.

A double null foliation of K is given by two optical functions v and u
such that

C, ={p € Klulp) =v.}, Co={p € Klulp) = Ao}

with ¢ and v, fixed constants 7.

A canonical double null foliation of K is a double null foliation such that
the restriction of u on C', and of w on Y are canonical in a sense which will
be made precise in this section.

Remark: We shall refer in the sequel to 39 N K as the “initial slice”
and to C', N K as the “last slice”.

1611 the case of the Schwarzschild spacetime the only terms in parenthesis different from
zero are those depending on w,w.

'"The reason of the notation S.(A1) and S)(v0) will be clear after subsections 3.3.1
and 3.3.3.
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3.3.1 Canonical foliation of the initial hypersurface

We consider foliations on regions of the initial hypersurface ¥ specified by a
“radial” function r(p) = w(p). By this we mean a differentiable real function
defined on all points of this region, which takes values in an interval (o, 00)
and verifies the following conditions:

a) w has no critical points.

b) The level surfaces So(v) = {p € Xp|w(p) = v} are diffeomorphic to
the two dimensional spheres S2.

Let K C Xy be a compact set such that ¥\K is diffeomorphic to the
complement of the closed unit ball. Consider a radial foliation of Lo\K given
by the function w(p). Its leaves are

So(0) = {p € Solw(p) = o}

We assume that 0K is a leaf of the foliation, 0K = Sy(0y).

We choose on ¥y a moving frame, {]\7 ,€q}, adapted to this foliation where
N = m—ﬁv‘g’.j Jjw is the unit vector field defined on ¥y normal to each Sy(o).
The metric on Yy can be written

g(,-) = a®dw® + yapd¢®dg’ (3.3.1)

and, with this choice of coordinates, N = 1-% and a2 = |0w|?.

Using Gauss and Codazzi-Mainardi equations relative to the surfaces Sp(v)
immersed in ¥y we obtain the following evolution equation '® for trf,

1 R
V i tro + E(tr@)2 +a 'pa=—107 - Ryy (3.3.2)
which can be rewritten as

V itrf + %(tr@)2 = —(Aloga+p) + [—|Y7loga|2 — 6% + g(k)] (3.3.3)

1

where p is the null component —%R3434 of the Riemann tensor '?, relative

to the null pair {e} = N + Tp,e3 = N — Tp}, and

g(k) = k55 + D kg 5l -

!8These are derived in Chapter 7, subsection 7.1.1, see also [Ch-KI] Chapter 5.
198ee also footnote 7 of subsection 7.1.3.
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Definition 3.3.1 A foliation on $o\K, defined by a radial function u(p),
is said to be canonical if w) (p) is a solution to the “Initial slice problem”
with initial condition on 0K,

Vugy =a™", wp)lox = o
Aloga=—(p—p), loga=0 (3.3.4)

The leaves of the canonical foliation are denoted
S0)(v) = {p € Bolu(p) = v} (3.3.5)

The next theorem assures the local and global existence of a canonical foli-
ation on Xo\K.

Theorem 3.3.1 Under appropriate smallness assumptions on So\K there
exists a canonical foliation on Xo\K .

The precise statement of Theorem 3.3.1 is given in section 3.7 and its proof
is given in Chapter 7.

Remark: The basic reason which requires the introduction of the canonical
foliation on ¥y\K is that we need to control # up to third derivatives.
Without the canonical foliation the control of the third derivatives of 6
will require the control of g up to five derivatives and that of k up to four
derivatives. This would lead to a stronger assumption on the initial data
than necessary.

3.3.2 Foliations on the last slice

A foliation on the last slice C, is specified giving a function u, with the
following properties:

a) u, is a differentiable real function defined on all points of C, .

b) u, has no critical points.

c) The level surfaces of u.(p), Si(A) = S(\,vi) ={p € C,|u.(p) = A},
are diffeomorphic to the two dimensional spheres S2.

3.3.3 Canonical foliation of the last slice

The concept of the canonical foliation on the last slice is an important in-
gredient in the proof of Main Theorem, see also the discussion in [KI-Ni].
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We start defining the following functions we call mass aspect functions 2,
1
w=K+ Ztr&trx —divny
1
p=K+ Ztrxtrx — divy (3.3.6)

We restrict our attention to C, and its initial section S,(0). Let S be an
arbitrary section of C,, there is a unique outgoing null normal L* to S,
conjugate to L such that g(L, L*) = —2. We recall, see 3.1.31, 3.1.32, that,
in the normalized null frame {N = %L* , N =2QL},

n=—C+YlogQ.

Therefore 2L

n(X) = —%g(DxL*,L) (3.3.7)

follows easily, with X € T'S. Hence to obtain n the knowledge of 2 is not
required. Once C, and its null geodesic vector field L are given, 7 is uniquely
defined by the section S. Clearly trxtryx and the Gauss curvature K are also
independent of 2. Consequently the quantity, see 3.3.6,

1
p=K+ Ztrxtrx — divn

is also independent of 2. Consider a given scalar function u, on C, and let
u be the outgoing solution of the eikonal equation such that u|c = u.. Let
L be the null geodesic vector field, L*# = —g"*”d,u. The relation between
the affine function v of L and the function u, = u|c is

o = L(w.) = —g" 9,ud,ulc, = —g(L, Lo, = 20%)7" .
- c c

We want to choose u, on C, such that the mass aspect function y is constant
on the surfaces

S:(A) = {p € Cifus(p) = A}, (3.3.8)

the leaves of the foliation induced by u, on C,. In other words u satisfies
the equation

p—T=0 (3.3.9)

20 These were first introduced in[Ch-KI], Chapter 13.
“3g(DxL", L)=3g(DxN,N) + 30~ (DxQ)g(NV, N) =¢(X) = ¥y log @=—n(X).
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with 7z the average of p on S, ().
This can be viewed as an equation for € at each S.(\). According to 3.3.6
and relation 1+ n = 2Y¥ log (2, see 3.1.32, we have

1
m+p=p+p=2K+ 5trxtrx—2$log9 (3.3.10)
Therefore
1 1 _
AlogQ = K+ 7 toxtrx — 5(& +7i) (3.3.11)
1 1 — 1 -
= §d/ivg + 3 (K -K+ Z(trxtrx — trxtrx)>

Observe that the right hand side of 3.3.11 does not depend on Q 22,

Definition 3.3.2 A foliation on the last slice given by the level sets of uy,
is said to be canonical if the functions u, and Q satisfy the following system
of equations

1 1 = 1 -
Alog Q2 = Edivg + 3 (K -K+ Z(”X”X - trxtrx))
Tog20 =0 (3.3.12)
du

T (22°)7Y ez = M1

Remark that 2 is uniquely defined by the first two equations in 3.3.12.

The next theorem proves the existence of a canonical foliation on C,.

Theorem 3.3.2 Assume given on C, a background foliation whose connec-
tion coefficients and null curvature components satisfy “appropriate small-
ness assumptions”. Then it is possible to construct, on the whole C,, a
canonical foliation, close to the background one.

220bserve that the mass aspect function 4 can be connected to the Hawking mass,
defined by 272 =1 + ﬁ fs trytrxdpu, according to the following equation

8m™m
7= / pdp,
r s

Indeed integrating the first line of 3.3.10 we obtain |S|+ fs pdpy = 8w+ % fs trxtrxdpy,
where |S| = 4nr?. On the other hand, from the second equation in 3.3.6, we have
fs pdpy = 4w + i fs trxtrxdu,. Therefore the result follows.
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Remark: As Theorem 3.3.2 plays an important role in the proof of the
Main Theorem, we will state it again with all the details in section 3.7 after
we have introduced the appropriate families of norms for the connection
coefficients and the Riemann curvature tensor. The proof of Theorem 3.3.2
is given in Chapter 7.

We can now define the “canonical double null foliation” of the spacetime, a
property which will be used in the Bootstrap assumption B1 of the Main
Theorem

Definition 3.3.3 A “double null foliation of IC” is called “canonical” if:
a) The C(X\) null hypersurfaces are defined by u(p) = A, where A € [\, Ao];
u 1s the incoming solution of the eikonal equation with “final data” given by
the “canonical function” u, on the last slice.

b) The C(v) null hypersurfaces are defined by u(p) = v where v € vy, vi]; u
15 the outgoing solution of the eikonal equation with the “initial data” given
by the “canonical function” ug) on the initial hypersurface .

Remark: K is the causal past of S(Ao,vs), in the future of ¥p.

The canonical double null foliation of I consists, therefore, of the C())
null hypersurfaces, with A € [A1, Ao] and the C(v) null hypersurfaces with
v € [vp,v]; each point p € K belongs to one and only one pair of the
hypersurfaces C'(\) and C(v) 2.

Given this double null canonical foliation the two dimensional surfaces

SO\, v) = C(\) NC(v)

define a codimension two double null integrable S-foliation.

Remark: The global spacetime of our Main Theorem will be constructed,
by a continuity argument, with the help of a continous family of spacetime
regions K each endowed with a canonical foliation. While the canonical
foliation plays an essential part in our construction it has one undesirable
feature; the foliations on ¥y induced by the two families of light cones C'())
and C(v) differ from each other. In particular the canonical surfaces on
3o do not belong to the S-foliation associated to the double null foliation,
[S(,v) = C) NCW)}.

In order to correct for this we construct, in a small neighborhood of ¥,
a different foliation which we denote the initial layer foliation. We shall
discuss this in the next section.

?3We use sometimes the more precise definition C(X, [Va,]) and C(v, A, Ap]) where
the interval where the functions u(p) and u(p) vary is written expicitely.
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3.3.4 Initial layer foliation

Starting with the canonical foliation on Yy, defined by the level hypersur-
faces of w(g), we consider the incoming null hypersurfaces C(v) and outgoing
null hypersurfaces C'(\). More precisely:
a) The C'(\') null hypersurfaces are given by u'(p) =X/, where X' € [—vy, —1];
with «' the outgoing solution of the eikonal equation with initial condition
u = _Q(O) on 20.
b) The C(v) null hypersurfaces are defined as before by u(p) = v where
v € [y, V]; with u the incoming solution of the eikonal equation with initial
condition u = u(g) on the initial hypersurface .

[u'(p)+u(p) < do has been sub- Consider the region of K'5, C K specified by the condition

stituted by 3 (u'(p) + u(p)) <
do] 1
5 (W(p) +ulp)) < o (3.3.13)

Definition 3.3.4 For a fized &y, sufficiently small, we shall call K's, the
“initial layer region” of height dy. The double null foliation induced on
K's, by the optical functions u', u defined above is called the “initial layer
foliation”. Its two dimensional surfaces are denoted by

S'(N,v)=C'"(\N)nC(v) (3.3.14)

Remarks:

i) The leaves of the canonical foliation of ¥y, S(y(), belong to the
initial layer foliation. More precisely

Swy(v) = S'(—v,v) (3.3.15)

ii) Relative to the initial layer foliation we associate, as before, the
normalized null pair N’ = 2L, N’ = 2L with

20° = —g(L', L)' = —(¢" 9,u'Opu) " (3.3.16)

exactly as in definition 3.1.12 for ().
We shall also make use of the null equivariant pair N' = 2Q2L', N’ = 2Q"?L.

Next Proposition shows that, given a double null foliation, it is possible
to introduce a global time function and prove that the associated three
dimensional spacelike hypersurfaces define a spacelike foliation.
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Proposition 3.3.1 Assume a double null foliation specified by the functions
u(p),u(p). Let us define the “global time” function t(p) = 3(u(p) + u(p)),
then the three dimensional spacelike hypersurfaces

% = {p € Klt(p) =t}

define a three dimensional spacelike foliation of K. Each two dimensional
surface S(\,v) is immersed in the hypersurface ¥, with t = %()\-i-l/). More-
over

0
(n+mn) , Frie (N +N) (3.3.17)
where n,n are the one forms corresponding to N, N.
Finally, given the hypersurfaces 3, their second fundamental form k has
the following expression in terms of the connection coefficients,

dt = ——
102

1
kg =wtw, kg =G, ke, = =5 Xab +X,) (3.3.18)

and, on each 3, the metric gij(t,x) is given by the relation
kij = _(29)_181591']' .

It is easy to prove that the > hypersurfaces are not maximal as, by direct
computation, it follows that trk % 0 2%. This implies that as, £ # Z—o, the
two dimensional surfaces Sy (u(g) =), v € [vo, Vi, which foliate canonically
Yo, see Definition 3.3.1, do not belong to the family {S(X,v) = C(A\)NC(v)}.

Using Proposition 3.3.1, it is possible to introduce a different spacelike fo-
liation, adapted to the initial layer foliation whose spacelike hypersurfaces
are defined by the “global time” function #(p) = 3(u'(p) + u(p)). Its three
dimensional spacelike hypersurfaces are

Yy ={peK|t'(p) =t}

Obseve that X is a leave of this foliation, X = X'y—g.

Remark: As explained in a previous remark, we need the initial layer
foliation to connect the initial hypersurface ¥y and its surfaces {S)(v)}
with the canonical foliation of  and the surfaces S(\,v). This is discussed
in detail in Chapter 4.

Z4Nevertheless it will follow from the results of the next chapters that trk is small, see
Theorem 3.7.3.
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3.4 Deformation tensors

3.4.1 Approximate Killing and conformal Killing vector fields

The functions u,u of the double null foliation, together with the null pair
{es = N,eq = N}, allow us to define the vector fields T, S, K, K analogous
to the ones used earlier in the Minkowski spacetime, see [Ch-Kl11] and [KI-Ni.

T = %(63 +eq), S= %(ueg + ues)
Ky = %(u263 +u’ey) , K = %(7'364 + 72e3) (3.4.1)
where 25
7+ = (1 —i—gZ)% , T— = (1+ UZ)% (3.4.2)

Unlike the case of Minkowski spacetime, these vector fields are not conformal
Killing. We show, however, that their deformation tensors, or rather their
traceless parts, are asymptotically vanishing in a sufficient strong sense. We
can also define approximate Killing, “angular momentum vector fields”, (YO,
i € {1,2, 3}, which play the same role as the angular momentum vector fields
of Minkowski space. They are constructed, geometrically, as follows:

We start from the asymptotic region of the initial hypersurface .
There, in view of our strong asymptotic flatness assumptions, this manifold
looks euclidean. We can thus define the canonical angular momentum vec-
tor fields at infinity and pull them back with the help of the diffeomorphism
generated by the flow normal to the S surfaces 26 along . The vector fields
can the be “pushed forward”, in the same way, along the last slice C, using
the diffeomorphism QT generated by N. Finally we pull them back, once
more, along the hypersurfaces C'(\), with the help of the diffeomorphism
generated by null outgoing equivariant vector field V. These steps define
the vector fields (O at any point 27 of our spacetime K. By definition they
are tangent to the S-foliation and commute with N. Moreover they satisfy

250bserve that in the sequel the vector fields Ky and K can be both used as in the
Main Theorem u is bounded from below.

6See [KI-Ni] and Chapter 5 in[Ch-KI].

*"Let ¢ € S(\,v) be an arbitrary point of K. As S(\,v) is diffeomorphic via a—(,., )
to S(\,v.) C C,, 3p € S(\,v.) such that ¢ = ¢3'(p). We define the element O of the
rotation group operating over g as (O, q) = ¢"(O«,p = éa(q)) where (O, q) is a point of
S(A,v), while (O«,p = ¢a(q)) is the point of S(\, v.) obtained applying O. to the point
D
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the canonical commutation relations. Thus, finally, the “extended” rotation
generators, or angular vector fields ()O satisfy 28

[ 0, ) 0] = el]k *) 0
[N, D0] = (3.4.3)
g("'o 64) (0, e3) =0

All these steps are described in complete detail in Chapter 4, section 4.6
and in Chapter 7.
3.4.2 Deformation tensors of the vector fields 7', S, K

We use the “adapted” null frame {]\7 , N ,e1,ea} associated to the canonical
double null integral foliation introduced in the previous section.

Let X be a vector field on K. If X were a Killing vector field then
X = Lxg=0

would hold and the diffeomorphism generated by the integral curves of X
would be an isometry of (K, g). If X is not a Killing vector field the pre-
vious relation does not hold, but, if the spacetime is not “too different”
from the Minkowski spacetime, we expect to control the magnitude of some
appropriate norms of the deformation tensor (X)r. We recall that

Or,, =D, X, + D, X,
and its traceless part is

(X)fr,“, =(X) Ty — Zguvt”r-

In the null frame associated to the canonical foliation, therefore,

(X)'/Tab = g(DeaX? eb) + g(DebXa ea)

e =gDgX, eq) +g(De, X, N)

(O3, =g(DyX, eq) +g(De, X, N)

Cryy = gDy X, N) + (D X, ) (3.44)
Xy = S(D;Xaﬁ) +g(DyX, N)

(

Yy =gDyX,N)+gDyX,N)

28The commutator [0, N] € T'S is different from zero, see subsection 4.6.1. This shows
that one could have defined the rotation vector fields in a different way starting from the
Yo hypersurface and using the diffeomorphism ft generated by V.
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(X)Aab :(X)ﬂ'ab iéabtr(x)ﬂ'
o Zooe
X)n X
3a = T3a
Dy =) gy + Lr X (34.5)
gy =) rg
gy =gy

We denote the various components of the deformation tensors, with re-

spect to a null frame, as
iy = Dy, 5 Bj = Dy
Om, = Oy Om, = Oy,
Mn =gy On = gy (3.4.6)
Their explicit expressions relative to the vectors defined in 3.4.1 are
1
iy = Xap + X, + 5ab( (trx + trx) + (w + w))
1
(T)j = §(trx + try) + (w + w)
Dm, = 2n, — V,logQ=n —C
(T)ma =21, — V,logQ =n,+ ¢, (3.4.7)
(Mn = —4w = 2Dy log 2
(T)g = —4w = 2D3log )
(55 1
igh = UXab +ux,, + 5 5ab( (uwbrx + utry) + (uw + uw) — 5)
1
(8)j = E(utrx + utry) + (uw + uw) — a
), = u(2n, — ¥, 10g2) = u(n, - ¢2) = um (3.4.8)
®m, = u(2n, - V,log Q) = u(n. + () = u(T)ma
()n = (- 4w) = 2uDylogQ =« Dn
¥)n = u(—4w) = 2uD3log Q = uT)n
U+ U

(KO)

= u’Xap + U7X, + 5ab( (utrx +u’try) + (u'w + v'w) — =

)
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(Ko)j = %(ftrx T+ uttry) + (o + uw) — L
Fohm, = u?(2, — V,10g Q) = u’(n, — Ca) = u* Pm,
Fom,, = u®(2n, — ¥, log Q) = 4’ (na + (o) = Pm, (3.4.9)
(Kol = u?(—4 ) = 2u’Dylog Q! = u?> Mn
(Kolp = y?(—4w) = 2u’D31log 2 = u* “)n

3.4.3 Rotation deformation tensors

In what follows we display the form of the various components of the defor-
mation tensors associated to the rotation vector fields ()O. Recalling 3.4.4
and N = QN we derive the following commutation relations

(D0, N] = [P0,07'N] = =90 (log Q)N

where

Op = —(Y,log )90, .

one can also easily check the following expressions

g(D,Y0,e4) = —xa D0y
g(D4%0, e4) = xa YOy,
g(D4(i)O, eq) =0
g(D,0, e3) = —x , V0,
g(Dg(l)O, e3) =0
g(D40, e3) = —2n, "0y
g(D3%0, e4) = —21,0,

=OFN (3.4.10)

(3.4.11)

Using these equations we compute explicitely the following components of

(i)o)

the deformation tensor. Denoting ("Oxr =

Oy = 2g(D40,e4) =0

O = (D470, €,) + (D

Oy = 2g(D370, e3) =0
The remaining components are denoted by

2(i)Hab S5 (i)ﬂ—ab =

_( )ObXab + N(Y0,) +
4(i)F = (i)71'34 = —2(771, + ﬂb)(i)Ob =

()7, we have

a(i)Oa 64) =0

(3.4.12)

g(D,Y0, &) + (D)0, ¢,)
49z, =Or,, = g(D,70, e3) +g(D3 0, €4)

(3.4.13)
0, g(Dses, €q)

_4(Y7b log Q)(i)ob



112 CHAPTER 3. DEFINITIONS AND RESULTS

In order to evaluate OF, (D7, (DH ,, we use the evolution equations for these
quantities. They are derived, togheter with those for their derivatives, in
sections 4.6, 4.7 of Chapter 4.

3.5 The definitions of the fundamental norms

3.5.1 Q@ integral norms

Consider the spacetime K endowed with the canonical double null foliation
{C(N\),C(v)} and the corresponding normalized null pair {e4, e3}.
Denoting by Q(R) the Bell-Robinson tensor, see 3.2.5, associated to the
curvature tensor R and saturating it with the vector fields Ky, T', see 3.4.1,
e4 and e3 we obtain

1 1 1
Q(R) (Ko, Ko, Trea) = qullof® + 5w’ + 20?) |8 + 3 (u" + 2u"u?)(p" + 07)
1
+§U4|§|2
Loy o, Loy 2 i@z L L4 2, 2\( 2 2
QR)(Ko, Ko, Tye3) = Juilal” + S(u” +2u"u?)|B]" + o (w + 2u"u”)(p” + 07)
1
Lo 2.3 4952, 3 492, 9 2 1
Q(R)(Ko, Ko, Ko,e4) = e o] touu 18 +touu (p°+o )+§U 8|13.5.2)
1 3 3 1
Q(R) (Ko, Ko, Ko,e3) = ZU6|Q|2 + 5“422@2 + 524@02(92 +0%) + 526|ﬁ|2
We also have
ST TN TR S NP
QR)(Ko, Ko, T.T) = zu'laf+5utlaf+3 (u'+Su*u?) ]
1 1 1
+ 5(U4+4Q2U/2+'U/4)(,02+U2)+§(U4+§U2Q2)|E|2
1 1 1
QR) (Ko, Ko, Ko, T) = Zullaf+ulaf +ul (8 + 3B (3.5.3)

3 1
+ LW eyt (o + o)+t (u +3u) B

Using the vector fields K, S, T, and WO, see 3.4.1, and also we define the
following “Energy-type” norms

O\ v)=9,(\v)+ 9Q,(\v) (3.5.4)
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where, defining

Vnv) = J7 (SO 0)) (3.5.5)

QI(A, I/)

Q(\v) = Q(LoLrR)(K, K, K, e4)

/C(/\)HV(/\,V)
4 / QULLR)(R, K, T,ey) (3.5.6)
CONNV (Av)

+/ Q(LsLTR)(K,K, K, eq)
NV (A\v

)
Q\v) = sup |r p|2+ Q(LrR)(K,K,K,e3)
)\1/ ﬂZO ﬂV Al/)

o R)(K,K,T, es)
NV ()
0w = [ QULoLrR)(K, K, K, es)
Cw)NV(Aw)
/ QULLR)(K, K, T, e3) (3.5.7)
NV (Awv)
/ NV (A\v)

We also introduce the quantity
O = s {Q0\1)+ Q1)) (3.5.8)

{AwIS(Av)CK}

Similarily on the initial hypersurface ¥y we define

Osenk = sup  {Qixgnviny) + Qesonviow (3.5.9)
{\v|S(\wv)CK}

where

Qisonv(zy) = /

SoNV(A,v)

+ sup |r¥p? (3.5.10)

onV(Av)
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A~ A

Qosonving) = /zomV(Au)Q(EO['TR)(K’K’K’T)

+ Q(LoR)(K,K,T,T) (3.5.11)
SoNV(A,v)

+/ Q(zSETR)(KaKaKaT)
SoNV(Aw)

Remark: By comparison to the quantities Q@ and Q defined in Chap-
ter 2, see 2.2.14, 2.2.23, 2.2.24, we have included the integrals containing
Q(LsLrR)(K,K,K,T). These terms are needed for estimating a4 and
a33 which are generated in the error estimates of Chapter 6. One can view
the quantities Q, Q defined in 3.5.7, 3.5.8, as containing the smallest number
of terms needed for the proof of Theorem 3.7.10 (Theorem MS8).

3.5.2 R norms for the Riemann null components

In the course of the proof of the Main Theorem we have to use a complicated
quantity defined as a sum of weighted L?(C), L?(C) norms of the Riemann
curvature tensor and their derivatives up to second order. These weighted
L?*(C) and L?(C) norms are imtimately connected with the “Energy-type
Q integrals”, defined in subsection 3.5.1.

The quantity R which enters in the statement of the Main Theorem is

R =Ry + Ry (3.5.12)
where
Ry =Rpj+Ra s Ry =Ry + Ry
Ry =R +Ri, Ry =Ry + Ry (3.5.13)
R[U] =Ry, E[g] =Ry + Sl’ép 7“3|[)|
with
1/2
= (RO [ + RolB] + Rol(p, o)) + Rl 2)
1/2
Ry = (RolB) + Rol(p,0))” + Ro[B)” + Rola]?)
2 B2 1/2
L= (Rufol + RABP + Ryl(p, )P + Ry[B2) T (35.14)
1/2
Ry = (Ry[A] + Ry [(p,0)]* + Ry [B)? + R, [a]?)
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Ry = (Rofol + RalBP + Rol(p.0)? + RofB) "
Ry = (Ro[6P + Rallp, o) + Rolf) + Rofal?) "
and
Ro, ] = supRo, 5wl )

Eo,m[w] = Sl}ép Eo,1,2 [w](A,v).

The terms R | o[w](u,u) denote the L? norms of the zero, first and second
derivatives of the null component w, along the portion of null hypersurface
C(A\) N V(A v). Recall that V(A\,v) = J (S(A,v)) is the causal past of
S (A, v) relative to IC, whose boundary is formed by the union of the portions
of the null hypersurfaces C(A) and C(v) lying in V (X, ) and by J~(S(A, v))N
0.

An analogous definition holds for the terms Ry ; o[w](),v) relative to the
null hypersurface C(v) NV (A,v). We write all of them explicitely below,

a) L? norms for the zero derivatives of the Riemann components:

Role)(A,v) = NNV (A,v)

Ro[B(A,v) = || 5II2 CONNV ()

Rol(p,0)](A,v) = [Ir-r(p - U_U)||20 AV ()

Ro[ﬁ]( v) = ||T 5”20 ANV (A\wv)

RolBAv) = [IrBll2.c0ynvm) (3.5.15)
Rol(p,0)I(A,v) = 7% (p = By 0 = T)ll2,c)nv (aw)

Ro[ﬁ]( v) = ||T*Té||2,Q(V)HV(/\,u)

Rylal(A,v) = ||ng||2,g(l/)ﬂ‘/()\,ll)

b) L? norms for the first derivatives of the Riemann components:

Rilel(A,v) = [P Valls,connvow) + I aslla.coonvow
+|r® aallz,connv i)

RiBIAv) = |7 v + IT-r2Bs
+|r? 54“2,0()\)0\/()\,1/)

Ril(p, 0)(Av) = [lT-r*Y (0, 0) l2.connv e + 17 (0, 0)4

+[|r7 (p, )||20 ANV (M)

ANV (Av)

(M)NV (M)
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Ri[BINv) = 1720V Blla,connviow) + 1778, l2.coonvow)
R[BIN,v) = I VBlla,cwynv i + 17°Bsll2,c0) ﬂV()\,u)
Ryl(p, o)A v) = 7Y (p,0) lla,cwynviw) + I1T=r*(p,0)sll2,c0)nv )
R [BI(A,v) = |17V Blla.cwinviaw) + 172 rBylla.conviw
+[17° B, l2.c)nv ()
Ryla)(\,v) = |72 v + 172 aslle.convow
+r_r’aylle,co)nvow) (3.5.16)

c¢) L? norms for the second derivatives of the Riemann components:

Role](\, v) = [PV ello,connviow) + 1M Vesllz.copnv o
+Ir*Veaullo,connviou + lIlr-r?
+llrtasallo,connvo + IIT-rPaudlls.connv )

RolBIAv) = 1PV Blla,connv o + 172 VBslla,.conmv o)
+|rt

(M)NV (M)

v + 17272 Bsslle.connv )

+(rt 534||2,C Vv + P Badlle,connv )

Ryl(p,0)](u,u) = ||T—T3W2(Pa0)||2,c NNV (Aw) T ||T r W(Pa U)3||2,C(A)mV(A,u)
+|r Y (p, o)all2,connviny) + I7—1%(p,0)
+[Ir*(p, o) aallo,cnv o) + 1727 (0, 0)ssll2,c00nv )

Ro[Bl(A,v) = 727

ANV (Aw)

Wnvow) + 1T Y8, l2.connviouw)

v T 17228, lle.coonviw)

+||7"4ﬁ44||2,c(>\)mvo\,u) + ||T§T§33||2,C()\)HV()\,V)
(3.5.17)

Ry[BI(\v) = [PV Blla.cwmnvirw + I

HIr* VBall2.cyrv o + lIrt 543”20 NV

)NV (Awv)

71 Bsslla,cm)nv o) + IT-rBaslle.cwynvow)
Ryl(p,0)(A,v) = [r'V?(p, o) v + 17 (0, 0)sll2.cnv )
'V (o, 0)all2.cwinviw + 17—, 0)sall2.cwynv o)
+72r%(p, 0)33ll2,c0)v ) T 170y 0)asllz,cmynv o)

R,[Bl(Av) = WNV(A\w) T ||TET2Y7Q3H2,Q(V)HV()\,V)
+“7“4Wﬁ4||2,g(u)mV(A,u) + “Tirﬁgg C(W)NV (A )
+[lmrB )NV () )NV ()
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Rola](\,v) = 1727V ello,coinv o) + 1727V asllz. coinv )
+||T—7”37724||2,Q(u)mv(/\,u) + ||TEQ33||2,Q(u)mV(/\,u)
+|T2r? zallo.co)nv o) T IIT=r 2uallz. co)nv o)

Remark: The explicit definitions of «sg, 84, F3.... were given in 3.2.8. The
explicit definitions of a3, asq, F34.... are given in Chapter 5.

In additions to the basic norms defined above we shall need some other
curvature norms,

R = sup [|r7/2a| +1r728] + |r3u%(p - P, a)|]
K
RY = s%p [|r3p|+|r2u%§|+|ru%g|] (3.5.18)
RY = sup 7?,‘71”5 . RY = sup E{”S (3.5.19)
Pe(2,4] pe(2,4]
where
p,S 9_2 9_2 4—2 1
RY” = swp [|7“2 PValpsow) 12 P VBlp,sww) T I ?uZV(p,0)lps00)
9 2
+|r? plz)404p,5(x,y)] (3.5.20)
42 1 _2 ~2 5
RP® = [|7“ Pu VBl sow) + Ir' Put Val, so + It pmlpgglp,S(,\,u)]

The estimates for thes auxiliary norms can be obtained, using global Sobolev
inequalities, in terms of the R norms introduced above 2.
3.5.3 O norms for the connection coefficients

In addition to the quantities Q and R the other basic quantity which enters
in the statement of the Main Theorem is

0 =0y + 0y (3.5.21)
where
Oy = 05+ Opy
Op) = [0 + Os(w)] + Opy (3.5.22)
Op = [01 + s 0, (g)] o

0% = O +sup 2 (@X — =)| +sup (@ — )|
K r K

29With the exception of supy |r®p| in RS°.



[Macros error (corrected) in
3.5.23]

118 CHAPTER 3. DEFINITIONS AND RESULTS

and analogous definitions for the underlined quantities 3°

Op = [Qg + Q[Q]]

Op = |0y + sup 05 (w)| + O (3.5.23)
p€[2’4]

Q[l] = |:Q1 + sup OS’S(D4w):| —i—Qﬁﬁ
p6[274}

2
Op = OF° +sup [r_(trx + =)
K T

The explicit forms of the various quantities in 3.5.22, 3.5.23 can be derived
from the following definitions:

_ P _ p
Ooi2= sup Opy5 , Opr2= sup O,
pe(2,4] pe(2,4]

O3 =002 | 0, =00 (3.5.24)

The OF norms have, for ¢ = 0,1, 2, the following expressions which depend-
ing on different connection coefficients:

OF = 085 (trx) + 055 (%) + 05 (n) + Oh*(w)

OF = OPS(try) + 0P (%) + OF5 () + 0P (w) (3.5.25)
In the ¢ = 3 case we define
OF=2 = 05 (trx) + 052 (%) + O8> (n) + 05 (w)
05~ = 082 (trx) + O 2(x) + 052 (n) (3.5.26)

Remark: We have sistematically assigned to the O norms those quantities
which are estimated along the C' null hypersurfaces and by O norms those
which are estimated along the C' null hypresurfaces.

For an arbitrary connection coefficient X, we have,

orS(X) = sup OPS(X)(\,v) , O (X) = Sup 05 (X)(\,v) (3.5.27)

The explicit expressions of all these norms are given in the following defini-
tions:

_*"The reason why in the underlined norms the terms O»(w) and O (w), analogous to
03(w) and O;(w), do not appear in the underlined norms 3.5.23, is discussed in Chapter
6, see subsections 6.3.5 and 6.3.7.
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q<2:

OpS (trx) (A, v) = [r®H DY brx — 70 s
OPS (try) (A, ) = [r®H DY (brx — X))y 5000
OPS (A ) = [rH T DYIR 50
OPS (A w) = [r D YR, 50 (3.5.28)
OPS(m)(\,v) = [r* DY), s
OrS () (A, v) = [r* DY), s
OPS(w)(\,v) = |r (2+q_z)qu|p, S(\v)
OPS (w) (A, v) = PR Wiwl, 50
OPS(Dyw)(A,v) = [r+) SOw)
OPS (Daw)(A,v) = [r+72) TEWqD:sz,S(A,u)

q=3
ORI w) = 2 ()P VPRI L2 cnpo)

(x
OF(trx) (A, v) = rZ (A, 1)V t1f><||L2 vilAo,Al)
(

5= () (A, v) = rE (A )1Vl |2 wiron)

O (W)(A\,v) = r2(A,v)[[r* Y w||L2 Vo) (3.5.29)
O RN w) =2 ()P VPR L2 cpo)

05 (trx) (A, v) = r3 (A, ) || Y trx||Lz Vo]

52 () () = r2 )1V 0l 2 cwiron)

We also define the norms O;(w), Oz(w). They involve the second null and
mixed derivatives of w and will be needed in the proof of the Main Theorem,

~ 1
O1(w) = ||\/—T—+TED3Q||L2(C’HKJ) (3.5.30)

~ 1
Oz (w) = ||\/—T—+7"TEWD3Q||L2(00KJ) + | 7> D3w| |1, (cri)

1
VT+
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3.5.4 Norms on the initial layer region

In addition to the O, R norms expressed relative to the canonical double
null foliation 3! we shall also need similar norms defined in the initial layer
region K's,, relative to the initial layer foliation. These norms have exactly
the same expressions, to distinguish them from the main ones defined above
we denote them by O, R’.

3.5.5 O norms on the initial and final hypersurfaces

We consider now the previous @ norms restricted 3? to the initial hyper-
surface, ¥, and to the last slice, C,. Observe that the O norms restricted
to the initial hypersurface are tied to the initial layer foliation while those
restricted to the last slice C', are tied to the canonical double null foliation.
The only difference with respect to the previous definitions is that some of
the previous norms are absent as their restrictions on C, or on ¥ are not
needed.

O11(Z0) = O1(%0) + O3(20)

0(5) = [01(50) + sup OF* (D) (50)] + (%)
L pE(2,4

Op1(o) = 02(%0) + Opy(Z0)

Op(X0) = | Oa(%0) + Sl[lp] (Of’S(DM) + OS’S(DZU})(EO))] + Opy(Zo)
L pE(2,4

Ou(C) = [0+ s O Dsw)(C)] + O (C.
L pE(2,

Ony(C,) = 0,(C,) + OF (C) (3.5.31)

owgh:@@»+¥“mﬂmw+%ﬂmg@m]mm@n
pE(2,

Opi(C,) = Oy(CL) + Oy (C)

[Macroserror(corrected)in3.5.31]

where, for ¢ < 2,
S — ,S
Or°(C,)(X) =sup 0L (X)(\, v)

.S _ .S
O (53)(X) = sup O ¥ (X) (A, ) (3.5.32)
0
3In Chapter 4, subsection 4.1.3, there is an accurate discussion about the region where
these norms are defined.
32Although we refer here to norms on Xy in reality we shall need these norms on Xo\K.
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Finally we introduce the O3(C,) and the O3(3() norms on the initial and
final slice. They are defined in the following way:

03(C.) = 03(C,)(trx) + 03(C,) (w)

03(%0) = O3(20)(tryx) + O3(Z0)(w) (3.5.33)
where
O3(C.)(trx) = rZ(Av)|[r* Votrxl |2 o nviow)
O3(C.)(w) =2 (A ) [P VPwllr2 o vow)
O3(%0) (trx) =2 (A )|V texl 2 morvony  (3:5.34)
O3(Z0) (w) = 2 (A, )| V0l 12 (2o

3.5.6 D norms for the rotation deformation tensors

We introduce the quantity

D =Dy+ D1+ Do (3.5.35)
where
Dy, = sup Dy, (3.5.36)
pe(2,4]
and

Dy = Dy°(“0) + D0 (UF) + Dp* ("H) + D5 (V) (3.5.37)

pf = DP*(Y0) + PP (OF) + DP’( H) + D} (02)
+05°(DsF) + Dy (D5 OH) + Dy (D502)
+D”’S(D4(i)F)+D”S(D4 H) +D0°(D,DZ)  (3.5.38)

Finally, denotinjg by X any of the quantities WO, WF, OH and ®Z and
their derivatives,

(D
*(

Dh¥(X) = sup DR (X) (A, v) (3.5.39)

Explicitely we define:

DS (0) (A, v) = [ YO0, (0, )

DS (OF) (A, v) = [T DPIOR|, (A, )

DS (OH)(A, ) = [rFDYIO ], (A, v)

DPS((Z)(\, v) = [P Dyeliz), o (A, v) (3.5.40)
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D”’S(D4(i)F) (\,v) = |r(2+qf§)y7qD4(i)F

q p,S(/\,I/)
D2S(D,OH) (A, v) = [F2 T D YID, O, g5
DrS(D,02) (A, v) = [F*TIYID,0Z), 60, (3.5.41)

DS (D5 OF)(\,v) = [ D7 piDs R
DpS(D3OH) (A, v) = [P D YD O, 5000
DS (DsZ) (A, v) = [r D YD 0Z), g0, (3.5.42)

p,S(Av)

Their restrictions on the last slice C,?? will be denoted by

DR (C,)(X) = supDPF(X) (A, v) (3.5.43)

%

It remains to define the norms appearing in Ds. They are the more delicate
ones as they depend on the third derivatives of the connection coefficients.

Dy = sup Dy(A, ) (3.5.44)
K
where, with € > 0,
Do\ v) = [PV H|l2convow) + IV 2N e convow)
1
+ ||1 /—r1726TWD3Z||L2(Q(V)DV(/\,V)) (3.5.45)

Finally we denote Dy(C,) = Supc_ Ds(\, v), its restriction on C,.

D norms relative to the initial layer foliation

In addition to the D norms expressed relative to the canonical double null
foliation we shall aslo need similar norms defined, in the initial layer X's,,
relative to the initial layer foliation. These norms have exactly the same
expression, to distinguish them from the main ones defined above we denote
them by D’.

33For the deformation tensor norms we need only the restriction on the last slice, see
for more details Chapter 4 and Chapter 6.
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3.6 The initial data

3.6.1 Global initial data conditions

We restrict ourselves to initial data sets {Xg, g, k} with 3¢ diffeomorphic
to R3; moreover we assume they are strongly asymptotically flat in the
following sense 3*

Definition 3.6.1 An initial data set {¥,g,k} is “strongly asymptotically
flat”, see [Ch-KI], eqs. (1.0.9a), (1.0.9b), if there exists a compact set B,
such that its complement X\B is diffeomorphic to the complement of the

closed unit ball in R3. Moreover there exists a coordinate system (z',z?, %)

defined in a neighborhood of infinity such that, as r = \/33_, (z1)2 = oo,

we have 3°

gij = (L+2M/r)ds; + 04(7“_%)
kij = +o3(r3) (3.6.1)

Remark: The “Strong asymptotic flatness”, guarantees that the ADM
energy, linear momentum P; and angular momentum J; are well defined.
Moreover from eq. 3.6.1 it follows that P; = 0; 4 € {1,2,3}, implying that
we are placing ourselves in a center of mass frame. In this case £ = M and
M is an invariant quantity greater than zero, due to the “positive energy
theorem”, [Sc-Yaul], [Sc-Yau2] and finite, see also [Ch-KI] page 11.

In [Ch-K]] the global smallness condition was defined with the help of the
following quantity,

3
Jo({Z0,9,k};b) = sup{zﬂ(d2 +b2)3|Ric|2}+b’3 {/ > (dy + b*)! TV k|
Zo =0

/ Z (d3 + b%) l+3|le|2} (3.6.2)
>0 1=9

34Observe that this definition is stronger than the usual definition of an “asymptotically
flat” initial data set : An initial data set {3o, g,k} is “asymptotically flat” if there exists
a compact set B, such that its complement Yo\B is diffeomorphic to the complement of
the closed unit ball in R®. Moreover there exists a coordinate system (z',2,2%) defined

in a neighborhood of infinity such that as r = Z?Zl(x )2 — oo we have

gij = (1 + 2M/T)5ij +O(T_1) .

A function f is o (r %) if O f = o(r*7") for 1 =0,1,...,m
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where dj is the Riemann geodesic distance from a fixed point O on Yo, Ric
is the Ricci tensor and B is the tensor B;; = (curlR),], where R is the
traceless part of the Ricci tensor. V is the covariant derivative with respect
to the metric on ¥y and b is a positive constant with the dimension of a
length.

The g;; components of the metric tensor have dimension zero in length
unities, [g;;] = L° and, from it, immediately, [(Ricci);;] = L™2, [B;;] = L3
and the extrinsic curvature k, [k;;] = L™L.

As b has the dimension of a length we can consider it as a “natural” length
unit and define the new coordinates Z, in these units, as £ = £b. In these new
coordinates the second and third terms of Jy({X¢,g,k};b) do not change,
that is they are invariant under the rescaling 3¢ z — & = 7+ In fact we have

{/ Z &2 4+ b2+ v k|2+/ Z &2 4 )3V B|2}

0lO OZO
/2

The situation is different from the first term due to presence in Ric of a part
depending on the mass M, see 3.6.1.
In fact the term {b=2(d% +b?)3|Ric(M)|?} is invariant under the rescaling 37

Z d2 + 1)+ V! k|2+/ Z 2 +1)3VIB2 (3.6.3)
0]=0 0l 0

M
x%i:%,M—)M:? (3.6.4)

This implies that, in view of the scale invariance property of the Ein-
stein vacuum equations, the asymptotically flat initial data set specified
by {X, g, k; M} and the rescaled one specified by {, g, k; MY, where Jg=g,
k=blkand M = b LM, give rise to two equivalent developments 3% g and
g. Observe that by picking b large we can make M arbitrarily small.

Remark: In the case of “Strong asymptotic flatness” the rescaling of M fol-
lows automatically from the rescaling of g and k and the explicit expressions

of the ADM energy. In fact, as 0g = b~'0g, E = b~'E, where
:EE&/ Z 19ij — 0;9:) N7 dA (3.6.5)

3 They are invariant with respect to a rescahng x — & = { for an arbitrary A\. Of
courseb—>l~7:§and, if)\:b,l;zl.

3TThe need of rescaling also M is obvious in the Schwarzschild case where a direct
computation gives {b~*(dj +b*)*|Ric(M)[*} = {(d? + 1)®|Ric(M)|*}.

38In other words if (§i;(Z),ki;j(Z)) are a solution with initial data {X, g, k; M}, then
(gij(z), kij(x)) are a solution with initial data {X, g, k; M }.
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Therefore it is sufficient to define the global initial data smallness condition,
see definition 3.6.3, with the help of the quantity 3

Jo(S0,9,k) = sup((dﬁJr |R10|2> /ZCF LV
Zo Yo =0

+ / Z (d2 + 1)*3V'B)? (3.6.6)
Ol 0

Observe that by choosing b sufficiently large, the mass of {£y, g,k} can be
chosen appropriately small.

Definition 3.6.2 Given an initial data set {¥g,g,k} and a compact set
K C X such that Lo\K is diffeomorphic to the complement of the closed
unit ball in R3, we define Ji (3o, g, k) as follows:

e We denote G the set of all the smooth extensions (g, l:;) to the whole of
Yo of the data (g,k) restricted to Xo\K, with g Riemannian and k a
symmetric two tensor.

o We denote by dy the geodesic distance from a fized point O in K rel-
ative to the metric g.

o We denote

Jr(2o,9,k) = ifglfJo(angalg) (3.6.7)

Definition 3.6.3 We say that the initial data satisfy the “global smallness
initial data condition” if for a sufficient small € > 0

J0(207gak) S 52 .

Definition 3.6.4 Consider an initial data set {2, g,k} where K is a com-
pact set such that Xo\K is diffeomorphic to the complement of the closed
unit ball in R®. We say that the initial data set satisfy the “exterior global
smallness condition” if, given € > 0 sufficiently small,

JK(E()aga k) S 52 .

39Where the "have been suppressed.



126 CHAPTER 3. DEFINITIONS AND RESULTS

Remarks:

a) An alternative definition of Jx could be given with the help of the
geodesic distance function starting from the boundary of K.

b) Given an initial data set {¥¢,g,k} with Jy(29,9,k) < oo it should
not be difficult to prove that for given € > 0 sufficiently small we can find a
sufficiently large compact set K such that Jx (g, g, k) < 2.

¢) The same statement as in the previous remark should hold true for
an arbitrary strongly asymptotically flat initial data set 4°.

Osservazione 3.6.1 Ad essere veramente precisi nell’enunciato del Main
Theorem bisognerebbe dire che “The initial data set has a unique develop-
ment (M,g), defined outside the domain of influence of K' where K' is
acompact set diffeomorphic to B such that the distance between OK' and
0K is bounded by ce 7. Questo deve essere verificato nella dimostrazione
del “Main Theorem” e pertanto dovrebbe anche fare parte delle condizioni
di Bootstrap. Per provare questo ci si deve rifare all’oscillation Lemma e
mostrare che S'(Ag,v — 200 — o) and S(Xg,v — 200 — Ag) are very “near” ,
of order e, and therefore going down from them with an “outgoing cone” to
Yo gives OK and OK' respectively very near.

3.7 The Main Theorem

Theorem 3.7.1 (Main Theorem) Consider a strongly asymptotically flat,
mazimal, initial data set {39, g,k} 4L Assume that the initial data set sat-
isfy the exterior global smallness condition, Jx (2o, g, k) < &2, where K is a
sufficiently large compact set C S with Yo\K diffeomorphic to R3\ B.

The initial data set has a unique development (M,g), defined outside the
domain of influence of K, with the following properties:

i) M= M"UM" where M™T consists of the part of M which is in the
future of Lo\ K, M~ the one to the past.

i) (MT,g) can be foliated by a canonical double null foliation {C()\), C(v)}

) X

whose outgoing leaves C()\) are complete 2 for all |A| < |Xo|. The boundary

40Observe that the finiteness of Jo (2o, g, k) or Jix (X0, g, k) is consistent with the stronger
version of the asymptotic flatness assumption introduced in definition 3.6.1, called “strong
asymptotic flatness”.

41The requirement that Zo be maximal is not essential. It can be avoided, as suggested
in [Ch-K]I], starting with a local solution of the Einstein equations and using the result of
[Ba] concerning the existence of a maximal hypersurface.

*?By this we mean that the null geodesics generating C'(\) can be indefinitely extended
toward the future.
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of K can be chosen to be the intersection of C(Ag) N Xo.
i11) The norms O, D and R are bounded by a constant < ce.

i) In particular the null Riemann components have the following asymp-
totic behaviour:

supr?|al < Cy , suprlul?lal < Cy
I I
s%pr7/2|5| <Cy, Sl}épr2|u|%|é| < Cy (3.7.1)

1 _
s%prg’lpl <G, s1’ép7"3IUI2|(p—p,0)l < Cp

with Cy a constant depending on the initial data.
v) (M7, g) satisfies the same properties as (M, g).

vi) If Jo(Xo, g, k) is sufficiently small we should be able *3 to extend (M, g)
to a smooth, complete solution compatible with the global stability of the
Minkowski space.

The proof of the Main Theorem which is given in section 3.7.9, hinges on
a sequence of basic results which we state in subsections 3.7.2,...., 3.7.7,
concerning estimates for the O, D, R and Q- norms.

Their proofs are lengthy and form the content of the next four chapters.
In the statements of the theorems given below c¢ refers sistematically to a
constant which is independent on all the main quantities appearing in the
statement of the theorems.

3.7.1 Estimates for the initial layer foliation

Theorem 3.7.2 (Theorem MO) Consider an initial data set which satis-
fies the exterior global smallness condition Jx(Xo,9,k) < €2, with ¢ suffi-
ciently small. There exists an “initial layer foliation” on ICSO C K of fized
height ** 8o < 1, such that the following estimates hold

R[Q}, S ce , E[Q}, S ce (372)

*3We do not address this issue here, see discussion in Chapter 8.
“4The initial layer region can in fact be extended to a height which is, at least, propor-
tional to 1/eo.



128 CHAPTER 3. DEFINITIONS AND RESULTS

The proof of Theorem MO is discussed in Chapter 7.

Remark: Theorem MO, which describes the properties of the initial layer
foliation is totally independent of the global results stated here and proved
in the next chapters. Nevertheless the structure of its proof follows, in a far
simpler local situation, all the main steps needed in the proof of Theorems
M1,...M9. We shall have a short discussion of the proof at the end of
Chapter 7, after the proof of Theorems M1,....M9 has been completely
addressed.

3.7.2 Estimates for the O norms in

Theorem 3.7.3 (Theorem M1) Assume that, relative to the “double null
canonical foliation” of IC,

R <A (3.7.3)
Moreover we assume that
Op3)(20) < Zo , Op(Cy) < Is (3.7.4)
Then, if A, Ly, I, are sufficiently small, the following estimate holds
O<c(Zo+Z.+ A) (3.7.5)

The proof of Theorem M1 is in section 4.2

3.7.3 Estimates for the D norms in

Theorem 3.7.4 (Theorem M2) Assume that, relative to a double null
foliation of IC,

R<A

Moreover we assume *°

D(C,) < T. (3.7.6)

and the results of Theorem 3.7.3, then, if Ty, L., A are sufficiently small,
the following estimate holds

D<c(Zy+ZI.+ A) (3.7.7)

The proof of Theorem M2 is in section 4.7.

45The fact that we do not have to make assumptions for the D norms on Xy follows
from the construction of the rotation vector fields, see Chapter 4 section 4.6.
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3.7.4 Estimates for the O norms on the initial hypersurface

Theorem 3.3.1 (Theorem M3) Consider an initial data set which sat-
isfies the exterior global smallness condition Jx (3o, 9,k) < €2, with € suf-
ficiently small. There exists a canonical foliation on Lo\K, such that the
following estimates hold

Op1(Bo\K) < ce, Op3(Zo\K) < ce

The proof of Theorem M3 is in subsection 7.1.3.

3.7.5 Estimates for the @ norms and the D norms on the last
slice

Theorem 3.7.5 (Theorem M4) Consider a canonical foliation on C,,
relative to which

R<A.
Moreover we assume
Op)(C, NZo) + O3(20) + Oj3)(Xo) < Zo.
If A, Ty are sufficiently small, then the following estimate holds
Op(C.) + Op3(C,) < (o + A)

Remark: A stronger version of Theorem 3.7.5 will be proved in Chapter 7,
section 7.4.

The proof of Theorem M4 is in subsection 3.5.5.

Theorem 3.7.6 (Theorem M5) Consider a canonical foliation on C,,
relative to which

R<A.
Moreover we assume
Opy(C, N Xo) + O3(20) + Oj5(X0) < Io.
If A, Ty are sufficiently small, then the following estimate holds
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The proof of Theorem M5 is in section 7.5
Corollary 3.7.7 If the double null foliation is canonical and A, Zy are
sufficiently small, we have
O+D<c(Zy+A4A)
In addition we shall also need in the proof of the Main Theorem the following

precise version of Theorem 3.3.2,

Theorem 3.3.2 (Theorem M6): Assume given on C, a radial foliation,
not necessarily canonical, whose connection coefficients and null curvature
components satisfy the inequalities

R'(C.) =Ry (C.) + Ry (C) < €
O'(C.) = Oy (C.) + Oy (C.) < € (3.7.8)
where R[Q}'(Q*) Ry’ (CL), Oy (C.), Oy (C,) are the norms introduced in

section 3.5, restricted to C,, relative to the radial foliation *6. Then there
exists a canonical foliation, on C, relative to which we have

R(C.) = Rpy(Cy) + Ry (Cs) < cey

In addition it can be shown that these two foliations remain close to each
other in o sense which can be made precise.

C.
C.

The proof of Theorem M6 is in section 7.3.

3.7.6 Estimates for the R norms

Theorem 3.7.8 (Theorem MT7) Assume that relative to a double null fo-
liation on K

Op+0p <T (3.7.10)
Then, if I is sufficiently small, we have
1

R < cQp (3.7.11)

The proof of Theorem MT is in Chapter 5.

Corollary 3.7.9 Under the same assumptions of the previous theorem the
following inequality holds:

1
R + R < Q2 (3.7.12)

46These are the “appropriate smallness assumptions” of the first statement of the the-
orem.
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3.7.7 Estimates for the Q integrals

Lemma 3.7.1 The exterior global smallness assumptions Jx (2o, g, k) < €2,

with € sufficiently small, imply
Osynk < ce?

Theorem 3.7.10 (Theorem M8) Assume that relative to a double null
foliation on IC,
O<e, R< e

with a constant ey sufficiently small *7, then the following estimate holds:

Qr < CQZOQK (3.7.13)

where ¢ is a constant independent from gg.

The proof of Theorem MS8 is in Chapter 6.

3.7.8 Extension theorem

Theorem 3.7.11 (Theorem M9) Consider the spacetime K(\g, Vi) together
with its double null (canonical) foliation given by the functions u and u such
that

1) The norms Q, O, R are sufficiently small
Q<¢,0<¢, R<¢ -
2) The initial conditions on g are such that
O(Eo[l/*, Vs + (5]) < 66 )

where Xo[vs, vi + 0] = {p € Xo|u(g)(p) € [V, Vi + 0]}

Then we can extend the spacetime K(Xog,v.) and the double null foliation
{u,u} to a larger spacetime (Mo, vi + 0), with ¢ sufficiently small, such
that the extended norms, denoted O', R’ satisfy

OISCEB,RISCEB.

The proof of Theorem M9 is in section 7.6.

*"The assumption R < € is needed to control the deformation tensors of the angular
momentum vector fields. In fact the assumptions on @ and on R imply, via Theorem 3.7.4,
that D < cgp.
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3.7.9 Proof of the Main Theorem

Step 1: Using the result stated in Theorem M3 we can construct a canon-
ical foliation on ¥o\K verifying

O[g](go\K) <ce ) Q[:ﬂ(zo\K) < ce.

We use this foliation to extend the rotation vector fields from the spacelike
infinity to Xo\K.

Step 2: We define U as the set of the values v such that there exists a
spacetime K = K(Ag, 1) with the following properties, we call “Bootstrap
assumptions”:

Bootstrap assumption B1:

The spacetime K = KC(\g, v1) is foliated by a canonical double null foliation,
as specified in Definition 3.3.2, made by the two families of null hypersurfaces
{C(N\)} and {C(v)}, with A and v varying in the finite intervals [Ag, A;] and
[y, V1] respectively.

Bootstrap assumption B2:

Relative to the canonical double null foliation of I = K(\g,v1) we have
O<e , R<ep

Step 3: We show that the set U is not empty. To do this we first construct a
local solution, starting from the initial data on 3y, and prove the existence on
it of a canonical double null foliation, satisfying B1. Then using the initial
data assumptions, the properties of the local solution and the canonical
double null foliation it is easy to check that also B2 is satisfied. The two
non trivial parts of this step are the actual local existence result which has
been already discussed in detail in [Ch-KI], Chapter 10, and the construction
of the canonical foliation of the last slice *® which has been discussed in
section 3.3 and proved in Chapter 7. This completes the proof that I/ is not
empty.

Step 4: This is the main step of the proof. Define v, to be the supremum
of the set U.

If v, = oo the result is achieved. If v, is finite we may assume 9y el and
proceed in the following way:

“8We remark that Theorem 3.3.2 concerning the existence of a canonical foliation on
the last slice is used twice in the proof of the Main Theorem. The first time to prove that
U is not empty, the second time in Step 7 to show that v. < oo leads to a contradiction.

49In fact the argument below works for any fixed v < v, arbitrary close to v..
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i) We consider the region K = K(Ag,r1). Making use of the properties B1
and B2, for sufficiently small ¢y, we find, using Theorem M8, that the main
quantity Qg is bounded by c¢QOx,nx. As Qx,nik is expressed in terms of
initial data it follows that, see Lemma 3.7.1,

Qx < ce”. (3.7.14)

ii) We use Theorems M7, M8 to show that R < ce. Moreover recalling
Theorem M4 and Corollary 3.7.7 we find that

O < c(To+A) .

In view of the fact that R < ce we can choose A < ce. Recall that Z; is an
upper bound for O(3¢\K). In view of Step 1 we can choose Zy < ce and,
therefore, we infer that O < ce.

iii) We summarize the previous steps: Under the bootstrap assumptions
O<e,R<e,

with eo sufficiently small, and assuming also the results of Step 1, in partic-
ular Iy < ce, we have shown that

O<ce, R<ce (3.7.15)

Therefore if € is sufficiently small we obtain the improved estimate

O S lt’;‘() y R S lt’;‘() (3716)
2 2

Step 5: With the help of Theorem M9, for €{ = ce, the value on the right
hand side of 3.7.15, we show that the spacetime IC(\g, v.) can be extended
to a spacetime (Ao, v, + 6), for 0 sufficiently small, foliated by a double
null foliation which extends the canonical double null foliation of KC(Ag, v4).
Moreover, the norms R’ and O’, relative to the extended double null folia-
tion, cannot become larger than c?e,

O'<fe, R <ce (3.7.17)

We remark that the extended double null foliation fails to be canonical on
K(Xo, v« +0). In fact u is canonical on Xy but the extended u fails to be
canonical on the new last slice which we denote C,, = C(v, + 9).

Step 6: Finally we are able to show that the assumption v, < oo leads to a
contradiction. In fact the new spacetime (Ao, v«+9) is a good candidate for
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our family of spacetimes satisfying the bootstrap assumptions B1 and B2.
The only property still missing is that the extended function « be canonical
on C,,.

Using Theorem M6 with €, = c?c where c?¢ is the constant on the right
hand side of 3.7.17 we can construct a canonical foliation on C',, relative to
which the new norm R(C,,) and O(C,,) verify

2

O(C..) +R(C.,) < e (3.7.18)

Starting with this new canonical foliation, on the new last slice, we extend
it to the interior of the spacetime and thus obtain a new extended canonical
double null foliation near the previous one. In view of the continuity prop-
erties of the propagation equations of the double null foliation we can check
that, for small §, the new norms O and R remain arbitrarily close to the
old ones; in fact we show that these new norms satisfy

O <1003 , R < 100c%e (3.7.19)

We shall prove this fact in the remark below. Therefore, for ¢ sufficiently
small, we still have the inequalities

O <ep , R<ep.

We have, therefore, constructed the spacetime (g, V4 + §) verifying all the
Bootstrap assumptions.

This proves that v, is not the supremum of the the set I/, contradicting our
assumption. Therefore the only way to avoid a contradiction is that v, = oo.

Remark: In what follows we show in more detail how the new norms O
and R defined in the extended spacetime K(\g, vy + d) verify the inequality
3.7.19.

i) We start with the inequality 3.7.18 on C,,

O(C.) + R(C..) < ¢ (3.7.20)

We also know that relative to the old foliation we have, on the whole space-
time (v, + 9),

O' <, R <c’ (3.7.21)

ii) To prove our result we first observe that we can pass from the norms R
to the norms R’ with the help of the following estimate, provided O, O’ are
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sufficiently small 5,
R<R +cOp - (1+ (9{2}) - R' + [higher order terms] (3.7.22)

This is proved in Chapter 7, Corollary 7.7.1. We then use the same bootstrap
argument as in the proof of Theorem M1, see Chapter 4, Theorem 4.2.1.
More precisely consider the region A(Ag,v2) C K(Ag, v + 0) defined by

A(g, 1p) = {p € Ko, vs+6)| (u(p),u(p)) € (Mg, M1] x [V*,VQ)} (3.7.23)
where X1 = u(p)|c__nx,- Repeating the argument of Theorem 4.2.1 we
obtain that, for any two dimensional surface S contained in A, we have the
inequality

Ola < c(O(Q** NA)+To+ R|A> (3.7.24)

provided that R|a is sufficiently small. Therefore using 3.7.20, 3.7.22 and
Ty < ce, we conclude that

Ol|a < c<c35 + C€+RI|A +Ola - R'|A + OI|A . R'|A> .

Now using the estimates 3.7.21, for O’ and R’ and taking ¢ sufficiently small,

Ola Sc<c35+ce+R'|A+O'|A-R'|A> < 4c’e (3.7.25)
Therefore in view of 3.7.22 we also have
Rla < 4c’e (3.7.26)

By a standard continuity argument we can show that the region A can be
chosen equal to the whole extended spacetime IC(Ag, v + §).

3.8 Appendix to Chapter 3

Proof of Proposition 3.1.1

We start considering the Gauss equation which expresses the Riemann tensor
of the submanifold S, we denoted K, in terms of the Riemann tensor of the

%0Gince we proceed by a continuity argument, starting from the last slice, where O is
small, this assumption is justified.

[A mistake here has been cor-
rected; the right expression
is “A(}\Q,VQ) C ’C()\o,l/* —+
8)” instead of “A(A2,v2) C
K(A1,v« + d§)” Moreover in
3.7.23 (u(p),u(p)) € (A2, A1] ¥
[v«,v2) instead of (u(p), u(p)) €
[)\1,)\2) X (llg,ll*].]
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embedding manifold (M, g) and of the the null second fundamental forms
51
XoX 7

1

1
R,Zp(r = H;HEH;H(C,R%C - §(XZXW - XVUXM,) - §(Xypxuff - XVUXMJ) (3.8.1)

where II¢ = oF + %(63“64,, + e4tes,) projects on the tangent space T'S.
Contracting the indices v and p with respect to the metric g of M, we
obtain an expression for the Ricci tensor relative to S

| 1
Rus = RO\TGIIFTG — S (trxx,,, + trods) + 5 (¢ Yo + (X Xuo )

and contracting again the indices u, o
R = R?.)\CH/\(;HTC — tT’XtI'X + X X
1
= R+ Ricci(eq,e3) — §R(e4, e3,eq,e3) — trxtry + x - x

In an Einstein vacuum manifold R = Ricei = 0 and the previous equation
reduces to

1
R+ trxtry — (x - x) = —§R(e4,63,e4,63) =-2p (3.8.2)

recalling the null decomposition of the Riemann tensor, which written, in
terms of the scalar curvature of S, K = %R, becomes

1 1
K = —Ztrxtrx + 5()2 “X)—p (3.8.3)

Proceeding in a similar way we compute the Codazzi equations which con-
nect the S tangential derivatives of x and x to the Riemann tensor of M

et Y be a vector field € TS, VY its covariant derivative in S,
y, Y’ =M1,D, v’
R is obtained computing the right hand side of the equation

RupeY" =V, V.Y =V, ¥, Y" .

As Y,¥,Y? =I5 DADcY® + TSI (DAII;) DY + I, TSI, (DATT) ) D Y

v 1 174 v
and I TIS I (DAITY) = 5HE,(X peas + X" e4s)

the result follows.
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and to x, x, ¢,

1
W Xﬁ - W Xz = _Rruéaezegegnz + tTXCaeay - Xabeea;L .
p I 9

As
Y ,xt = (DeyX)baCap = (HVX)atay
we obtain
div xa + XabCs = V,otrx + Catrx — Ba (3.8.4)
and in the same way, with x instead of x,
dhvXa — X0 = Vatrx — Catrx + 8, (3.8.5)

3.8.1 Derivation of the structure equations

We give some example of the derivation of the explicit expressions of the
structure equations, 3.1.49, 3.1.50.

We start from
Rl,; = Q(ea,ep) = (dw) +w) Awd)(ea, es) (3.8.6)
= €a (I‘g"y) —€g (I‘(Sa'y) + Fé’yri)\ - I‘é'yr(sﬁ)\ - ny([eon 65])

and observe that °2

Riyas =< Rlea, €5)er, 65 >= #(0)R 05 (3.8.7)
where
—2if 6 4
#(0) = { 1 ?fZ{s € il{,?;} } (3:88)

choosing {(d,7) = (a,3) , (a,5) = (3,b)} we obtain

Raszsp = Dsx)ba — 2(VE)ba + 2wx,, + (X X Jba +4GE, — 2m€, — 20,8,

Decomposing this equation in its traceless part and its trace part we obtain:
(D300 + 2wX,, — (VOE)pa + ((2¢ = 0 — 1)®E)ba + Xy, trX = Rassp

Dytry + 2wtry + [%]* + §(trX)2 — 2divE — 25(” + 1 —2¢) = 0paRa33p

—_

521n fact

, -
§
Ri,np = Ruupae:egegeg = Rﬁpae:egeg(gu/ueg) =#(0)R5up
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We consider now the indices (6,7) = (a,3) , (o, ) = (4,b) and obtain
Razap = (Pax)ea — 2(V)ba + 2wx,, + (X-cX, )ba — 20,1, — 286€,

Proceeding exactly as in the previous case, decomposing this equation in its
trace part and its traceless part we obtain

(DiR)ba — 20%,, + (ex,,) — (VN0 — (180)sa — (E@E)sa = S(Raza)
Dytrx — 2wtrx + 85 (XpeX,,) — 2d4vey — 20nf? — 26 - € = 5,08 (Razas)
Choosing (4,7) = (a,3) , (o, ) = (b,c) it follows

(be)ca - (WCX)ba - (Cbxca - chba) = R3pe

and again, considering the trace and the traceless part with respect to (a, ¢),

(Vok)ea = (VDo — (Ko, = CeXi) = Rzt
Wb(trX) - (d’iVX)b + (C : X)b - Cbtrx = dacRa3sbe -
Choosing (4,7) = (a,3) , (a, ) = (4,3) it follows

(P4)a — P3n)a + (1= 1) - X)a — dwf = %Ra343 (3.8.9)

This result completes all the computations with (d,v) = (a, 3).

Looking at the equations with (d,v) = (a,4) one realizes that most of the
equations are not independent from the previous ones, the independent ones
can be obtained just observing that substituting the index 3 with 4 amounts
to change D3 and D3 with Dy and D4, the underlined Ricci coefficients with
the non underlined ones, { with —( and viceversa. Therefore without extra
computations choosing (d,7) = (a,4) , (a,3) = (3,b) we obtain

Raazo = (P3x)ba — 2(¥N)ba + 20Xba + (X Xe-Jba — 2707 — 26,0

Proceeding exactly as in the case (0,7) = (a,3) , («, ) = (4,b), decompos-
ing this equation in its trace part and its traceless part we obtain

(D3X)ba — 200 + (XyXea) — (YN ba — (1&N)ba — (ERE)ba = S(Raazp)
Dstry — 2wtry + 5ba(Xchca) - 2CV1V7] - 2|7]|2 - 2§ €= 6baS(Ra43b)
We set (0,7) = (a,4), (a,8) = (4,b) and applying the substitutions de-
scribed in (1.2.12) the following result holds
(D4>A()ba + 2w>2ba - (W®§)ba - ((2C +n+ ﬂ)®§)ba + XbatrX = S(f{a44b)

. 1
Dytrx + 2wtrx + [x|* + 5 (trx)” = 2dhvE = 26+ (.41 + 20) = GpaS (Raany)
As in the case of a double null integrable foliation the relations 3.1.32 hold,

it is easy to obtain some of the structure equations 3.1.45, 3.1.46, 3.1.47.
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Some remarks on the definition of the adapted null frame

It is possible to choose the null frame in such a way that it is transported
along C'()), once defined on a generic S(\, ), remaining null orthonormal,
that is such that g(es,ep) = dqp on the whole C'(X). The analogous situ-
ation can be obtained, starting again from S()\,v) and extending the null
orthonormal frame along C(v). In fact according to the equations:

Dye, = D4ea + (_Ca + Wa log Q)64 = D4ea + Nq€4
D464 = (D4 log 9)64
Dyes = —(DyglogQ)es +2(—C, + YV, logQ)ey (3.8.10)

if we impose that PDse, = 0 then we conclude that the null orthonormal
frame {e,, N, N} defined can be extended along C()), once defined on a
generic S(A, v), remaining null orthonormal, that is such that g(eq, ep) = dgp
on the whole C'(\). From equations 3.1.44 this implies:

Lyeq + Qxacee =0 (3.8.11)

Starting again from S(A,r) we can also extend the null orthonormal frame
along C(v) using the equations 53

Dse, = D3€a + (Ca + Wa log Q)e?) = D3€a + Na€3

D3€3 = (D3 log Q)eg
Dses = (D3logQ)es +2((p + YV, logQ)ey
(3.8.12)
and, again, g(eq, ep) = dqp on the whole C(v) if we impose
Lyeq +Qx, ec=0. (3.8.13)

3.8.2 Proof of Proposition 3.3.1
We repeat the statement of the Proposition, in a slightly more general way:

Proposition 3.3.1: Let A, be the three dimensional subspace of TK,

spanned by TS, ® Np, where N = %(N — N). Let us consider the three
dimensional distribution on K, p — A,

%3the null frames one builds extending the orthogonal vectors {e,} along the null hy-
persurfaces {C'(A)} or {C(v)} are different and will be used in different situations.
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This distribution is integrable. Moreover K is foliated by the three dimen-
sional spacelike hypersurfaces

£ = {p € Klt(p) = 1}

where t(p) = % (u+u) and each two dimensional surface S(\,v) is immersed
in the hypersurface ¥, with t = T\ +v). The “global time” function t(p)
satisfies

1 0

where n,n are the one forms corresponding to N, N. Finally, given the hy-
persurfaces Y, their second fundamental form k has the following expression

1
kNN:UJ"‘&, keaN:Ca ) keaeb:—i(xab‘i‘xab)

and, on each 3, the metric gij(t,x) is given by the relation

kij = _(29)_181591']' .

Proof: We observe that, denoting N = (N — N),

[Noea] = ([N,eq] = [N, eq]) = (Paeq — Paea) = (Xab — X,y)0
[easer] = V,ev = Vyea (3.8.14)

Therefore, as a result of Frobenius theorem, see [Sp|, vol.I, Chapter 6, the
distribution p — A, is, locally, integrable. This implies that fixed a generic
point p € IC, there is a neighbourhood U of p such that, given ¢ € U it is
possible to define a submanifold & C K, containing ¢, whose tangent space
is, at each point p’ € 3, AWE

Let t(p) be the function whose ¥ is a level surface, in the neighbourhood U
we have

dt(-) = (dt)uda"(-) = (N + N),dz"(-)

where « is a regular scalar function on U ®*. The result becomes valid in

the whole I if we choose a = —ﬁ. In fact, recalling 3.1.37,
1 1 1
e N A M)y =L+ L)y = 50u(u+u) =yt (3.8.15)

*In principle one can define N = %(]\7 — N) and given the vector field T = %(N +N)
build, locally, a time function ¢’ just considering the flow of 7. This is a local result and
one does not know, apriori, if it holds globally.
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so that ot Lo )
Ny 9t oy Loty
dt(-) ax“dx (+) 5 G dzh(-) .
Defining
S = {p € K|t(p) =t} (3.8.16)

we can choose t as a coordinate for I and define the vector field % as the
vector field satisfying dt(%) =1. As

w o O 1

Ozt Ozv 402

it follows immediately that

o\* L
— )] =(N+N 3.8.17
(5) W+ (8.7
This proves that a global time ¢ and a global foliation using the spacelike
hypersurfaces {3;} exists > while from the Frobenius theorem the result will
be only local and not unique. The expression of the second fundamental form
k in terms of the connection coefficients follows from a direct computation.

Remark: Observe that the spacetime foliation relative to the canonical
double null foliation is not the one used in [Ch-KI].as the ¥; hypersurfaces
are not maximal. In fact in [Ch-KI], page 268, the condition trk = 0 is
written as °6

2
0= _trn(C.K.) = - Z kaa -
a=1
Observing that in the present notations,
2
Zkaa = —(trx +try) and d=w+w,
a=1
the maximality condition becomes
1
wtw= E(trx + try) (3.8.18)

Equation 3.8.18 is not satisfied in the present approach. In fact it cannot
be imposed in our foliation as €2 is already completely determined by the
structure equations, the initial conditions on the ¥ hypersurface and those
on the “last slice” C',

% Asymptotically, u is basically r. 4+ ¢, where r. is the coordinate defined in the

Schwarzschild spacetime.
567](0_K_) is not the n connection coefficient we use here.
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Chapter 4

Estimates for the connection
coefficients

4.1 Preliminary results

4.1.1 Elliptic estimates for Hodge systems

We consider Hodge systems of equations defined on a compact two dimen-
sional Riemann surface. We recall definition 3.1.4 of Chapter 3

Definition 3.1.4 Given the one form £ on S we define its Hodge dual *:
*ga =Cab gb

Clearly X(%¢) = —€. If € is a symmelric, traceless, 2-tensor we define the
following left, *¢, and right £, Hodge duals:

Cab =€ac Eb 5 Sap = & €
Observe that the tensors *¢,£* are also symmetric, traceless and satisfy

=, (%) =-¢

We will need estimates for the following elliptic systems of equations:
Hy: Hodge system of type 0

This refers to the scalar Poisson equation

Ap = f

lhere a,b are just coordinate indices

143
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where f is an arbitrary scalar function on S and /A is the Laplacian relative
to the induced metric on S.

Hi: Hodge system of type 1

This concerns one forms ¢ verifying

dhve = f
eyrle = f,

where f, f, are given scalar functions on S and the operators div, cyrl are
defined according to

dive = V%, ; cirlé =€ Y ¢,

Hs: Hodge system of type 2

This concerns traceless symmetric two forms £ satisfying

divg = f

where f is a given vector field and div¢ is defined by

Cl/iV £a = ngab

For these three systems of equations we have the following L?(S) estimates,
see [Ch-Kl], Chapter 2.

Proposition 4.1.1 On an arbitrary compact Riemannian manifold (S,7y),
with K the Gauss curvature of S,

i.  If ¢ is a solution of Hy the following estimate holds
AP o + K9 = [ 151
1. If the vector field & is a solution of Hy then
JAPER + K1y = [ 4112+ 112

wi.  If the symmetric, traceless, 2-tensor £ is a solution of Hy then

[AIver +2kigR =2 [ 151
S S



4.1. PRELIMINARY RESULTS 145

Definition 4.1.1 Assume (S,v) an arbitrary compact Riemannian mani-
fold with K its Gauss curvature, we introduce 2 the following quantities

1
kmzmsinrQK, kM:mgXTQK, ki = (/ |Y7K|2>2
S

Proposition 4.1.2
Assume kp, > 0, then, if £ is a solution of Hy or Hs, the following inequal-
ities hold,

JapeR +r ey = e [ 17

LIver < e [ (1902 +r210P)

with c1,co two constants depending on ky,, kar.
Assume, moreover, that ki is finite, then there exists a constant c3, depend-
g on kmy, kar and ky, such that

[Vl < e [ (192 R e A 4 g )
S S
where, in the Hy case, f = (f, fx) and |f|> = |f|? + | f«|*-
We will need also some LP estimates for the above systems, which we

recall from [Ch-KIl], Chapter 2.

Proposition 4.1.3 Assume that S is an arbitrary compact 2-surface satis-
fying km > 0 and kar < 0o, then the following statements hold

i.  Let ¢ be a solution to the Poisson equation Hg on S. There exists a
constant ¢ which depends only on kpy ™', ks, p such that

Vol + 7 Vloe +177%¢ — dlor < clflrr
¥ lie < ¢ (1910 + 711 l10)

1. Let £ be a solution of either Hy or Ho, then we have:

First derivatives estimates in LP. There exists a constant ¢ which de-
pends only on ky, ', kar and p such that, for all 2 < p < oo

JLver +r o1 <e [ 1se

2 has been defined in 3.1.2.
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Second derivatives estimates in LP.  There exists a constant ¢ which
depends only on ky, ', kay and p such that, for all 2 < p < 0o

[veer < [avsp i)
S S

4.1.2 Global Sobolev inequalities

In this subsection we assume that the spacetime /C has a double null foliation
3 and that the following assumptions hold

2 2
a) sup [try — =| <6, sup|try + —| < with 0 small.
K r K - r

b) km > 0 on any surface S(u,u) = C(u) N C(u).

Moreover we use the notations

V(u,u) =J"(S(u,u)) , up = U’|Q(g)ﬂ20 y YUg = U|C(u)ﬂ20 .

Proposition 4.1.4 Let F be a smooth, S-tangent tensor field*. The follow-
ing nondegenerate version of the global Sobolev inequality along C(u) holds
true.

supstuanCEFD) < e ([ PR repr

U,Uq u,ug

+(f P+ 77V F 4+
C(u)NV (u,u)

VPR +r4|Y7]Z)4F|2>§ } (4.1.1)

We also have the degenerate version,

1
2

1 1
supg(uw)(rr2|Fl) < c[ (/ r2r2|F|YT + (/ 22 |rYF|Y) 1
S(uago) S(uago)
w( [ (FP e+ ER 4 Dy
C(u)NV (u,u)

VPR 4+ r272|y7]D4F|2> ’ ] (4.1.2)

30bserve that in the successive applications the spacetime K is foliated by two double
null foliations, the double null canonical foliation and the initial layer foliation in the
layer region near ¥o. In that case uo and u, have different expressions, see discussion in
subsection 4.1.3.

*This means that at any point it is tangent to the 2-surface S(u,u) passing through
that point.
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Analogous estimates are obtained along the incoming null hypersurfaces C(u),

s GHED < e[ ([ P )

uo 7@) Uo,U,

+</ |2+ 12|V F + 2Dy F?
CwNV (uw)

YR 4 r4|Y71Z)3F|2> ’ ] (4.1.3)
and

1
sups(u,g)(rTE|F|) < c[(/( TQTE|F|4)i + (/ TQTE|TY7F|4)i

uo,u) U0,

+</ |F|2 + 2| VF|? + 72| D3 F|?
C(WNV (u,u)

+r4| V2 F)? + TQTEWHDBFF) ’ ] (4.1.4)

Proof: The proof of inequalities 4.1.1, 4.1.2 is based on the following
lemma.

Lemma 4.1.1 Let F' be a smooth tensorfield on I, tangent to the two di-
mensional surfaces S(u,u) at every point. Introduce the following quantities

i
A(F)=  sup </ 7“4|F|4>
Cw)nV (uu) \/S(uu)

1
6
B(F) = / ro|F|5 (4.1.5)
C(u)NV (u,u)
>
B = PP+ 1 PP + 2D,
C(u)NV (u,u)
and
T
A (F)=  sup (/ 7"273|F|4>
Cw)nV (u,u) \/S(u,u)
1
6
B.(F) = / rir?|F|8 (4.1.6)
C(u)NV (u,u)

N |

E.(F) = / |F|? + 2| YF|? + 72|, F|?
C(u)NV (u,u)
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The following nondegenerate inequalities hold

B < c(I)A*BE'3 (4.1.7)

A < Ag+c(I)B¥EV (4.1.8)
We also have the degenerate estimates,

B, < co(DAYE!? (4.1.9)

A, < Ay +e(I)BY'EV! (4.1.10)

where

1 1
1 1
AU = (/ T4|F|4> ) A*O = (/ T2T2|F|4> )
S(u,ug) S(u,ug)

and c(I) is a constant depending on I = supcy) I(u,u), where I(u,u) is the
isoperimetric constant of S(u,u).

The proof of inequalities 4.1.3, 4.1.4 is based on the analogous of Lemma 4.1.1

Lemma 4.1.2 Let G be a smooth tensorfield on K tangent to the two di-
mensional surfaces S(u,u) at every point. Introduce the following quantities

1

1

AF)= sup (/ r4|F|4>
(w)NV (u,u) S(u,u)

c
( 6|F|6> (4.1.11)
(w)NV (u,u)

[

1
3
E(F) = |F|2+7"2|Y7F|2+7"2|17’3F|2>
and
%
Age (F) = sup (/ 7“2TE|F|4>
Cw)NV (u,u) \/S5(uw,u)
1
5
B (F) = (/ r4TE|Fl6> (4.1.12)
Cu)NV (u,u)

N |

B ()= [ [P+ 12 F 2 + 2D, PP
Cw)NV (uu)
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Then the following inequalities hold

B < o(AYPE (4.1.13)
A < Ay+c(I)BEY (4.1.14)
and
Bg. < c(DAYEY? (4.1.15)
3/4 41/4
Age. < Agey+e)BEY (4.1.16)
where

I i
AO = (/ 7"4|F|4> ) Ade.[] = (/ T2T2|F|4> (4117)
S(UO 7@) S(U/O 7@)

Corollary 4.1.1 Under the assumptions of Lemma 4.1.1 and Lemma 4.1.2
the following estimates hold

1 =

1 1
o)+ (o)
S(Uﬂu) S(’U/,QO)

+c./ |FP+rﬂWFP+rﬂmgwﬁ
C(u)NV (u,u)

1
4
(/ r272|F|4> (4.1.18)
S(’U/,QO)

+e ( / PP+ 12 PF? + TE|1D4F|2)
Cu)NV (u,u)

(fwe7)
S(U/Ov@)

vel [ R +r2|m3F|2>
C(w)NV (u,u)

1
4
(/ r273|F|4> < (/ r273|F|4> (4.1.19)
S () S (1o )

+c </ |F|2+7’2|Y7F|2+7'2|]Z)3F|2>
C(w)NV (u,u)

(NI

NI

VAN

(/ r272|F|4>
S (u,u)

[SIE

Also,

(!
S (uyu)

1
1

NI
IN
[N

NI

N |



150CHAPTER 4. ESTIMATES FOR THE CONNECTION COEFFICIENTS

The proof of Proposition 4.1.4 follows immediately from this corollary
combined with the following form of the standard Sobolev inequalities for
the sphere

Lemma 4.1.3 Let G be a tensor field tangent to the spheres S(u,u), then

4
sUPg(uw) |G| < or2 (/ IG* + 7"4|Y7G|4> (4.1.20)
h S(uu)

1
Indeed, it suffices to apply this lemma to G = rF, or G = 'F%T_zF and then
take Lemma 4.1.1 into account. We now present the main steps in the proof
of the nondegenerate version of Lemma 4.1.1.

To prove 4.1.7 we recall the following version of the isoperimetric inequal-
ity, see [Cha], for a compact two dimensional surface S of strictly positive

Gauss curvature:
/S(@ o) (/ |Y7<I>|> (4.1.21)

where @ is a scalar function on a sphere S in K and the isoperimetric constant
I(S) 5 can be bounded by a constant which depends only on kj;.
Applying 4.1.21 to the surfaces S(u,u) C C(u) NV (u,u) with ® = |F|*> and
using the Holder inequality we derive

/ |F|6§c<r2/ |F|4></ |F|2+r2|Y7F|2>. (4.1.22)
S(u,u) S(usu) S (w,u)

Multiplying the equation 4.1.22 by r® and integrating with respect to u
we easily derive 4.1.7. To obtain 4.1.8 we express, with the help of the
divergence theorem, assuming that everywhere try is near to 2 the integral
fs(u,u) r4|F|* in terms of an integral over C'(u) NV (u,u) and an 1ntegral over
S(u,ug). Applying also the Cauchy-Schwartz inequality this leads to

/ T4|F|4 S / T4|F|4
S(U,H) S(uago)
1

1
2 2
i) ™ i70)
C(u)V (uw) Cwn Vi)

° 1(5)7% = infp ( (T')/min{A(Dy), %
S(u,u), L(T) its total length and A(Dl) ( 2)

which proves 4.1.8.

) where I is an arbitrary closed curve on
th

e areas of the two components of S/T".



4.1. PRELIMINARY RESULTS 151

To prove the degenerate estimates 4.1.9, 4.1.10 of the Lemma 4.1.1 we
proceed precisely in the same way with the quantities A,, B, and F,. In
this case the inequality 4.1.15 follows by multiplying 4.1.22 by r*7? and
integrating in w. The corresponding inequality 4.1.10 follows, as in the
nondegenerate case, by applying the divergence theorem to [, S(uw) r2r2|F|*.

We conclude this subsection by recalling the Gronwall inequality, see [Ho],
and the Evolution Lemma, which will be used, repeteadly in the following
sections.

Lemma 4.1.4 (Gronwall inequality) Let f,g: [a,b) — R be continuous
and non negative. Assume

fy<a+ [ f()gls)ds . A0

then
t

ft) < Aexp/ g(s)ds , for t€[a,b)

a

Lemma 4.1.5 (Evolution Lemma) Consider the spacetime KC foliated by
a double null foliation.

I) Assume, with § > 0 sufficiently small,
|Qtry — Qry| < 0r 2 (4.1.23)

Let U, F, be k-covariant S-tangent tensor fields verifying the outgoing evo-
lution equation

dUm Qg

du + AOQtrXUal...ak = Fal...ak (4124)

with Ao 1s a non negative real number and

Ual...ak = U(ealaeaza '-7eak) ) FaL..ak = F(ealaeaza '-7eak)

the components relative to an arbitrary orthonormal frame on S. Denoting

AL =2(\o — %), we have, along C(u),

g*
|7“/\1U|p,5(u,g) < ¢ <|T/\1U|p,5(uaﬂ*) +/ |7")‘1F|p,S(Uaﬂl)dMI> (4.1.25)
u

Here u, is the value that the function u(p) assumes on C,.
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II: Assume, with § > 0 sufficiently small,
|Qtry — Qiry| < or~ 't (4.1.26)

Let V, F, be k-covariant S-tangent tensor fields verifying the incoming evo-
lution equation

dVal...ak
du

Denoting A1 = 2(X\g — %), we have, along C(u),

+ MUV oy = F (4.1.27)

=—Q1...Qf

|r)‘1V

p.s (1, u) < co <|T/\1V|p75(uo(y),u) + / ( )Ir*lﬁlp,s(U’,u)dU’> (4.1.28)
uo(u

where S(ug(u),u) = C(ug(u)) NC(u) C K.

Remark: Here ug(u) # ulcw)ns,- In the application of part II of the
Lemma we will choose the two dimensional surface S(up(w),u) in a conve-
nient way °

Proof: From Lemma 3.1.3 we have, for any scalar function f,

d df
— di~ = — + Ot d 4.1.2
du /S(u&) / t /S(u,ﬁ) (dﬂ * rXf) Hr ( 9)

In particular, setting f = 1, denoting |S(u, u)| the area of S(u,u) and with
h the average of h over S(u,u), we obtain:

18] = 18, ) P

and, from the definition 3.1.2, r(u,u) = /&[S (u, u)],
d
() = T(“Q’ W ey (4.1.30)

Hence, for any function f and any real number ),

%(L(u,g) TAfdM) N / (ccllf L+ mttxj)

- 2/ f(Qtry — Qtry) (4.1.31)

®Such that it allows us to connect the norm on S(uo(g),g) with the initial norms on
S0y (1) C Zo.
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The equation satisfied by the tensor field U implies:
d -1
oAU+ AopQtex|UI” < p|F||UP
4 UIP + XpQtrx|UP > —p|F||UP~! 4.1.32
du
therefore setting f = |U|P in the equation 4.1.31 and

2
A= )\1p where )\1 = <2>\0 — —>
p

we obtain:
d d
i Loy O = [ (U dop U ) d
u Sl
- 4P rMP|U P (Qtry — Qtry)dp.,
2 Js(uw)

and, using the second inequality of 4.1.32:

d
%/5( )TWU'WV - —p/s( )7"A1”|F||U|”*1du7 (4.1.33)
= Il wu
_M ,r.)\1P|U|P(QtrX _ Qtrx_)dlj,,y
2 Js(uu)

Applying the Holder inequality:

/ W’|F||U|p—1s</ r*”’|F|p>
S(u,u) S(u,u)

we obtain

p—1

p
( / r*w|U|p> ,
S(u,u)

™=

),

p—1

» (/ ,r/\lp|F|P> ! (/ ,r.)\1P|U|P> !
S (u,u) S (u,u)

|A1]p
2

d A
_ ’I"lp Upd
- /5 Oy

IA

/ rMP|UP|Qtry — Qtry|dp, -
S(u,u

P

We make now use of the first inequality 4.1.23 and derive the inequality

d
— Ul < (P Flps + 072 Ulys) (4.1.34)
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which, upon integration in the interval [u,u,], yields

|7’)‘1 U

Ly
pssn) < P Ulpsum) + [ 1 Flysun)du
u

U,

+( sup |M1U|,,,S)<05/ r2> (4.1.35)
[, ] u

Choosing § such that (06 fgg 7"*2) < ¢ < 1 we have, for fixed u and any

u' € [u,u,],

u,
MU (') < U s (u,uy) + / P F |, s (u, u ) du”

u
+0" sup [ U5 .

[wu,]

Taking the sup with respect to ' in [u,u,], we obtain

H*
(1— 51) sup |7"/\1U|p,5 < |7“)‘1U|p,5(uaﬂ*) +/ |7"/\1F|p,5(uaﬂl)dﬂl
u

[w,u,

(4.1.36)

from which (T) of the Evolution Lemma follows with ¢y = rlé,).

To obtain (II) we proceed in the same way, using the differential inequal-
ities
d -1
Ju VI A dopQtrx V" < p|E|[VP
d
d—|V|p + AopQurx |V P > —p|F||V [P~ ! (4.1.37)
u X

and assumption 4.1.26.

4.1.3 The initial layer foliation

In the previous section we have encountered a difficulty with part II) of the
evolution Lemma 4.1.5 along the incoming null hypersurfaces C(v). The
double null canonical foliation of K does not allow us to connect the surfaces
S(X,v) with the surfaces S(g)(v) on ¥p, see also Proposition 3.3.1.

We show in this subsection how to overcome this difficulty by using, in a
small neighbourhood of Yy, the initial layer foliation introduced in Chapter
3, see definition 3.3.4 which we recall below.
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The initial layer foliation is the double null foliation defined by the incoming
null surfaces C'(u), and the outgoing null hypersurfaces C'(u') both intersect-
ing ¥ along the canonical foliation S(g)(v). More precisely, see definition
3.3.4,

a) The C’'()\') null hypersurfaces are given by u'(p) =X, where X' € [—1yg, —v4],
with ' the outgoing solution of the eikonal equation with initial condition
u = _Q(O) on 20.

b) The C(v) null hypersurfaces are defined as before by u(p) = v where
v € [vy, vs], with u the incoming solution of the eikonal equation with initial
condition u = ug) on the initial hypersurface .

Observe that S (v) = C'(—v) N C(v). The initial layer region K's, C K is
specified by the condition

S0/(p) +u(p)) < (4.1.38)

As discussed in Chapter 3, see Proposition 3.3.1, the initial layer K (’50 comes
also equipped with an adapted space like foliation, {X'y } with ¢/ = 1 (u/+u).
With this definition X, the initial hypersurface, satisfies ¥g = ¥'y_g. Thus
the height dp of the layer K (’50 corresponds to the time interval 0 < ' < .

We are now ready to state our main result concerning the compatibility
between the canonical and initial layer foliations.

Lemma 4.1.6 (Oscillation Lemma) Consider a space time region KC with
the “canonical double null foliation” generated by u(p),u(p). Consider also
an initial layer region K's,, of height &, with the “initial layer foliation”
generated by u'(p),u(p). We make the following assumptions:

e On the surface S, = Ego NC, = 8"(20) — vi, )

((wp|wm—u@m>3m (4.1.39)

pp')ESL
Also,
1
|r2r2n| < e, |r?r g(L',L)| < e, [P Vg(L',L)| < e (4.1.40)
e On the initial hypersurface X,

20| < e (4.1.41)

[Nella formula seguente, 4.1.38,
(u'(p) + u(p)) < do & stata sos-
tituita da 4 (u' (p) +u(p)) < do.]

[The assumptions on g(L, L")
have been changed. These are
the right ones.]

[In the following item “on K”
has been substituted with “on
IC/IC:;O”.}



[The conditions on YD¢, log
and YDeglogQ on IC/IC:SO
have been eliminated as we do
!
not use anymore on IC/IC50
the stronger estimates for
n,m,m',n’, although they are ,
of course, true. We use only
the stronger estimates for

g(L, L))

[The previous remark 2 has
been eliminated. The third re-
mark is now the second.]
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e On K/Kj,,

O] + 97 < (4.1.42)
e On the initial layer Ky,
O +O[] <e (4.1.43)
Then,
Osc(u)(X5,) = sup ( sup lu(p) — u(p')|> <ce (4.1.44)
vevo,v«] \(p,p')€S’(260—v,v)
Remarks:

1) The norms appearing in 4.1.40, 4.1.41, 4.1.42, and 4.1.43 are pointwise.
2) The assumptions 4.1.40 are verified in view of the canonicity of the foli-
ation on the last slice C,, see Proposition 7.4.1 and Lemma, 7.7.2.

3) The assumptions 4.1.41 are verified in view of the canonicity of the foli-
ation on the initial slice Xg and are used in Lemma 4.8.2.

Proof of the Oscillation Lemma: The detailed proof of the Oscillation
Lemma is given in the appendix to this chapter.

Corollary 4.1.2 Given an incoming null hypersurface C(v) there exists a
two dimensional surface S relative to the “double null canonical foliation”,
belonging to C(v) and included in the initial layer region ’C:Sm for any v €
[0, Va].

Proof: We define

< 1
0p == iInf inf 4.1.45
=3 (sl 00 (4149
From the Oscillation Lemma, it follows that
|60 — do| < ceg (4.1.46)

S(\o(v),v), with \g(v) = 28y — v, is a two dimensional surface, relative to
the “double null canonical foliation” included in the initial layer region ICgO,
for any v € [vp,v.]. These are the surfaces which we refer to, in part II of
the Evolution Lemma, see 4.1.28.

ESTIMATES FOR THE CONNECTION COEFFICIENTS
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Remarks:

i) In Chapter 7, assuming tha initial and final slice endowed with a canonical
foliation all the estimates in the assumptions of the Oscillation Lemma are
proved with ¢y < ce.

ii) Recalling the definition of the EN],; spacelike hypersurfaces, associated to
the double null canonical foliation, see Proposition 3.3.1, the previous lemma,
and its corollary implies that we can extend the double null canonical folia-
tion to 250 with 8 > dp — 2ceg > 0, a little below 230.

In other words we can find a spacelike hypersurface foliated by the S(A,v)
two dimensional surfaces, relative to the double null canonical foliation con-
tained in the initial layer region at a distance ¢y from Ego.

We use Lemma 4.1.6 to express the estimates of part II of the Evolution

Lemma, 4.1.28 in term of the initial data norms on S(g).

We rewrite, first, the estimates of Part IT of the Evolution Lemma 7,

|7’)‘1V

u
ps(u;u) < co (ITAlle,S(uo@,g) + Ir*lﬁlp,s(U’,u)dU’> (4.1.47)
o (u
In the next lemma we prove, using the Oscillation Lemma, how to control the
difference between the norm |7"/\1V|p,s(u0(u),u) and the norm |7”)‘1V’|p75(0)(y),
where V' indicates the S-tangent tensor field analogous ® to V, but relative
to the initial layer foliation, see the Evolution Lemma.

Recall that the norm |7"/\1V|p,5(u0(l,),l,) refer to a surface S(ug(v),v) associ-

ated to the double null canonical foliation and r = (=[S (uo(v), 1/)|)%, while
|r'A V'|p,5,(v) refers to a surface contained in ¥y associated to the initial

layer foliation and, therefore, r' = (ﬁ|5(0)(u)|)%.
Lemma 4.1.7 Let V be a tensor field satisfying the evolution equation
DNV + XMQtryV =F .

Assume that on 250 and on X's,, with €y sufficiently small, the following
inequality holds, see 77,

O + 071 < o
O] +0Of} < e (4.1.48)

"We use here the notation uo(v) instead of Ao(v) to avoid confusion with the exponents
of the estimates like 4.1.47.

87 and V' are not the same tensor field as they are tangent to different two dimen-
sional surfaces. Nevertheless V' can be expressed in terms of S’-tangent tensor fields and
viceversa. See also the proof of the next lemma.
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and that, in the initial layer region,

O <e, Oy <e
R[Q], S €0 , R[Q}I S €0 (414:9)
then, with A\, = 2 (AO - %),
PV ] Stuotw) < €™ V' |,y w) + €0 (4.1.50)

Remark: During the whole Chapter 4, where this result is used, the tensor
field V describes the various underlined connection coeflficients and their
derivatives.

Proof: The proof of this lemma, is in the appendix to this Chapter.

4.1.4 Comparison estimates for the function r(u,u)

In the proofs of this chapter and of Chapters 5 and 6 we often use some
estimates which connect the function r(u,u) with the functions u(p) and
u(p) and also with the functions v(p) and v(p), the affine parameters of the
null geodesics generating the null hypersurfaces C'(u) and C(u). We collect
all these estimates here.

We recall that u(p) and u(p) are solutions of the eikonal equation, the first
one having, as “initial data” the function u.(p) defined on the “last slice”
C., solution of the “last slice problem”, see Definition 3.3.2, and u(p) having
as initial data the function wg)(p) defined on o, solution of the “initial slice

problem”, see Definition 3.3.1.

S (u,u)|

1= is provided from the

The first estimate for the function r(u,u) =
9

following lemma
Lemma 4.1.8 Assume in the spacetime K the estimate, see 4.2.9,
- 2
|r?(Qtrx — < c(Zo+ I+ Do)
— 2
|r7_(trx + ;)| <c(Zop+ T + Ay)

assume that on C,

1
|r (A, vy) — §(V*—>\)| < Ly log r( A\, vy)

9We discuss here this lemma, and the following one, although they require, to be proved,
the results of Theorem 4.2.1. Of course the proof of these results do not depend on these
Lemmas.
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then if (Zo + Ly + Ao) is sufficently small, then r(u,u) satisfies the following
inequality

|r(u,u) — %(g —u)| <c(Zo+ L + Ag) logr(u,u) (4.1.51)

Moreover, there exists a constant ¢ such that

ciry <r(u,u) < ery (4.1.52)

Proof: We integrate the equation, see 4.1.30,

a4 ) (
du 2

1
(u,u) = o + Qtry — —)
r

— 1
<Qtrx — —)
r
— 1
<Qtrx — —)
r

N | =

along C(u), from u = v, to u, obtaining

Ux

r(u,vy) — r(u,u) = %(V*—Q) +/

u

DN 3

which we rewrite as

) = 3 =) = ) = 30 =) - [

N =3

Using the assumptions we obtain

1
(r(u,u) — 5(@ —u)) 4+ c(To + L + Ag) logr(u,u) < cZ,
which implies
1
|r(u,u) — 5(@ —u)| <c(Zy+ L + Ag) logr(u,u) (4.1.53)

proving the first part '° of the lemma. The second part follows immediately.

Remark: The result of Lemma 4.1.8
7 (u, ) — 5 (u —u)| < ceglog(u, u)

although sufficient for our purposes is not the optimal one. A better and

more delicate result is stated in the following lemma, whose proof we do not

report here 1,

10The assumption relative to the last slice is proved in Chapter 7.
"The proof is, anyway, an adapted version of Proposition 9.1.3 of [Ch-KI].
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Lemma 4.1.9 Under appropriate assumptions, consistent with the boot-
strap assumptions for O of Theorem M1, r(u,u) satisfies the following in-
equalities

rww) = (= )| < elZ. + )

I (u, ) + (v — %)| < o(To + D) (4.1.54)

where v,v are the affine parameters of the null geodesics generating C(u)
and C(u) respectively.

4.2 Proof of Theorem M1

We are now ready to start proving Theorem M1. While we have structured
the proof in a way which we believe it is optimal for the comprehension of the
reader we omit giving detailed motivations for various important technical
steps. For this we refer the reader to our review paper [KI-Ni].

We divide Theorem M1 in three theorems, the first referring to zero and
first derivatives, the second one to second derivatives and the third one
concerning third derivatives.

Remarks:

e It is important to observe that to prove Theorem M1 relative to a dou-
ble null foliation we need to introduce as an auxiliary assumption the
result of the Oscillation Lemma. To remove this auxiliary assumption
we need that K be endowed with a double null canonical foliation.

e It is important to realize that all the norm assumptions relative to
the initial hypersurface ¥y are relative to the connection coefficients
relative to the initial layer foliation, these norms are connected to those
relative to the double null canonical foliation through the Oscillation
Lemma and Lemma 4.1.7.

Theorem 4.2.1 Assume that

Ry + Ry < A
RY+RY <A (4.2.1)

and
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On(C.) < Zv, Opy(%o) < Iy (4.2.2)
Assume further that in the initial layer region
On' <o, Opy) <To
R[l}, <Ay, Em’ < Ay (4.2.3)

Assume finally that Aoy, A1, Ty, L, are sufficiently small, then there exists
a constant 2 such that the following estimates hold

Ony+ Opy < e(Zo + L + Ao + Ay) (4.2.4)

Proof: We present here the strategy of the proof. All the details are given
in section 4.3.

We divide the proof of the theorem in the following steps:

i) We make the following additional bootstrap assumptions

Of + 05 < To (4.2.5)

Osc(u)(Z5,) < To (4.2.6)

with I’y > 0 sufficiently small '3, then we prove that the following inequalities
hold

OU S C(I* + AO)
04 < ¢(To + Ag) (4.2.7)
O1 <c¢(Zo +Zu + Ao)
0, <c(Zo+ T + Ao)
O1(w) < c(To+ T+ Ao+ Ay) (4.2.8)

and, finally,
1
|r (2 — §)| <c(Zo+Zi+ Ao)
2
r?(trx — ;)| <ec(Zy+ I+ Ao) (4.2.9)

2
|r7_ (trx + ;)| <c(Zy+ I, + Ao)

12We denote with ¢ a constant which does not depend on the relevant parameters. It
can be different in different estimates.
1310 must be such that I'Z < (Zo + Z. + Ao) < To.
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This is the main part of the proof. The details will be given in the subsequent
sections. Next steps ii) and iii) are standard.

Remark: the bootstrap assumptions 4.2.5 allow us to use all the prelimi-
nary results of section 4.1

ii) Using the estimates 4.2.7, 4.2.8 and the Sobolev Lemma 4.1.3, we infer
that

r
Off + 05} < e(Zo+ Lo+ Mo+ Ay) < (4.2.10)

provided that we choose (Zy + Z, + Ag + Aq) sufficiently small.

iii) To remove the additional assumption 4.2.5 we consider the region, S(T'y)
contained in K defined by the following properties '

a) S(Lo) = {p € K| (u(p),u(p)) € [A1,A2) x (v2,v:]}.
b) In §(I'y), the following inequality holds

Oﬁﬁ‘l‘Qﬁﬁ<Fg

Using the result in ii) we infer that this region is, simultaneously, open and
closed and, therefore, must coincide with the whole . From this result the
estimates 4.2.7, 4.2.8 and 4.2.9 hold in K and the theorem follows.

The details of the implementation of step i) are given in section 4.3.
Remarks:

i) Instead of this bootstrap assumption, 4.2.5, we could have used a
stronger bootstrap assumption involving the full norms O and Oj3). Be-
cause of the importance of this result we prefer, however, this proof which
emphasizes the fact that only the norms O};) and Oy) are needed to break
the non linear structure of the null structure equations.

ii) Tt si easy to check that the bootstrap assumption 4.2.5 implies all the
assumptions needed in the proofs of all the preliminary results of previous
section.

Theorem 4.2.2 Assume that

RE + RS < Ay
RY+RY <Ay (4.2.11)
Ry +Ry < Ay

Y“Recall that A1 is the value of u(p) on C, N g, see Chapter 3.
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and also
Op(C,) <L, Op(%0) < Ty (4.2.12)
Assume further that in the initial layer region

Oy’ <y, Oy <T
R[Q]’ < Ag, R[Q]’ < Ay (4.2.13)

Assuming finally that Ag, Ay, Ao, Ty, L. are sufficiently small, then there
exists a generic constant ¢ such that

Op) + Opy < eZo + L + Do + Ap + Ag) (4.2.14)

Proof: We present here the strategy of the proof. All the details are given
in section 4.4. We divide the proof in four steps.

i) We assume 4.2.6 and the auxiliary bootstrap assumption
O +07° <T (4.2.15)
with 'y sufficiently small. Then the following inequalities hold

Oy <c(Ty+Z.+ Ao+ Ar)
Q2 <c (IO + 7, + AO + Al) (4216)

Oo(w) < c(To+To + Do + Ay + Ay) (4.2.17)

ii) These inequalities, together with the estimates

c(Zo+ T + Ao+ Ay)
C(I() +I*+A0+A1)

Oy

1] <
Oy <

proved in the previous theorem, allow us, applying Lemma 4.1.3, to estimate
O7° + 07° in terms of Oy + Opyy, O2 + Oy. Therefore we obtain

Oi)o +QC1>O <c (IO + T+ Ag + Al) (4.2.18)

so that choosing Zy + Z, + Ay + A sufficiently small we infer that

r
OF +0F < (4.2.19)

15To prove these estimates we also use the results of the previous theorem.
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iii) Introducing again, as in Theorem 4.2.1, a region S(I';) contained in K
we repeat the previous argument and check that

OF° + 07 <T (4.2.20)

holds in the whole spacetime K. In view of this result the inequalities 4.2.16,
4.2.17, 4.2.18 hold in K.
The details of the implementation of steps i), ii), iii) are given in section 4.4.

Theorem 4.2.3 Assume that

Ry + Ry < Ag

RY+RY <A (4.2.21)
Ry + Ry < Ao
and also
O5(C,) <L, Op3(%0) <o (4.2.22)

Assuming further that Ag, A1, Ao, Ty, L. are sufficiently small, there exists
a generic constant ¢ such that

O3+ 03 < c(To + Lo + Ao + A1 + Ay) (4.2.23)

The proof of this theorem is discussed in section 4.5.

We remove now, to complete the proof of Theorem M1, the assumptions on
the oscillation of w. In fact we have

Corollary 4.2.4 Under the assumptions ' of Theorem M1, relative to a
“double null canonical foliation”, the following inequality holds

Osc(u)(5,) < (To + T + Do) < 62—0 (4.2.24)

provided we choose Ly, L., Ay sufficiently small. Therefore this allows us to

conclude that Osc(u)(X5,) < eo on the whole 35 and that we can reduce the

. Lo . 5
height of the initial layer region to <.

'6This implies stronger assumptions on the initial and last slice, see, in particular propo-
sition 4.3.17 and corollary 4.4.1.
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4.3 Proof of Theorem 4.2.1, estimates for the zero
and first derivatives of the connection coeffi-
cents

We concentrate on the proof of part (i of the theorem and divide the proof
in many steps.

4.3.1 Estimate for (’)g:f(trx) and (’)g;f(g) with p € [2,4]

Proposition 4.3.1 Assuming 4.2.1, 4.2.2 and the bootstrap assumption
4.2.5 the following estimates hold,

|3 2P s (1) < Ty + T + o)
2727 s (u, 1) < e(To + Lo + Ao) (4.3.1)

Proof: We derive first an evolution equation for ¥try by differentiating the
evolution equation of try along the outgoing direction, see 3.1.45,

YDutry — V((D4log Q)try) = —trxVtrx — V|¢/* (4.3.2)

Using the commutation relation, see 4.8.1 in the appendix to this chapter,

[V, Daltrx = x - Vtrx — (¢ + n)Datry

equation 4.3.2 becomes

DVtry + x - Virx = (Vlog Q)Datry + V((D4log Q)try) — trxVtrx — V||

which we rewrite

1
DyViry — (Dylog Q) Viry + §trxy7trx = —x - Ytrx + (Vlog Q)Dytry
+(YDy log Q)try — trxViry — V|x|* (4.3.3)

Defining 1
U=Q "Vtry

and choosing a null frame such that the vector fields e, satisfy Dye, = 0,
the previous equation becomes

d 3
—U, + =0t o = Fy 4.3.4
duU + 5 rxU, (4.3.4)

[In Prop 4.3.1 the estimate for
trxy requires an estimate of (
done later on, therefore the es-
timate is postponed.]

[modification in 4.3.1]
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where
. . 1 .
F == U= Vi +(VDi log Dtrx— (Vlog ) ( 5 (trx)? — (D1 log Wtrx+ [
Equation 4.3.4 is not quite suited for our purposes as it leads to logarithmic
divergences when we try to apply the Evolution Lemma to it'7, with \; =
3— %. To avoid this difficulty we introduce the tensor
U=Q 'Wtry + Q trx¢ = U + Q Ltry¢ (4.3.5)

Recalling, see 3.1.45, that ( satisfies the equation
Dy = —VD4log Q2+ x(n - ¢) — (D4 log 2)V1og 2 — B
it is simple to see that [/ verifies
d 3
Y, + S0, = F, (4.3.6)

where

F=-Qx-U-VIx]°—nlx>+trx x-n— trx8 (4.3.7)

Applying the Evolution Lemma to the evolution equation 4.3.6 we obtain

3-2 3_2 U, g 2
[P 2 Ulp,s(u,u) < col |r™ P Ulp,s(u,u,) + Ir"» Flp,s (4.3.8)
u

17"Choosing A\; = 3 — 123 we obtain, using the Evolution Lemma,

u
_2 _2 —* _2
3 Ubs () < collr® 3 Uls(uw,) + / "3 Fly.s)

u

_2 _2 2. _2 N
where  [r*T P Flps < [r*7 2 Q% - Ulps + 17" 2 VIR s + 17777 (C+ )X lo.s
_2 1 32
+[r" "7 (VD4 log Q)trx|p.s + EIT?’ 7 (¢ H+m)(trx))p.s
and, from the previous assumptions on try, ¢, 7, it follows that the last term of |r37 ? Flps

2
decays too slowly for the integral ff* |r* % F|,,s to converge when u, — co. This problem

was already discussed and solved in [Ch-KI]. Moreover if we assume for YDy logQ the
expected asymptotic behaviour, which will be proved later on, one realizes that also the

term |r37% (VD4 log Q)trx|p,s has a bad asymptotic behaviour.
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It is easy to show that the integral in the right hand side is bounded for
u, — 00. In fact,

3—2 i n 3—-2
ps + P EYIRP s + [Ir 1,

2
ps < |7“3 P Qx-U

3-2 N 3.2
+ " e Xtexlps + |7 ptrxﬁlp,s] (4.3.9)

P

Using the notation sup = supy, the bootstrap assumption 4.2.5, and as-
sumption 4.2.1 for 8, we have

P 2 QW5 < sup |2 sup [r%||r* 7 P, si < C(Fo) | TPl
PSR s < 25up [P Vs < e(To)Toglr* ™ * Fi,s
5l Plp.s < sup |21 sup |r2n|p,s;13, < F%}g (4.3.10)
|r3_1_2777 - Xtrxlp.s < sup |r?x]|sup |rtry|sup |7’2Q|%2 < C(FO)F%T—I2

1
|r3 Ptrx,B|p s < sup |rtry| sup |7’26|— < c(I‘U)AO—§
r2

where ¢(T'y) is a constant depending on I'y which can be bounded by ¢(1+T).
From these estimates the following inequality holds

p,S)

1
+ o(To) (Ao +TF+T)— (4.3.11)
r2

=k _ 2 o1 3_2 3_2__
[ Fs < o [T (5 s + VR
u

u

Using the final slice assumption Op;(C,) < Z., to control |7“37%W|p,g(u, u,)
we obtain, for p € [2,4],

_2
r 5 Plps(uw) < oTo) (T + Ao +TF + 1) (4.3.12)
LA _2 2
Tl [ = (1 s + 1r* $Rs)
u T

We then apply the elliptic LP estimates of Proposition 4.1.3 to the the Co-
dazzi equation, see egs. 3.1.46, expressed relative to the tensor [/,

dhvx + - Z—QW B (4.3.13)

[The last term of 4.3.11 has

been modified as ¢(To)(Ao +

rz + Fg)%. Obvious subse-
2

T
quent modifications.]
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and derive
~ _2 1,12 _ _2 R
52 Wlps < e (Ir P QW s+ 120 2 Bls + TG Kps)
< c(|r* PPl +r T A0 +r7'T3) (4.3.14)
[modification in 4.3.14] Substituting this estimate in the inequality 4.3.12 we obtain
3-2 9 3 e 1 32
[ Py, (u,u) < e(To) (Zo + Ag + T3 +17) + c(Fg)FU/ ST s (43.15)
u
[modification in 4.3.15] Finally we apply the Gronwall Lemma to 4.3.15 and assuming ['y sufficiently

small, we obtain
e 2P s(uu) < e(To) (Zo+ Ao+ TE+TF)  (4.3.16)

[modification in 4.3.16] This estimate together with the elliptic LP estimates of Proposition 4.1.3
applied to 4.3.13 implies, for p € [2,4],
[r3 2P, (1, w) < €e(To) (T + Do + T +T§) < e(Zo + L. + Ao)
[P 2P Ry (1) < e(To) (T + Do + T3+ TF) < oo + L. + Ay)

completing the proof.

4.3.2 Estimate for |r2_%(trx—ﬁ)|p,5 and |r3~2/PYtry|, s, with
peE(24]
[La stima va scritta)
2P Yirxly 5 < o(To) (Zo + Ag + T3 + ) < ¢(Zo + T + Ao)
(75 (brx — TX)p.s < e(To) (T + Ao + T3+ T3) < eTy + Z, + Ag) (4.3.17)

Remark: To prove these estimates we need, in view of definition 4.3.5, an
estimate of { which will be proved later on, see subsection 4.3.9. We do not
report '8 the proof of 4.3.17 as in the estimates in subsection 4.3.3, we are
going to prove a slightly stronger version which will be used in the Main
Theorem.

8Given an estimate for [r2~2/P(|, s we deduce an estimate for |r>~2/?¥try|,,s. Differ-
entiating 4.3.5, we obtain Atry = div (QF) — div (trx(), Y¥ can be easily estimated from
its evolution equation, obtained differentiating 4.3.6. The result is

[r=/ Y () < e(To) (To + T + Ao + T +T)

Using the estimate already obtained for Ytry and the estimate for Y( obtained from
subsection 4.3.9 and applying Lemma 4.1.3 we obtain the result.
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4.3.3 Estimate for |r271%7'3 (try — try)|ps with p € [2,4]

Remarks: 1) Observe that this estimate we are going to prove is slightly
stronger of the one suggested by the bootstrap assumption 4.2.5 and dis-
cussed in subsection 4.3.2.

2) The proof of this estimate, given in Proposition 4.3.14, implies a stronger
assumption for (trxy — try) on the last slice and an appropriate estimate
for (QD4logQ — QD4 log ). Therefore we delay its proof until this last
estimate has been proved in Proposition 4.3.13.

4.3.4 Estimate for [ (Qfry — 1) |,.s with p € [2,4]

Remark: As for the previous estimate, the estimate for (Qtrx — %) re-
quires, preliminary, an estimate for QDy log ). Therefore we delay the proof
of this result until this last estimate has been proved in Proposition 4.3.4.

4.3.5 Estimate for (’)g,’f(trx) and (’)g;f(g) with p € [2,4]

Proposition 4.3.2 Assuming 4.2.1, 4.2.2, 4.2.3 and the bootstrap assump-
tions 4.2.5, 4.2.6 the following estimates hold,

P2 2P VX p,s (u,w) < e(Zo + I, + Ao)
P =2Pr %5 (u,u) < e(Zy + T + Ao) (4.3.18)

Proof: We proceed, basically, as in Proposition 4.3.1. We introduce the
tensor field

U=Q 'Wiry — Q 'trx¢ (4.3.19)
and show that I/ satisfies the evolution equation

%ﬂa + o0, = F, (4.3.20)

where

F= —QXQ—WXF _Q|X|2+t7"XX'n_t7"Xﬁ (4.3.21)

satisifes
3-2 3-2 . 3.2 . 3.2 .
F T Flps < PP RQR - Ulps + IR VIRP s + [Ir Pl s

_2 R _2
+ 7o - Xirxlp,s + 17ty Blys] -
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The various terms on the right hand side are estimated, with the help of the

bootstrap assumption 4.2.5 and assumption 4.2.1 for 3,
3—2 g o 3-2 1 3.2 1
[r" 2 QX Ulp,s < sup [Qfsup [rr2 X[|r" 2 Ulps—5 < c(Lo)lolr” ¥y, s—5
r72 r72
2-2 .
pT_WX|p’S

2 3 _2 N
P YI%1 2 ps < 2sup [P XY P T Vilps
T2 T2
3o % 2]ps < 22 sup [r2nl, s —e < T3 4.3.22
nX|"lp,s < sup [rr2x|"sup [r°nlp,s—5 < T (4.3.22)
rT- rTZ
1 1
7 < C(FO)F% 3
2 rr2

_2 3.
|r° " P mxtry|p,s < sup|r72x|sup |rtry|sup |7“2n|
r7?

2 3
|r°rtryx Blp,s < sup|rtry|sup |r27'_2§|
,

From these estimates we infer that
3_2 1 2—2 ~
|’r pﬂ|p75 + _|7" pT—WXh’,S

5
T2

[modification in 4.3.22]
u 3_2 u 1
| s < eroro [ | —=
uo(u uo(u) \ pr2
1 1 1
+ To)(Ag+T5+T3) | — T+
"= ez 1

1
2

) (4.3.23)

[modification in 4.3.23] where ug = ug (g) = 250 —U.
2
Using the initial assumption Op(3) < Zop to control |r375ﬂ|p,5(0) (u) and

the results of Lemma 4.1.7 applied to V = [/ we derive
(4.3.24)

ps(u,u) < o(lo) (Mg + T3 +17)

u 1 3.2 1
+ c(FO)FO/ =t P Wlps + —|r
Uo \gp2 T2

2-2 N
P T_WXM),S)

ey

The main difference with the previous case is that the

[modification in 4.3.24] for p € [2,4].
integration is made, here, along the incoming null hypersurfaces C. We
are now ready to apply the elliptic LP estimates of Proposition 4.1.3 to the

Hodge system, see 3.1.46,
R .1
vy =Cx+ ;W - f (4.3.25)
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We thus obtain:

_2 _2 _ _2 1
P2 Vs < ofTo)(r s+ suplr?F 7l
T2
2 5o 1
+ sup|r¢|sup|rr’ x| ;)
r72
_2 —_ A 2
< c(F0)<|r3 PPlps— + 2 + 0;) (4.3.26)
A
which substituted in 4.3.24 implies
3-2 2 3 v o] 3_2
P () < ofTo) (B0 + T3+ T8) +cTo)To | [~ —1r" P Pls
o gy 2
v 1 (T3
+/ — [0+ A (4.3.27)
w T2\ 7
and, by the Gronwall Lemma,
[ 2P, 5 (u,u) < e(To) (Ao +TF +17) (4.3.28)

From 4.3.28, going back to 4.3.26, we deduce

(P27 Rl (u,u) < e(To) (Zo+ Ao+ T3 +T5) < e(Zy + Ao)

P2 2PV klp,s(u, w) < e(To) (Io +Ag+T5+ F%) < ¢(Zy + Ao)
proving the proposition.
4.3.6 Estimate for |r2_%(trx—@)|p,g and [r3 2/PYtry|,s, with

pe(2,4]
P2 Wirxly s < o(To) (Zo + A + T + ) < ¢(Zo + T + Ao)
2 N

77 (trx = TX) |p,s <e(To) (To + Ao + I3 +T3) < oZo + T + Ao) (4.3.29)

Remark: To prove these estimates we need an estimate of { which will
be proved later on, see subsection 4.3.9. We do not report ' the proof of
4.3.29 as in the estimates in subsection 4.3.7 we are going to prove a slightly
stronger version which will be used in the Main Theorem.

Given an estimate for [r2~2/?¢|, s we deduce an estimate for |r372/pY7trx|p,s. Differ-

[modification in 4.3.27]

[modification in 4.3.28 and in
the next line elimination of
“and to 4.3.19,” and the first
line of subsequent inequalities.]
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1 -
4.3.7 Estimate for |r27%7'3 (trx — trx)|p.s with p € [2,4]

Remarks:

1) Observe that, as in the case of (try — try), the estimate we are going to
prove is slightly stronger that the one suggested by the bootstrap assumption
4.2.5 20 and implies that one.

2) The proof of this estimate, given in Proposition 4.3.14, implies a stronger
assumption for (try — try) on the initial hypersurface and some estimate
for (2D3log — QD3log Q). Therefore we delay its proof until this last
estimate has been proved in Proposition 4.3.13.

4.3.8 Estimate for |r1*%n (Qtrx—l— %) lp.s with p € [2,4]

Remark: As for the previous estimate, the estimate for (Qtrx + %) requires
preliminary an estimate for 2D3 log (2. Therefore we delay the proof of this
result until this last estimate has been proved in Proposition 4.3.4.

4.3.9 Estimate for C’)Sf(n), Og,’f(ﬁ), p € [2,4]

Proposition 4.3.3 Assuming 4.2.1, 4.2.2, 4.2.8 and 4.2.5, 4.2.6, then the
following estimates hold,

2 2Pl s(u,u) < e(Ze 4+ To + Ag)
|7"3 Q/anlp,s(u,u) < ce(Zi +To + Ao)

P22y, s(uyu) < (T +To + Do) (4.3.30)
P32y s(uu) < (T + Ty + Ag)

Proof: To obtain the norm estimates for 7, n and their first tangential
derivatives we recall the equations, see 3.1.45,

Din=—-x-n+x-n—-7
Psn=-x-n+x-n+p.

entiating 4.3.25, we obtain Atrx = div (QY) + div (trx(), Y¥ can be easily estimated from
its evolution equation, obtained differentiating 4.3.6. The result is

=220, (u, ) < e(To) (Zo + T + Ao + T + )

Using the estimate already obtained for Ytry and the estimate for Y( obtained from
subsection 4.3.9 and applying Lemma 4.1.3 we obtain the result.
*0Recall that Og’zso(trx)(k, v) = [r?(trx — xX)lp.s-
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If we differentiate these equations to obtain estimates for ¥n or ¥ it seems
that their order of differentiability is the same as that of Y3, Y. To avoid
this loss of derivatives we proceed as in [Ch-KIl], with the help of the “mass
aspect functions” introduced in Chapter 2, egs. 3.3.6,

[
p=—dvnp+ox-x—p
1o
p=—divy + X X—p (4.3.31)

They satisfy the following lemma, proved by a direct computation:

Lemma 4.3.1 The scalar functions p, p satisfy the following evolution equa-
tions

d 1
T _ 2
Tkt (Qtrx) p G+ 2( trx)

d 1
A + Qtrx)p = G+ E(Qtrx),u (4.3.32)

where
. ~ 1 .
G = Q¢ (Ven) +Qn—n)- ¥ - ;QrxIxI’
1 o .
+ §Qtrx(—x-x+2p— nl?) +20n-%-n—n-B)

. ~ 1 .
Qx - (V@n) + QQ(Q -n)-U- ZQ”X|X|2 (4.3.33)

o}
Il

1 o .
+ 59trx(—x-x+2p—|7l|2)+29(Q'X'77+Q'é)

Using the equations 4.3.32 it is possible to obtain estimates for p,u which
together with the Hodge systems

1.
divn=—p+ X X~
1
cyrln = o — EX A X (4.3.34)
1o
divn=—p+5X-X—»p
1
crly = —o — 5)2 AX (4.3.35)

allow to control the norms (’)g:f (n), (’)g:f (n). We choose, nevertheless, a
slight different method which allows to obtain the result in a easier way
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and, moreover, to obtain a somewhat improved estimate, if the assumptions
on the initial and final slices are stronger.
We start introducing two different functions fi and fi,

(n—1) + i(trxtrx —trxtry) = —divn+ s (x - x =X x) — (0 —P)

=
Il

(1~ )+ § (trxtr — TXR) = ~diva+ 2 (x- X~ X7X) ~ (0= 7) (43.36)

=2
Il

relative to these functions n and 7 satisfy the following Hodge systems

1 _
divn = —u+§(x'x—x-x)—(p—p)
1
cyrln =0 — §X/\ X (4.3.37)
1
divy = —g+§(x-x—x X) — (p—P)
1
cfrly = —o — 5)2 A X (4.3.38)

The functions /i and i satisfy the following lemma,

Lemma 4.3.2 i and [ verify the following evolution equations

Lhit @ingi = (OF QF)+ (@A - QH)  (43.39)

Lit Qi) = (OF ~OF) + (QH ~ Of)
where
F =% (W®n)+ﬂ(n n)-P+3 ~tr(Inl>~Inf?) - 1(trx|x|2+tfx(>2-2))+2n'>2-n
H = ( XX -2 ﬁ+trx(p+p)>

. 1 3
H = (—trxax X +2n- B+ trx(p +,0)>

Proof: Recalling the definition

N o1 _
= (u—p) + 7 (trxtry — trxtry)

. 1 L .
= % (Y8 +00 —n) - Tt g tr(inf — o)~ (il + tr(% - 20) +20- %
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we observe that
1 1
Dy <u + Ztrxtrx) =Dyu+ 1 (trKD4trX + trxD4trx)
1 1
= {—trx,u +Q7'G + §trx <§X X —p— Mvg)]
1 1
+Ztrx [(D4 log Q)try — E(trx)2 - |)2|2] (4.3.41)

1 1
+Ztrx [—(D4 log Q)try — §trxtrx — X - x +2divy + 2|77|2 + 2,0]

which can be rewritten as

d 1 1 -
T (,LH—Ztrxtrx) +(Qtry) <,u+1trxtrx> =QF + Q(trxp—2n - 5) (4.3.42)

Posing [u] = (u + itrxtrx) we have

d i LoIS| s
" |S|/du H 1] ou W ISI/mrX
|S|/ —tex[p] + F + (trxp — 20+ B)) — (Qrx) [u] + Qbex[p]
F 4+ Q(trxp — 21 - B) — (Qtrx)[p] (4.3.43)

which implies

d— . -
Zo ]+ (Qerx)[u] = QF + Qtrxp — 20 - 5) + (Qtrx — Qbex)[u] - (4.3.44)
S 1
=QF —2Qn - B + (Qtry — Qtrx)gm + Qtryp — (Qry — Qtry)p
Combining 4.3.41 and 4.3.44 we obtain

d L —
i+ (Qtrx)ji = (OF ~ OF) — (Qtry ~ 0rx) 5X X — 2 - 6 — Oy )

+(Qtryp — Qtrxp) + (Qtryx — Qtry)p (4.3.45)

completing the proof of the first part of Lemma 4.3.2. The proof for p is
exactly analogous to the one for fi and we do not report it here.

Using the evolution equations 4.3.39, the Evolution Lemma with \; = 2— %,
and the elliptic estimates of Proposition 4.1.3 we prove the following lemma:
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Lemma 4.3.3 Under the bootstrap assumption 4.2.5, if g >0 is sufficiently
small, then the following inequality holds

_2 _2_
(27 il (u,) < ¢ [[r* 77 fily s (u, ) + ¢(To)(Ze + Ag)] - (4.3.46)

and the corresponding one for p,
2 —2
[ ilp,s () < e [[r*77 il s (uo, w) + e(To) (o + o) (4.3.47)

Proof of Lemma 4.3.3: We apply the Evolution Lemma, with Ay = 2 — %,
to equations 4.3.39 and derive

2 u

s < el Flstuu) + [P @F - 0F)

u

4 / S 123 (Q — ﬁ)bﬁ) (4.3.48)

u

|r

j)

IA

_2 _2 u _2 ~ —=
P P ips(un) < ol Flpstuow + [ 17 HOQE - QF)s)
uo

u ~ - ~
+ / 725 (QH — Qﬂ)|p75> (4.3.49)
U

0

2 ~ T~ 2 ~ T~
The various terms in |7~ (QF -QF)|, s, Ir*"» (QF-QF)|, s, are estimated
using the bootstrap assumption 4.2.5, the estimates 4.3.16, 4.3.28 for I/ and
U and the assumption 4.2.1 for p, § and 8. We obtain

92 R —~ 9_2 1
I Q- (Y@n)|p.s < e(To)Tolr PWﬁ|p,Sr—2

2 1
> 2 Q% (n — ) - Ylp,s < e(To)To(Z + AO)r_3

22 1
[r*" 7 Qtex(lnl* = [n*)lp,s < e(To)TG 5 (4.3.50)

2_2 ~ 3 1
[r™ P Qn - X nlp,s < C(FO)FOT_4

1

9_2 ~ ~ o~
L (trx|x|2+trx(x-x)) lp.s < e(To) g~

2

R ~ _2 1
PQx - (Y&n)lp,s < c(To)Tolr” PVilps -

_2 1
[r* 72 0% (= ) - U5 < e(To)To(Zo + Ao)

r*
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723 0tx((l - InP)lp,s < e(To)TE (1351)
|r 2"971 K nlp,s < (Do) ;u
7278 (x| XP (€ 90) s < o)
To estimate the various terms appearing in the explicit expressions of
|r271%(QI:I — ﬁﬂp,s and |r27%(QE — @) |p,s we observe that

(QF ~QF) = (Qtry ~ Drx)5X X — 2% -6~ O )

+ (Qtrxp — Qrxp) + 2(Qtry — Qtrx)p — (Qtrxp — Qtrxp)
— 1
(QH - QH) = (Qtrx—Qtr&)ix-x—i-Q(Qﬂ-ﬁ—Qﬂ-ﬁ)

+ (Qrxp — Qtrxp) + 2(Qtry — Qtry)p — (Qtryxp — Qtrxp)

Using the bootstrap assumption 4.2.5 and assumptions 4.2.1 for p, 8 and 8
we have

2 S 1
5 (Qtryx — Qtrx) X Xlp,s < C(Fo)FﬁTu

|’ (Qtrx Qtryx)X Xlp,s < c(To)TG

3
_2 1
P25 (Qn - B — O B)lp.s < c(To)Tolg —~
r2
P25 (- B — 0 B)lp.s < c(To)ToAg— (4.3.52)
r2u2
_2 1
[ (Qbrxp — Qtrxp)lp,s < eTo) Ao—
r2u2
_2 1
(277 (Qbrxp — QrxP)lp,s < e(To) Ag——p
- - r2u2
_2 [
|77 (Qtrx — Qtrx)plp.s < c(lo)Ao 5
_2 S 1
775 (Qtry — Qtrx)plp.s < c(lo)Ao 5

Using the inequalities 4.3.50, 4.3.51 we derive the estimates,

P+ T—lg (@ +20) + rg)}

9_2 Q~ T 1 22
[r= P (QF = QF)lp,s < c(Lo) |To51r™ »¥n

_2 1 2
273 (QF — QF)|.s < ¢(Ty) {romr? tm

1 2



[The presence of Z. + Zp in
4.3.54 arises from the term

%(trxtrx — trxtry).]

[The estimate of |r(Q — %)\ has
been postponed as it requires
the estimate of QD4 log.]
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We estimate |r271%Y717 2.5 |r271%Y72|p,5 with the help of the Hodge systems
4.3.37, 4.3.38. In view of Proposition 4.1.3 we derive

_2 _2 1 5.2 _ 1 1
|’f'2 pW’]”|p’S < C|fr2 p/1,|p,5+c;|'r3 p(p—p, a)|p,s+EF%+c; (IO —|—I*+A0+Fg)
1

12
ru °

IA

2 1

C|fr2 p/1'|p,5 —+ C; (IO + 7, + AO + F%) +
_2 _2 1, 3_2 1 1

|’f'2 pyﬂ|p’s < C|fr2 pﬁ|p,5+c;|']"3 p(p,O’)|p,5+EF%+C; (IO —|—I*+A0+F%)

1 2 1 2
psHe (Io + T, + Ao+ FO) + T (4.3.54)

< c|r2_%g
Therefore inequalities 4.3.53 become
22 ~ = 1 22 _ 1 2
"7 (QF — QF)lp,s < e(To) [To5|r* 7 illps + ((IO + T, + Ag) + ToAg + FO)

2, - = 1 _2 1
|7“2 p (QE — QE)|p75 < C(Fg) |:F0E|T2 Pﬁ|p75 + % ((I() + 7. + Ao) + Ay + Fg)] (4355)

Using the inequalities 4.3.52 we derive the estimates

2 —= 1 1 1

Ir*" ¥ (QH — QH)|,.5 < ¢(T) <I‘§T + ToAg— + A0—2>
reu r2 T

1 1 1

2 ~ — =
72 F @ - Q)5 < e(To) (T35 + Tolo—y + Ao ) (£350)

r2us
Using these estimates in 4.3.48, 4.3.49, Lemma 4.3.3 follows immediately
from an application of the Gronwall Lemma.

Once the estimates for i and fi, 4.3.46, 4.3.47, have been proved Proposi-
tion 4.3.3 follows applying again the estimates of Proposition 4.1.2 to the
Hodge systems 4.3.37, 4.3.38.

The following subsections are dedicated to the estimates of log{2 and its
derivatives up to fourth order. Specifically we will control w,w and the
following derivatives

Wwa Wga D3&7 D4w ) D%g, WD3Q7 WD4W ) WZ"Ja WQQ, WSQ :



4.3. PROOF OF THEOREM 4.2.1 179

4.3.10 Estimate for 0}°(w) and 0)°(w) with p € [2,4]

Proposition 4.3.4 Assuming 4.2.1, 4.2.2, }.2.3, the bootstrap assumptions
4.2.5 and 4.2.6, then the following estimates hold,

727Dy log Qs (u,w) < ¢ (Zo + Ly + Ao)
5 ODslog Qlps(u,u) < ¢ (To+ o + Ag)  (4.3.57)

Proof: To control w and w we start from the equation 3.1.47 which we
rewrite as

D3Dylog 2 + DyD3log Q = —2(D3 log Q)(Dylog Q) +2(n - n — 2¢* — p)
From, see Proposition 4.8.1 in the appendix to this chapter,

D;D3logQ — D3sDylogQ = —4¢ - Vg Q

we derive
D3(QD4logQ) = F — Qp
D,(QD3logQ) = F — Qp (4.3.58)
where f?, F are given by
F=20¢-YiogQ+ Q(n -1 —2¢?)
F=-20¢-Y1ogQ+ Q(n-n—2¢?) (4.3.59)

Applying the Evolution Lemma to these equations we obtain

U, ~
r ¥ QD; log Ay s(u,u) < c<|r%9D3logﬂ|p,s(u,a*>+ [ Fls
u

U, 2
+/ lrQplp,s
u

Do st < e (lr FOD o5l +
u

U g,
Ir ?Flps
0

u
+/ |r§szp|,,,5> (4.3.60)
ug

Using assumptions 4.2.1 and the bootstrap assumption 4.2.5 we easily check
that

_2 . 1 _2 2 3_2 Ag
I E)ps < eCo)li— |1 7plus < e T plps < o= (43.61)



[style modification]
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Multiplying both sides of the first inequality in 4.3.60 by 72 and those of
the second one by r7_, and using the results of Lemma 4.1.7 applied to
V =Dy log 2, we obtain

2 2
Ir*" 7 QD4 log Q.5 (u, u) < ¢ (|r2 »QDy log Qp,s, () + ¢(To) (Ao + F%))

|7“1*%T_QD3 log Q|p.s(u,u) < c (|7«17%7_QD3 log Q| s(u,u,) + ¢(To) (Ao + Fg))
The exponents (2 — %) and (1 — %) are chosen in such a way that the norms

_2 _2
|7"2 PQD4logQ|p,g(0)(g), |r1 »7_QD3log Q, s(u,u,)

are controlled by the assumptions 2! 4.2.2. The final result are the following
estimates:

2
[r* 2 QD4 log Qly, 5 (u,u) < ¢ (Ty + L, + Ag +T3)

|’I"17%T_QD3 log Qp.s(u,u) <ec (I() +Z, + Ao + F%)
for any p € [2,4]. Choosing I'? < Zy + T, + A we infer

up (05 (@) + 05 (W) < ¢(Zo + T + Ao)
pE(2,

proving the proposition.

4.3.11 Estimate for sup |r(Q2 — %)|

Proposition 4.3.5 Assuming 4.2.1, 4.2.2, 4.2.8 and 4.2.5, 4.2.6, then the
following estimate holds,

1
sup |r(Q — §)| <c(Zo+Zi+ Ao) (4.3.62)

Proof: We start from the inequalities 4.3.30. We recall that, as n +n =
2Y log €2,

Alog Q = %W(n +1n)

2'Remark that, assuming K endowed with a double null canonical foliation, on C,

3
we control the stronger norm |r17%7'f QD3 log Q|p,s, , see definitions 7.4.3 in Chapter 7.
Nevertheless this does not allow to obtain a stronger estimate for QD3 log 2 in the whole
K due to the presence of the term p in 4.3.58.
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and use the elliptic estimates of Proposition 4.1.3 to obtain

717217 (log © — Tog ) s (1) < elr® PV + 1)l < ofT. + T + Ao)
72 20F log Qs (u,w) < el 2PV + 1)lps < ofZe +To + Bo) - (43.63)

From the first inequality, to control supy |r(€2—3)| we have to control rlog Q.
To do it we use the following lemma:

Lemma 4.3.4 Assuming the last slice endowed with the canonical foliation,
log Q) satisfies, along the null hypersurfaces C(u), the following equation:

- u, 1 N w,
log 2Q(u, u) = —/ @/Sﬂtrx(logﬁ —log Q) — / ODy4log Q) (4.3.64)
u u

Proof:

v (s Les0) = g Lo

— | —= [ logQ) = ———So + — /QtrloQ

du \[5] Js 18 5] Js 0u |S|( |S[)log ©2 5] [, SHrxlos
= QD4logQ+ /Qtrx (log Q2 —log Q) (4.3.65)

where we used 2|S| = |S[Qtry.
Since the canonical foliation implies that, on the last slice, log 22 = 0 the
result is achieved.

Using Lemma 4.3.4 as well as eq. 4.3.63 we infer that

llog 2Q(u, u)| < /

u

u, 1 — by
< / — (/ |Qtrx|2> : (/ |(log 2 — logQ)|2> : +/ |2Dy log Q|
u S| \Us s €

u, 1 - w,
<c(To) [ S l(log @~ TogDlpzs + / D, Tog

c(I‘g)(I*+IO+A0)/u : (ro) (To + T, + Ao)

|S|/Q|trx||(log9 log Q) |+/ |Q2Dy log Q|

X u
Plugging this estimate back in eq. 4.3.63 we obtain

P12/ 10g 20, 5 (u,u) < [t 2Plog 29 ,.5(u, w) + ¢(Do)(Zi + Lo + Ao)
< c(Zo+Zi + Ay)
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This result together with the second inequality of 4.3.63,

1
2P W log 200y 5 (u, ) < S P+ n)lp,s(u,w) < (T + Lo+ Ao)

allows to conclude, using Lemma 4.1.3,

sup |rlog 2Q| < ¢(Zp + Zi + Ay) (4.3.67)
From
(log 202)%

k!
it follows that the inequality 4.3.67 implies the inequality

1
2(Q2 — 5) =exp(log2Q) — 1 =%,
1
sup [r (2 — §)| <c(Zo+Ze + Ao)
completing the proof.
4.3.12 Completion of the estimates for try and try

Proposition 4.3.6 Assume 4.2.1, 4.2.2 and the bootstrap assumption 4.2.5.
With the help of the first result of Proposition 4.5.4,

127Dy log Qp s (u,u) < e(To + Lo + Ao) (4.3.68)
we prove
— 1
sup |r?(Qtry — ;)| <c(Zop+ T + Ay) (4.3.69)

Proof: The evolution equation for Qtry is the following one 22:

d —— 1 S 1, — 1— —
d—(Qtrx) + EQtrx(Qtrx) = §(Qtrx)V + §V2 +FE (4.3.70)
U

where

V= (Qtrx - Wrx) , E= [2Qtrx(QD4 log Q) — Qz|f<|2} .

22

4
du

Q) + %Qtrx(ﬂtrx) — (@trx)? + 2% QD1 log Q) — PR P]

N | =

(Qtry) + %Qtrx(ﬂtrx) =

= %(Qtrx) (Qtrx - Qtry) + = ((Qtrx)? — (Qtrx)Q) + [2Qtrx (2D4 log ) — Q2|x]?]

DN | =
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Moreover, see 4.1.30,

d1 1 or 1 — 1 1 1
T = g = oMy = o Qtrx - 4 o 4.3.71
dur 2 Ou oy X 5 tIFXT-F%V (4.3.71)
and, denoting W = (Qtrx — %),
iW_,_th W—EWV—I—EW—%E (4.3.72)
du g X =5 2 3.

We control E = [2Qtry (2D4log Q) —02|x|?] using the bootstrap assumption
4.2.5 and assumption 4.3.68,

1-2 9\ 1
7 Blys(u,u) < (Do) (Zo + e+ Do) +15) 5 -
We now apply the Evolution Lemma to 4.3.72, with \; =1 — %. Applying

estimate 4.3.2 to V', Gronwall Lemma and multiplying both sides by r, we
obtain, for p € [2,4],

7“27% (Qtrx — l)
r

Using Lemma 4.1.3, as ¥/ (Qtrx - %) = 0, we obtain

<c(To+To+ 80 +T3) < (T + L+ A) -

p,S

1
sup |7’2(Qtrx — ;)| <c(Zo+ I + Ay)

concluding the proof.

Proposition 4.3.7 Assume 4.2.1, 4.2.2, 4.2.83, the bootstrap assumptions
4.2.5 and 4.2.6. With the help of the second result of Proposition 4.53.4,

'~ 70Dy log Qy,5(u, u) < ¢(Zo + L. + Ao) (4.3.73)
we prove,

1
sup [r7—(Qtry + =)| < ¢ (Zo + Zs + Ao) (4.3.74)
- T

Proof: We proceed as for (Qtrx — %) In this case the evolution equation

is, defining W = (m + %)7

d 1 1 l—  —

[corollary has been changed in
estimate 4.3.2]
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To control £ = [2Qtrx(QD3 log ) — QQ|X|2] we use the bootstrap assump-
tion 4.2.5 and inequality 4.3.73

1-2 9y 1
[r 77 Blp,s () < e(To) (Zo + T+ B0) +T5) — .

We apply the Evolution Lemma to equation 4.3.75, with A\; =1 — %. Using
[corollary has been changed in estimate 4.3.6 to control V, Gronwall Lemma and the results of Lemma 4.1.7
estimate 4.3.6 and the use of 51, h)iad to I, we obtain, for p € [2,4], multiplying both sides by 7_,

Lemma 4.1.7 has been recalled.]

<c(Zo+Zi + Ay) (4.3.76)
p,S

_2 1
rl 12’7', <Qtr&+ —)

r

In view of Lemma 4.1.3, we conclude that 23
1
sup [r7— (Qtrx + )| < ¢(Zo + L + Ao)

Next corollary, we state without proof, is an elementary consequence of
previous results,

Corollary 4.3.1 From Propositions 4.53.6, 4.3.7 and estimates 4.3.2, 4.3.6
the following inequality holds

sup [r7—(trx + trx)| < e(Zo + Z. + Ao) (4.3.77)

4.3.13 Estimates for O7°(w) and O7°(w) with p € [2,4]

Proposition 4.3.8 Under the assumptions 4.2.1, 4.2.2 and the bootstrap

[Assumptions are the extended assumptions 4.2.5, 4.2.6, the following estimates hold **, for any p € [2,4],
ones as we refer to underlined
and not underlined quantities]

[~ YD, log Qp,s (1) < ¢(Ty + T + Ag + Ay) (4.3.78)
7257 VD3 log Qp.s(u,u) < ¢ (Zo+ Ly + Ao + Ay)

?30bserve that the decay cannot be improved due to the term 2Qtry(Q2D3log Q) in E,
see 4.3.75.

2"The estimates of O°(w) and O (w) discussed in this subsection can also be ob-
tained in a different way together with the estimates of @2 (w) and O%° (w), see Propo-
sition 4.4.1.
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Proof: Yw=—1VD,log(} and Yw=—1YD;log(Q satisfy, along the C(u)
and the C'(u) null hypersurfaces, the following evolution 2 equations, ob-
tained deriving tangentially equations 4.3.58 and applying the commutation
relations 4.8.2,

—X(2¥D4log Q) + Yp
— (D4logQ)(QYD3log Q) — H

1
D3 (QYD4log Q) + Etrx(QWDLL log Q)

D,(QYDs log Q) + %trx(QWDg logQ) = —QVDslog®) +YVp  (4.3.79)
— (Dslog )(Q¥Dy log Q) — H
where
H = (Viog®) [-(D3logQ)(Dylog ) +2( - Viog Q + (-1 — 2¢* = p)]
+ ¥ [2¢- Vg + (- — 2¢2)]
H = (Viog®)[~(Dilog2)(Dslog?) — 2 - Viog Q2+ (n-n — 2¢* = p)]

+ ¥ [-2 - ViogQ + (-7 - 2¢?)]

These evolution equations have to be estimated simultaneously. Using the
bootstrap assumptions 4.2.5, 4.2.6 and assumptions 4.2.1, 4.2.2 we easily
check 26 that, for p € [2,4],

_2 . o4

[r™5 (H, H)lp,s < or~"To (Ao + (T + T + Ao) + TF) < or™"To(To + L. + Ay)
_2 1

[T Yl < A

Also,

_2

|(QYD3 log ) (Dylog Q) |5 < r 4771”7 7_(QYD3 log Q) .5
_2

|(QYD 4 log Q) (D3 log Q)|,.5 < r 47 Tor* 7 (QYDy log Q) |5 .

Applying the Evolution Lemma to the first evolution equation 4.3.79, with
AM=1-— %, and then multiplying both sides by r? we obtain 27

%5 Choosing a null frame such that Dseq =0 or Pue, = 0.

26(Qbserve that the generic term of Y[2¢ - Vlog Q + (-7 — 2¢?)] has to be estimated as
a product |A|s|VB|rr(sy which is bounded by T'o(Zo + Z. + Ao).

2"Bach time we use the evolution equations along the incoming null hypersurfaces we
also use Lemma 4.1.7. As this is always done in the same way we do not repeat it anymore.

[In the first integral of the r.h.s.
_3

of 4.3.80, the factor r—17 2

substituted by r~'7-1]

is

[In the last term of the r.h.s. of
4.3.80 and of 4.3.81, the factor
r~! is wrong due to the pres-

ence of Yp and has to be sub-
stituted by r_%]



[In the last line of 4.3.82, the
first integral does not appear
and in the second integral the
first factor r—2 has to be sub-
stituted by r=ir7L
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_2 _2
7 @VD1 g Ds.) < oI F QP log D, (10

v 1 3_2 v o1 9_2
+T0 " F(@¥Dlog s +To | ——[r* Fr_(2¥Dslog ) s
uo T'7T— uo TT—

1

+

r2

(To(To + . + Ay) + A1)> (4.3.80)

Applying again the Evolution Lemma, with A; = 1 — E to the second
evolution equation 4.3.79 and then multiplying both sides by r7_, we obtain

P (Y Dalog s ) < o[ P (AFDa log )51, 12)
(O | 9 2 1 3_2
+T [ 1 P (Y Dy log s + To / I QD4 log )]s
u
1
L 0@+ T, + A0) + A )) (4.3.81)
7'2

Applying Gromwall Lemma to the inequalities 4.3.80 and 4.3.81 it follows

_2 _2
7 @FD i log Dlys(u,) < (17 VD4 log Dl (10

v o1 _2 1
+r0/ L i (QYDslog s + — (FO(IO+I*+A0)+A1)>

o I'T— r2(u,u

|’f'2_%7'— (QYD3log Q)|p,s(u,u) < <|r2_’_2’7— (QYD3log Q)p,s(u, w,)

U, ]_ 2
4T [* S QYD log D)l + —— (TolTo +T. +80) + A1) )
u

72 (u,u)

and, combining the two, we easily derive

_2 _2
|r° "7 (QYDy4 log Q)|p,s(u, u) < c (282% |r° % (QYDa log Q)54 (1)
0

|-

2
+T Sup 1?7 _(QVD3 log Q)5 (u, 1) + — (14 To) (To(Zo + L + Ap) + A1))

M=

T
+T2 / = / _|r » (QYD4 log Q)]s (4.3.82)
ug —

and the symmetric one. Choosing I'g sufficiently small, and taking the sup
2
of |r*7% (QYD4 log Q)],.5, we obtain

_2 _2
> (QYDy log Q)5 (u,u) < ¢ (;uI;C r* % (Q¥Dy4 log Q)|p, S(o) ()
oN
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2
+Tg sup [r* »7_(Q¥Dslog Q)lp,s(u, ) + (14 To) (To(Zo + . + Ag) + A1)>
C.nK

(4.3.83)

and the symmetric one,

e QYD log O, s(u,u) < c (5“& 2 e (VD log @) s 1,

_2
+To sup. Ir°7 % (Q¥D4 log Q)|p, S(o) (1) + (1 + To) (To(Zo + T + Ag) + A1)>
oN

(4.3.84)
Finally, making use of the initial and final slice assumptions 4.2.2
On(C,) £ I, , Opy(%0) < T,
and choosing Iy sufficiently small, we derive, for any p € [2,4],

2
PP YDy log Q, s5(u, u) < ¢(To) (To + Zv + Ao + A))
2
7" 2 7_YQD3 log Q5 (u, u) < ¢(To) (Zo + L + Ag + A1)

proving the proposition.

The estimates 4.3.78 of Proposition 4.3.8 complete the control of the norms
OV (w) + OF*(w), obtaining

51[12p4] ((’)f’s(w) + (’)f’s(g)) <c(Ty+Ti + Ao+ Ay) .
pe 9

4.3.14 Estimate for O)°(Dyw) and 05°(Dsw) with p € [2, 4]

Osservazione 4.3.1 It can be appropriate to observe that for Dyw and
Dsw, as before for w and w, it is not possible to improve the decay by a
1

factor 2. The reason is clear looking at the evolution equations for w and
w, 4.8.59, D3(QD4logQ) = F — Qp, D4(QD3logQ) = F — Qp. It turns
out that it is the term p which produces the decay O(r%) and does not allow
any stronger decay for w and w. In the case of Dyw and Dsw, in their
evolution equations instead of p there is Dyp and Dsp, which, looking at the
Bianchi equations, give rise to trxp and trxp which decay as O(T—II) The
conditions of canonical foliation on C(vy) and Xy cannot, therefore, improve
the asymptotic behaviour of the terms already present in the Schwarzschild
spacetime. This remark has to be moved to Chapter 8.
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Proposition 4.3.9 Under the assumptions of Theorem 4.2.1 and the boot-
strap assumptions 4.2.5, 4.2.6, the following estimates hold, with p € [2,4],

2
P "3 D21og Qlp.s < ¢(To + L + Ao + A1)
|r171%TED§ log Qlp.s < c(Zo + T + Ao + Ay) (4.3.85)

Proof: To control the norms of D3 log Q and D? log Q we derive, in the next
lemma, their evolution equations along C(u) and C(u),

Lemma 4.3.5 (Q2Dy)?logQ and (Q2D3)?logQ satisfy the following equa-
tions

D3(0Dy)?log Q2 = M — Q?Dyp
D, (0D3)%log 2 = M — Q*D3p (4.3.86)

where

M = 2Q {ZC - YDy log Q + 2(2Dy log Q)¢ - Vlog Q + (2Dy log Q) (n - n — 2¢?)
+Qn-DyV1iogQ — (=3¢ + Vieg Q) (WQD4 logQ — Qx - (n— C)) ]

+ 29( —Q(=3¢ + Viog Q)8 — (D4 log Q)p> (4.3.87)

and M is obtained by M with the obvious changes, see 3.1.35.
The proof of Lemma, 4.3.5 is in the appendix to this chapter, subsection 4.8.2.

In view of the assumptions of Theorem 4.2.1 and the bootstrap assumptions
4.2.5, it is easy to check that

(775 M1y 5(u, ) < e(To)To ((Zo + T + Ao) +T3) (4.3.88)

2
Moreover we control |r4_5D4p|p,5, for p € [2,4],

_2
Ir* "5 Dyplp.s < e(To)(Ag + Ay) (4.3.89)

We apply the Evolution Lemma, to the first equation of 4.3.86 and obtain, us-
ing initial and final slice assumptions 4.2.2, choosing I'g and (Zy + Z, + Ay)
sufficiently small and multiplying both sides by 73,

3-2.2
[r""? D log Qp,s(u, u)
_2 1
< I 3D 1og Dy (W) + ¢ (Ao + A1) + To ((Zo + I, + Ao) +T3)|
<c (IU +Z.+ Ao + Al) (4390)
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The same calculation can be easily repeated for D§ log €2, by interchanging
the underlined quantities with those not underlined and viceversa, see 3.1.33.
We obtain, for p € [2,4],

2
[t o Ml 5(u,u) < e(To)To ((To + T + Do) +T3)  (4.3.91)
and observe that
_2
P57 Daplps < ¢(To)(Ag + Ay) .

We apply, therefore, the Evolution Lemma to the second equation of 4.3.86
and obtain, using the initial and final slice assumptions 4.2.2 and multiplying
both sides by 772,

Irl_%TED@OgQIp,s(u,u) < Irl_%TEDﬁlogQIp,Sm(ﬂ)
+ c|(Ao+Ay) + %Fo ((Io + I, + Ag) + F%)}
< ¢ (IO + T + Ag + Al) (4.3.92)

for p € [2,4], completing Proposition 4.3.9.
The estimates 4.3.85 of Proposition 4.3.9 allow to control Og’S(D4w) and
Qg’S(Dgg), obtaining

Sl[lp} (Og’S(D4w) + Qg’S(Dgg)) <c (IO + Ty + Ag + Al) (4393)
pE(2,4

Remark: The control of the norm Og’S(Dgg) obtained in the previous es-
timate is not yet sufficient to control the “error terms”, as discussed in the
Chapter 6. In fact it would produce a logarithmic divergence. The control
of the following norm, see 3.5.30,

~ 1
O,(w) = || TED:MHLQ(CNC)
T+

avoids the problem.

4.3.15 Estimate for O, (w) for p € [2,4]

Proposition 4.3.10 Under the assumptions of Theorem 4.2.1 and the boot-
strap assumptions 4.2.5 the following estimate hold,

1
||\/—T—+TED3&||L2(CWC) <c(Zo+ T+ Do+ Ay) (4.3.94)
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Proof: It follows immediately from the following inequality

IN

|’T’1_%TEQQD§ log Q.5 (u, u) c [ a |T1_%TEQ?D§ log Qp,s(u, w.)

r(u,u,)

4o <(A0 +AY) + :"_;FO ((Io + 7. + Ag) -l-F%))}

an elementary improvement of 4.3.92.
Proposition 4.3.10 completes the proof of part i) of Theorem 4.2.1.

Part ii) of Theorem 4.2.1 now follows immediately. In fact, once we have
proved inequalities 4.2.7, 4.2.8, we prove inequality 4.2.10 using Lemma 4.1.3
and conclude immediately, recalling definitions 3.5.22 and 3.5.23, that

O + 05" (w)
OF + 05" (w)

¢(To+ T + Ao+ Ay)

<
<c (IU +Z.+ Ag+ Al) (4395)

[The next estimates use the This concludes the estimate 4.2.10 of Theorem 4.2.1 and its part ii).
stronger assumptions on the
initial and last slice satisfied by

their canonical foliations, there- 4 3 16 Improved estimates under stronger assumptions on
fore “Remark:” is substituted
with “Subsection:.] Yo and C,

The estimates of the following propositions are proved making stronger as-
sumptions for the various quantities on the initial hypersurface ¥y and on
the last slice C,. These stronger assumptions are proved in Chapter 7 rela-
tive to a double null canonical foliation.

Proposition 4.3.11 Assuming 4.2.1, the bootstrap assumption 4.2.5 and,
on the last slice,

1
P32 2y, s(uyu,) < T (4.3.96)

then the following estimates hold,

1
|'r'3_2/p7'_2 W)ﬂp’g(u,g) < C(I() +Z7,+ AO)
1
|7ﬂ272/p7'72>2|p’s(u, Q) S C(IO +I* + AO) (4397)

Proof: The result is obtained as in Proposition 4.3.1 using the stronger
assumption on the last slice.
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Proposition 4.3.12 Assuming 4.2.1, 4.2.3, the bootstrap assumptions 4.2.5,
4.2.6 and that, on the initial slice

1
3P, 50 (1) < Zo (4.3.98)

then the following estimates hold,

3
P2 2P 12 Wlp,s (uu) < e(Zo + T + Ao)

3
P22 3, s (u,u) < e(Zo + T + Ag) (4.3.99)

Proof: The result is obtained as in Proposition 4.3.2, but using the stronger
assumption, 4.3.98, on the initial slice.

Next result will be used in most of the following propositions,
Proposition 4.3.13 Under the assumptions of Theorem 4.2.1 and the boot-

strap assumptions 4.2.5, 4.2.6, assuming, moreover, on Yo and on the last
slice C, the following inequalities,

573 (D4 log © — 0D Tog D)5, (u) < To (4.3.100)
P15 7% (D3 log © — D3 10g O)|,s(u, 1) < T, (4.3.101)
then, in IC,
72 (9D 1og @ — D3 Tog Q) |y, 5(u,u) < c(To + . + Ao)

3
2

|r171%7_ (D3 log @ — QD3 log Q) |p.s(u, u) < (o + . + Ag) (4.3.102)

Proof: It is easy to prove from the first of egs. 4.3.58 that

D;0D; log 2 = (Qry — Qtry)QDylogQ+ F —0p  (4.3.103)
therefore, denoting Y = QDy log 2, we derive the evolution equation

%(Y —Y) = Q[(F = F) + (Qp - 0p) + (Qry — Qry)Y | (43.104)

As, due to assumptions 4.2.5 and 4.2.1,

A _ 1 __
|r471%F|p,5 < c(I‘g)I‘g y e (Qtrx — Qtry)| < Ty, |7’3TE (Qp—Qp)| <Ay
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we obtain

_2 _2 — 1
2 (Y = Y)lps(u,w) <2 (Y = Y)lps (@) + —5¢(To) (Ag +To(Zo + T + Ag) + rg)
r2

which implies, using assumption 4.3.100 and the results of Lemma 4.1.7
applied to V = D4 log 2 — QD4 log €2,

|r%7% (QD4 log 2 — QDy log Q) |p,s(u,u) < c(Zo + I + Ag) .

To prove the second part of the proposition we observe that, from the second
equation in 4.3.58, it is easy to check that

D.,OD;1og O = (Qtry — Qtry)@D3log Q + F — Qp  (4.3.105)
Denoting Y = QD3 log 2, we obtain

%(X -Y)=0Q [(E — E) + (Qp — Qp) + (Qtry — WYX)X} (4.3.106)

As again,
P F Elys < oTo)T3 . 2 (Qo—p)| < e ,and [r(Qerx—0ry)| < o,
we conclude that

P (Y - Dlps(uy) < el (Y~ D)l (u,w,)

o
- c(Ty) (Do + Do(Zo + Z. + Ag) + 1)

2

| ol

reT

from which the second inequality of the proposition,
2 3 [
|7"1_57_2 (QD3log 2 — QD3 log Q)|p.s(u,u) < e(Zy + Iy + Ag) ,
follows, provided that, on the last slice, assumption 4.3.101 is satisfied.

Proposition 4.3.14 Assume 4.2.1, the bootstrap assumption 4.2.5 and that,
on the last slice C,,

1 _
|r27%7_2 (Qtrx - Qtrx) lp,s(u,u,) < T, (4.3.107)

then, with the help of the first inequality of 4.3.102 in Proposition 4.3.18,

2—

SAIN]

1 _
772 (Qtry — Qi) [p,s(w,u) < ¢(To+ T+ Ag)  (43.108)
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Proof: The evolution equation for try, see 3.1.45, can be rewritten as

1
di(mrx) + 5 Qtrx(Qry) = [20trx (D4 log 2) — O[x[?]
U

To control (try — try) we derive the evolution equation for Qtry,

d 1
20 S
du brx 2

(Qtry)? — (Qtry)? + [2Qtrx (D4 log Q) — Q2[x[?]

and from it

d 1 , 1 . 2)
dg(QtrX Qtry) = (2(Qtrx) +2(Qtrx) (Qtry)

+ [20trx(QD4 log Q) — 021?] — {2Qtrx(9D4 log2) — QQIXIZ]

Denoting V = (Qtrx — Qtrx), this equation can be written as

d 1, —
2V + QinyV = 0V = V2 + 2(0D4log )V (9217 — O7[% P2 (4.3.109)

+2(Qtry) (QD4 log @ — QDy log Q) — 2(Qtry) (QD4 log Q@ — QD log Q)
We use now the first inequality of 4.3.100 and the inequalities
1 4-212 2
[Qtrx| < ce(To)—, |r 2V <T§
r
which follow from the bootstrap assumptions 4.2.5 of Theorem 4.2.1. Ap-

plying the Evolution Lemma to the equation 4.3.109, with A\; = 2 — %, we
obtain, using assumption 4.3.107,

2_2 22 9 v, 1 u, 1
P Vlps(uw) < el Vlps(uu)+e(To) (T3 [ 5+ @+ T do) [
u u re
< cflr pV|p,5(u,g*)+;F0+—l(IU+I*+A0)
r2
_1
< CT?Q(IU +I*+A0) (4.3.110)

choosing (Zy + Z, + Ag) and I’y sufficiently small.

Proposition 4.3.15 Assume 4.2.1, 4.2.2, the bootstrap assumptions 4.2.5

and 4.2.6, and that, on the initial slice X, [Assumptions have been mod-
ified as we refer to underlined
quantities]
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_2 1
|7"2 P72 (Qtrx Qtrx) |P 5(0)( )<IO (4.3.111)

then, with the help of the second inequality of 4.3.102 in Proposition 4.5.13,
[Modification in the state

1 .
o7 (Qrx — Q) ps(uu) < ¢(To+ Lo+ Ag)  (43.112)

Proof: The evolution equation for try, see 3.1.45, can be rewritten as

d
T — (Qry) + Qtrx(Qtrx) [2Qtrx(QD3 log ) — 92|X|2]

To control (try — try) we derive the evolution equation for Qtry,

d 1
- (@iry) = 5 (Qry)? — (Qiry)” + [20trx (D3 log 2) — ©[x?]

[Correction in 4.3.113, QtryV so that, defining V = (Qtrx — Qtrx), we obtain
instead of QtryV] - o

d 1, — S
TV 4 QuxV = V2~ V2 + 2(QD3 log V. - [Q%[x2 — 3P| (4.3.113)

+2(Qiry) (2D log 2 — OD;Tog @) — 2(Qtry) (D3 log @ — D3 log Q)
From the bootstrap assumptions 4.2.5 of Theorem 4.2.1, it follows
1 S 1
|Qtry| < C(FO); , |Q(try — try)| < C(FO)FOT—Z

We use the second inequality of 4.3.102 and, proceeding as in the case of
(trxy — try), applying the Evolution Lemma to the equation 4.3.113, with
A =1- %, using assumption 4.3.111 and the results of Lemma 4.1.7 applied

[Lemma 4.1.7 recalled.] to V = try — try we conclude that, for p € [2,4],
1
P57 (trx — ) lp,s < ¢ (To + T + Ao)
proving the proposition.

Proposition 4.3.16 Assume 4.2.1, 4.2.2, the bootstrap assumptions 4.2.5

[Assumptions are the extended and 4.2.6, and that, on the initial and final slices,
ones as we refer to underlined

and not underlined quantities] |r2 % _%(Qtrx Qtrx) |p 5(0)( W) < T,
P52 (Qtry — BX) by sl ) < T
P77 (= Blpsio @) < e
I é(u )|p,s(u, 1) < I,
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then,
1
|7“2 2/1’7_277| s(u,u) < c(Zo +Zo + Ao)
[P 2P 2 Yl s (u,u) < e(Zh + To + Ao)
P22 2], s(uu) < e(Z +To + Ag) (4.3.114)
1
32 Y, s(uyu) < (i + To + Ag)
Proof: Recalling that
~ _ 1 _
= |(p—n) + 7 (trxtrx — trxtrx)
1 -
f= {(H —7) + Z(tr&trx — trxtrx)] (4.3.115)

from the assumptions it follows that on the initial and final slice we have

N
|

| rol=

=

SN
3

Ip.s(u, 1) <

3
[\
|
s
[NIE

T2 filp, 50, () < cZo (4.3.116)

Using these estimates in Lemma 4.3.3, the results of Propositions 4.3.14,
4.3.15 we obtain the inequalities

SAITS)
<

lp,s(u,u) < c(Zo + L + Do)
) < ¢(To + I + Ag) (4.3.117)

=) =

=

[ o= | o=

ST
3

IS
S

s(

=2
3

The result follows using also propositions 4.3.11, 4.3.12 and applying Propo-
sition 4.1.2 to the Hodge systems 4.3.37, 4.3.38. From the last proposition
next corollary immediately follows,

Corollary 4.3.2 Under the same assumptions as in Proposition 4.3.16,

1
|75 2P T2 Wt lp,s (u, ) < o(To + T + Ao)
1
173=2/p 2 Virxlp.s(u,u) < e(Zo + T + Ao) (4.3.118)

Proof: It follows immediatly from the relation 2¢ = (7 —n) and the defini-
tions of I/ and [/.
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Proposition 4.3.17 Assume 4.2.1, 4.2.2, 4.2.3, the bootstrap assumptions
4.2.5, 4.2.6. Assume, moreover, that on the last slice C, and on the initial
slice Xy the following estimates hold

3
[r? =572 YOD; log Qp,s(u,w,) < T,
1
73 7 72 YDy log Qp.s0, () < To (4.3.119)

then we derive, for any p € [2,4],

1
P35 72 YD, log Q.5 (1, 1) < ¢(To) (o + Lo + Ao + Ay)
3
|r2*1%7_2 VD3 log Qfps(u,u) < c(To) (Zo + Zi + Ao + A1) (4.3.120)

Proof: The result is obtained proceeding as in Proposition 4.3.8, but using
the stronger assumptions 4.3.119 on initial and last slices.

4.4 Proof of Theorem 4.2.2, estimates for the sec-
ond derivatives of the connection coefficents

Let us examine the various second derivatives whose norm estimates are
provided by Theorem 4.2.2.

1) Estimates for Y72trx, Y72>2

The estimates for these second derivatives are obtained exactly with the
same procedure used for the corresponding first derivatives with the help of
the equation for I/, 4.3.6, and the Codazzi equation, 4.3.13, which have to
be differentiated once more in the angular direction.

As there are no new ideas required, just technical drudgery, we shall omit
the proof.

2) Estimates for WZtrX, WQX

The same considerations as before apply. One uses the basic transport equa-
tion 4.3.19 and the Codazzi equation 4.3.25, which have to be differentiated
to provide the appropriate equations.

3) Estimates for WQTI, WQQ

The estimates are again obtained with the same procedure starting from the
Hodge systems 4.3.37, 4.3.38 coupled with the transport equations 4.3.39 for
fo and 1. We have again to take angular derivatives of these equations and
proceed as done before.
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Remark: Observe that also for the second derivatives Y72trx, Y72>2, W%rx,

Y72X, W277, WZQ, we do not discuss explicitely, better estimates can be ob-
tained, provided stronger assumptions on the initial and final slices hold. In
1

this case their | - |, ¢ norms gain a factor 72 exactly as proved for their zero
and first derivatives in subsection 4.3.16.

4) The estimates for the angular derivatives and the null directions
derivative of w and w are, viceversa, more delicate. They require some

new ideas and will be examinated in full detail. [The order of the two next
subsections have been inter-
changed.]

4.4.1 Estimates for 02°(w) and 02°(w) for p € [2,4]

Remark: This subsection is devoted to the control of Y*Ds log 2, Y2Dy log €.
Newvertheless, proving these estimates it follows immediately that one obtains
also an estimate for YD3logQ and YDylogQ which have been already es-
timated in a more direct way in subsection 4.3.13.

Proposition 4.4.1 Under the assumptions of Theorem 4.2.2 and the boot-
strap assumptions 4.2.5 and 4.2.15, then, for any p € [2,4], [In view of what is said in

the next remark, we erase from

9_2 the statement of the proposi-
|’f‘ P T_WDg log Q|p’g < C(IO + T+ Ay + Al) tion “using the results of Theo-
3_2 rem 4.2.1, moreover “the boot-
|7’ PWD4 log Q|p,5 < C(I() + T + Ag + Al) strap assumptions 4.2.21”7 is

changed in “the bootstrap as-

r* 5 7_V?Dj log Qlp,s < c(To+ L + Ao+ Ay) (4.4.1) sumptions 4.2.5 and 4.2.15 |
2
P57 Y2Dylog Qlps < ¢(Zo + L + Ao + Ay)

Remark: In the proof of Theorem 4.2.2 we can, of course, rely on the
results of Theorem 4.2.1. However since the terms to which the results of
the previous theorem applies appear in non linear expressions, it suffices to
use for them the weaker estimate OF + Qﬁﬁ < Ty which is, in fact, the
bootstrap assumptions of Theorem 4.2.1. As, moreover, we also make the
new bootstrap assumption 4.2.15, O + O° < T'y, this means that we can
rely on the assumption Ofﬁ + Qfﬁ <Ty+T;y.

Proof: We discuss only the estimates for YD3log and W2D3 log €2, as
the estimates of YDy logQ and Y?DylogQ are obtained in the same way.
The evolution equations for W2D3 log © and W2D4 log €2 are obtained in the
following lemma, whose proof is obtained deriving tangentially the evolution
equations for ¥D3logQ and YDy log 2, see 4.3.79. The details are in the

appendix to this chapter. [formal modification, the evo-
lution equation for ¥2Dj log Q
and W2D4 log ©2 have been put
in a lemma)
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Lemma 4.4.1 Y72D3 logQ and Y72D4 log Q satisfy the following evolution
equations, denoting V = YD3logQ, V. = YD, log,

DAF, Vit 0V, Vi —( Rac Vo + 50V Ve ) +2 17,7, (0D Ds log D) +Q,,

DaV Vit ¥, Vim (£, VeV + %, Ve ) 471V, 7, (@DaDi og @) + Quy (442
where

Q.= [(77 log @) xpe Vet (Vo Xbe) Vet my, Xac Ve — Xabn, Ve — €€l ([Dr, Dp|Vs) 6?]
Qv = = [(7 108 0, Vot (Vi WWet o, Ve x,eV.e— €52 (1D, DIV, f |

Using directly this equation is not efficient. In fact from the explicit expres-
sion of QDyD3log 2, see 4.3.58,

OD,D;3logQ = Q [—2< . Vlog 2 — (D3 log 2)(Dylog Q) + (n -y — 2@2)] —Qp,
we have

O Y,V (2D4D3log Q) = =V, V,p — (Dalog Q)(V,Ve) + Loy (4.4.3)

5|~ WX 2727,
é[W Y (Q(Dg log 2)(D4log Q)) — Q(Dy log Q)yav,,}
glz[W Wb( (— 2C-Y710g9+77.ﬂ_2<2))}

depends only on the first derivatives of the Riemann components ?® and
second derivatives of the connection coefficients. Plugging this expression
in the previous equation we obtain

DA(@V,V5) + (T, V) = —(acl 2V VE) + (X, 10))

+ QR+L| -7,V (4.4.4)

28 This is true, notwithstanding the presence of Y.¥,DalogQin L, as the same argu-
ment we are developing here holds for it.
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The term QY,Y,p makes impossible to obtain an estimate of QY V} in the
| - |p,s norm 2. We overcome this problem using the Bianchi equations to
transform a tangential derivative in a null derivative, a procedure which has
been repeatedly used in [Ch-KI]. Using the equation®®, see 3.2.8,

§4ED4ﬁ+trx§:—Y7,0+*Y70+2X-B+2w§—3(ﬂp—"ga)

we write ¥, Y,p in terms of D4Y7a§b, plus “lower order” terms 3!,

3
D4(Qva§b) + EtrXQWaéb = _QWaWbp + Qva*vbo- - Xacﬁycéb + ﬂ(J,b )

and the evolution equation for ¥, (Vj — 8,) is

DAOY, (T = 8,) + rx(@F, (Vi ~ 5,)) = — (%0 OF.15) + 50,07,V
1
50XV, B, + © [Q+L+H| OV, Vo (445)
To achieve the result of avoiding, in the right hand side, the second deriva-

tives of the Riemann tensor we have to get rid of the term Y*Yo. This is
obtained considering instead of QY (V — 8,) the quantity

@ =QdivV — divp) = —Q(2Aw + divB) (4.4.6)

which satisfies the evolution equation

Dy +trxyp = —2x-(QVV)+ %tI'XQCMVQ + Qtr(Q + L+ H)
= =2x-QYV -VB) —2x-QYS + %tI'XQCMVﬁ
+ Qtr(Q + L+ H) (4.4.7)

The evolution equation for ¢ does not contain any second tangential deriva-
tive of p or o and, therefore, can be estimated with the | - |, s norms, with
p € [2,4]. We obtain the following inequality

[formal modification, QY (V3 —
ﬁb) instead of QY V;.]

2 _2 1
P b ps(uu) < e’ T o |ps(uyw,) +er 2(To+ T + Mg+ Ay) (4.4.8)

29We recall that, in this norm, we do not control the second derivatives of the Riemann
components.

30Recall that V.0 = €Yo

31Here “lower order” is in the sense of order of derivatives.
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We control QY V, = QY, YV, D3log using the estimate of @ , 4.4.8, the
elliptic estimates for the equation

AD3logQ) =07 ' +divp,
the estimate of div and the last slice estimate, derived from 4.2.12,
> hr (QY2Ds3 log Q)5 (u, u,) < . (4.4.9)
We obtain in this way the estimates which prove Proposition 4.4.1

2
r* o7 (QYD3log Q)|p.s < ¢(To + Tn + Ag + Ay)
|’r3_1_277; (QWQD?, log Q)|p75 < C(I() + T + Ag + Al) .

Corollary 4.4.1 Assume inequalities 4.2.1, 4.2.5 and that on the last slice
C', and the initial slice X the following estimate holds

3-2 % 2
|r 2V QD3 log Q, s(u, u,) < Z,
I 2y72m)4 l0g Qp, 50, (1) < To (4.4.10)

then we derive, for any p € [2,4],

’tilw

QYD3log Q)|p.s < c(Zo + Ly + Ao + Ay)
QY?D3log Q)|p.s < ¢(Zo + Zu + Ao + Ay)
QVDylogQ)|,s < ¢(To + Lo + Ao + A1) (4.4.11)
QY’Dylog Q)|ps < c(To + T + Ag + Ay)

’tilw

T2 (
72 (
72 (
(

'ﬁ "dlw
\]
| o= \ Wl \ wleo | wleo

Proof: The result is obtained proceeding as in Proposition 4.4.1, but using
the stronger assumption 4.4.10 on the last and initial slices.

4.4.2 Estimate for O,(w) with p € [2,4]
We recall the definition, see 3.5.30,

S
Oz (w) = ||\/H

1
72 D3wl| 1, (cre) + ||\/—T—+7“7377D3£||L2(cm<)

The terms in the right hand side are estimated in the following proposition.



>w of what is said in the
k after proposition 4.4.1,
ise from the statement of
roposition “using the re-
of Theorem 4.2.1, more-
“the bootstrap assump-
1.2.21” is changed in “the
rap assumptions 4.2.5
2.15” ]

4.4. PROOF OF THEOREM 4.2.2 201

Proposition 4.4.2 Under the assumptions of Theorem 4.2.2 and the boot-
strap assumptions 4.2.5 and 4.2.15, then, choosing Iy and T'1 sufficiently
small,

1
| ——=r72 VDsw||1, oy < ¢ (To + e + Do+ Ay + Ag) (4.4.12)

N

1
||\/—T—+T§D§&||L2(Cﬁl€) < C(IO + Ty + Ao+ Ay + Ag) (4413)

Proof: The result is a direct consequence of the following estimates

T‘(U, Q) |7,,27%7—3Y7D§ log Q|p:2,5(u7 Q*)

|r271_277'z WDg lOg Q|p:2,5 (’LL, Q) S ¢ |:T‘(’LL, Q*)

1
b T+ T+ Dot AL+ Ay) ] (4.4.14)

r2

;TE (QD3)3 log Q|p=2,5 <c [MVII%T?’ (QD3)3 10gQ|p:2,S(U,Q*)

’)”(u,g*)

+ ,/%Az + %(Io +Z.+ Ao+ A + Ag)] (4.4.15)

To prove inequality 4.4.14 we need the evolution equation for YD3 log Q.
This is obtained deriving tangentially the evolution equation for (2D3)? log €2,
see 4.3.86, and using the commutation relation

(Vo Pulf = =(V1og Q)Duf + Xac V.S
proved in the appendix to this chapter, Proposition 4.8.1. The result is
D, (V(2D5)*1og ) + 5 trx (V(2D5)log 0) =X - W(OD3)’log © ~ 0¥+ W
where, with M defined in the previous subsection, see 4.3.87,
= (Vlog Q)M — 3Q°*(Vlog 2)D3p + VM .
Applying the Evolution Lemma, we derive

3 Z(WDZ log D)lps(u,) < ¢ (| F 72 (V22DE 10g ) s, 18)

U, ) Lo 12 2
+/ 72 (Vlog Q) ( - 3Q D3,0) lp,s +/ [r P TZYMp,s

= 1-2 92
4 / P h 20 WDgpp,5> (4.4.16)
u
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The right hand side of 4.4.16 depends on ¥YDj3p. As the second derivatives
of the Riemann tensor are not bounded in the |- |, § norms, but only in the
L?(C), L?(C) norms, we consider inequality 4.4.16 with p = 2, obtaining

U, _2 _
/ Ir' 572 (Vlog DM |p=2,s < C%F% (Zo +Zi + Do) + T+ I'y)
u

U,
/ | pT WMLD 25<c—((IO+I +A0+A1)+F0+F0F1)
u
u, _2 T—
/ Ir! pTE(Wlog D)*Dyplp=2,5 < CﬁFO(AO + A1)
u
U,
[
u

_2 1
’I“1 PTEWD3p|p:275 S C—g(Al + AQ) (4.4.17)

r2

where the second inequality uses the estimate for YM 32
_2
[P WMlps < c((To+ T+ Ao+ A1) + T3 +Tol1)  (4.4.18)

proved in Proposition 4.4.1. The last inequality in 4.4.17 is obtained in the
following way:

[F e yDslns = [ 5( |rTWD3p|)
U u S(uu’

s 5 (/"‘/ " *Wleﬂ

C—% 3 ||T27—2 WDSPHLz < C—% AQ
r2

IN

where the last line uses the estimate for ||r272 YD3p]| [2(C(u)) contained in
the assumptions 4.2.11 of Theorem 4.2.2. From these estlmates, observing
that assumptions 4.2.22 imply, on the last slice, for p € [2,4],

|r? 2P r2 D3 log Q5 (u,w,) < T,

the estimate 4.4.14 follows.

To prove inequality 4.4.15 we use the previous results and the commu-
tation relation, see Proposition 4.8.1,

[D3, Dy4]f = (Dylog Q)D3f — (D3log)Dyf +4¢-Vf ,

32 Apparently also YM depends on the second derivatives of the Riemann tensor due
to the term Y72D3 log 2 present in its expression. Nevertheless as discussed in Proposi-
tion 4.4.1, see also [Ch-KIl] page 373, we have the better estimate 4.4.18.
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with f a scalar function. The evolution equation for (2D3)3log € turns out
to be

D, ((2D3)*log2) = P~ 9°D3p (4.4.19)
where
P = [D3(QM) — (D39°)Dyp — 40¢ - Y(2D3)? log 0] (4.4.20)

As the right hand side of 4.4.19 depends on the second derivatives of the
Riemann tensor, we can obtain only an estimate for p = 2. Proceeding as
in the previous proposition, see 4.4.16, we derive

r 172 (QD3)* log Qpo.s(uyu) < e (|r172(QD3)3 log Qo5 (u, u,)

u, u,
+ / IT_ITEBIpzz,er/ IT_ITED§p|p22,5>
u u
(4.4.21)

The more delicate terms in P are ¢ - Y(2D3)?logQ and (D3logQ)Dsp.
Considering the first contribution, we have

1, _
T—|r 2 Y(0D3)? log Q|p—2.5 -

L,
2
u

U,
/ P72 ¢ Y(QD3)? log Q0.5 < T /
u

Recalling that, from inequality 4.4.16 and the subsequent estimates 4.4.17,

1
|T71TEW(QD3)2 log Q|p:2,S < CT_Z(IO + 7, + AO + AI + Ag) R

we derive

u, 1
/ [Pt 2( - V(2D3)? log Qp—a,s < cr_3F0(IO + Lo+ Do+ A1+ Ay)
u

To estimate the contribution due to the term (D3 log Q2)D3p, we recall the
estimate

1
sup D3 log Q| < CFFO

following from the bootstrap assumptions, obtaining

u, 1 /%1 _
/ Ir ' (D3log Q) Dsplp—zs < CFU—/ ;|7“ "2 Dsplp-2,s
u u

T—
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The estimate
_2 T_
[rm 7T Daplp=z,s < ¢ 5 (R0 + Ar)
follows from assumptions 4.2.11 33, therefore

U, 1
/ #7172 (D3 log 2)Dsply-z,s < e—5To(Ag + A1) .

u
Collecting these estimates we obtain

u, 1
/ |7"717—E£|p:2,5' < Cﬁrg (I* + AO + AI + Ag) (4422)
u

The second integral in the right hand side of 4.4.21 is estimated as

S g 1 e 1 3122 :
/ |r 12 D3plp=2,s = \/7__/ 2 (/S |r2D3p| ) (4.4.23)
u —Ju

D3|l 1, (cy < ¢ Ay

T2r2 T

| wol=
=l
SIS

r

where the inequality in the last line follows from the assumptions 4.2.11.

This completes the proof of inequality 4.4.15. Inequality 4.4.13, also
follows immediately recalling that, from assumptions 4.2.22, we have, on
the last slice,

[Pt 2/Pr3 (QD3)* log Q) p=s,s (v, u,) < . .

Remark: The estimates of Propositions 4.4.1, 4.4.2 complete the more deli-
cate part of the control of the second derivatives of the connection coefficients
and, therefore, of Theorem 4.2.2. In the next section we provide the esti-
mates concerning the third derivatives of the connection coefficients. These
estimates are needed to control the D norms introduced in subsection 3.5.6
and estimated in section 4.7.

2
33In fact from the Bianchi equations we have, for p € [2,4], |r~?72Dsp|p=2,s <

2 _2 7, 32 2 -
S trxplo=a,s + L PP T2 dhv Blp=2,s < e T3 (Ao + Ar).
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4.5 Proof of Theorem 4.2.3, control of third deriva-
tives of the connection coefficents

The proof of Theorem 4.2.3 is achieved once we prove the following propo-
sition,

Proposition 4.5.1 Under the assumptions of Theorem 4.2.83 and using the
results of Theorems 4.2.1, 4.2.2, denoting A = Ay + A1 + Ag, it follows

1
r2 (u, w)||r* Y Xz cwnv ) < c(Zo+Ze + A)
re u, w)||r3y? trx||Lz W) < c(Zo+I. + A)
1
r2 (u, )| Vol 2 cwnvww) < 6o+ T+ A)

M

<
IS
(S

Iry? LU||L2 WV (uw) < (Lo +Zi + A)
Iy Xllzzcwnvww) < c@o+ I + A)
Ir*y® tf‘X||L2 WV uw) < ¢(Zo+ I+ A)

b

<
M

u,

(S

(u, u)
(u, 1)
(u, 1)
(u, 1)
(u, u)
3 (u, u)

r2(u,u

Remark: Proposition 4.5.1 does not require the the foliations on the initial
and final slices be canonical. In that case, as discussed in Chapter 7, one
can prove the boundedness of slightly stronger norms.

Proof: All these norms are estimated essentially in the same way. We give
only a detailed account of the first estimate.

. 1 ~
Estimate of r2 (u, g) | |T3Y73X| |L2(Q(Q)I’1V(u,g))

From the definition, I/ = Q~!Y(Vtry + trx¢), see 4.3.5, and the Codazzi
equation, see 4.3.13,

divi +¢- Z—QW g

it follows that Y% and Y’try are controlled in terms of V2.

Let us consider first W3)2. Applying Proposition 4.1.2 to the Codazzi equa-
tion, we derive

2 _q _2 _2
IV 25 < ¢ (P 29 Wlers + P 5 V2 Blpas) + -] (45.0)

where [- - -] does not contain second derivatives of the Riemann tensor and
behaves as O(rfg). To estimate 3* Y2I/ we introduce the scalar quantity

[The factor O(r

1
—27_2) was in-

correct and has been substi-

tuted by O(r~

2)]
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U =divll + Q trxp (4.5.2)

and write its evolution equation 3° along the outgoing null hypersurfaces

d
%W +2Qtrx Y = —2QxY —4x - VB + U (4.5.3)

where Uy denotes all the terms which do not depend on the first derivatives

of the Riemann tensor and have an appropriate asymptotic behaviour3®.

The one form [/ satisfies the following Hodge system,

v =Y —Q ttrxp
cyrllf = Q Mryeyrl¢ + ¢ Y (4.5.4)

Applying Proposition 4.1.2 to the Hodge system 4.5.4 we obtain

2

_2 _2 _2
P Y W zs < ¢ (P PV [pzs +lirloo sl Vplp—2s) +1 ] (45.5)

where, again, [- - -] indicates terms with a better asymptotic behaviour and
which can be estimated in the LP(S) norms. Putting together 4.5.5 and
4.5.1 we derive

P s < e (I TPVl st TV Bl s) 41
c (|7‘4_I_2’Y7W |p:2,S+|T4_%W2,B|p:27S) +[-] (4.5.6)

N

IN

_1 _3 . .
[The factor O(r—17” 2) was in- where [---] = O(r~2) and does not depend on second Riemann derivatives.
Eﬁgfﬁo ag((irflgsi ]been substi-  These terms will be, hereafter, neglected. Using this estimate we write,
Yy .

. L | L2
L, |uo,u uo

u
r2 uo

34We follow here the discussion in Chapter 13 of [Ch-KI].

35The evolution equation is obtained deriving tangentially the evolution equation of I/
and using the commutation relations in Proposition 4.8.1. The term Q™ 'tryp, added in the
definition of /, is necessary to cancel the term —trxdiv 3 which appears in the right hand
side of the evolution equation for div{/ and which prevents the integrability of the evolution
equation for div [/, %(CVIV V) + 2Qtrx (dhvl) = —trydiv B — 2Q% - (YU) — 2XcaLXca + Us,
where Us depends on Yx, ¥/, n, 8 and decays as o(r~9).

3The term —4Qyx - V3, although decaying properly, as O(rf%), has been written
explicitely as it is the only term depending on the first derivative of the curvature tensor.
It arises from the term —2x.q/Axcq appearing in the evolution equation of Jivl/, deriving
the Codazzi equation, see 3.1.46.
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The second integral of 4.5.7 satisfies, using assumptions 4.2.11 of Theo-
rem 4.2.2, see also 3.5.17,

w2 1 1
[ vstas< [ 2PVHR < enRIP < o503 (458)
ug C(u,[uo,u)) r T
To estimate the first integral in the right hand side of 4.5.7 we write the evo-
lution of Y/ along the outgoing null direction. A long, but straightforward
computation gives, deriving tangentially the evolution equation for [,

LYY + 20Ty = —AXVY — 4KV + Uy (4.5.9)

where Us denotes all the terms which do not depend on the second deriva-
tives of the Riemann tensor and, therefore, can be estimated in the LP(S)
norms. These terms are easier to treat, have the appropriate asymptotic
behaviour, and, hereafter, will be omitted. Applying the Evolution Lemma
and Gronwall Lemma to 4.5.9 we obtain, using the previous results on Oy,

*

5_2 / 5—2 52 2
" VY p=2,5(u,w) < clr” 2V p=a,s(u,w) +¢ [ 77XV Blp=2,s

u
'

5—2 Ui 3_2_9
< "I s ) + Do [T Blpas

HI

5_2 1
<clr” PV |p=2,5(u,u,) + cLoAa— (4.5.10)
r2
where the last integral of 4.5.10 has been estimated, recalling 3.5.17, as [The factor 1% was missing in
the next line and has been put
w 42 u, 1 % % 1 in.]
= 3-20 = 2
/ |r° Py B|p:2,S < (/ —2> (/ T2|T2Y7 ,6|2> < cAy—
! uw T C(u)NV (u,u')) r2
In conclusion we have [The final factor cAsr(u,u)” 3

of 4.5.11 is wrong, the correct
one is CAQﬁ(I + I‘O%).}

1
. u 1 5.2 2
1PV Slcwovien < ([ dl? VY R ()
uo

1 1
+ cAg———(1+Typ——) (4.5.11)

r(u,u) r(u,u)

1
Yy L2 (v iuwy) T cA2——

r(u,w)

IN

The estimate is achieved, once we observe that the final slice assumption of
Theorem M1, O3(C,) < Z,, implies the inequality

r2 (u, [PV 2. v wa) < Lo -
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The estimate of the norm ||T3Y73th||L2(g(g)nV(
to the previous one using the identity

Mtrx = Qv — trxdiv( — (Viry + (Vlog Q)trx¢

and Proposition 4.1.3.

u,u)) 18 immediately reduced

[Next estimate is modified as it

. . . L
is now adapted to the new esti- Egtimate of r2 (u, Q) | |T3W37I| |L2(C(u)ﬂv(u u))
mates for fi and fi.] Llu U

We apply Proposition 4.1.2 to the Hodge system, see 4.3.37,

o1
divy = —p+ 50

X—XX) —(p—p)

1
cy{rlnza—§X/\f<

obtaining

_2 _2_o_ _2 1 1
|7“4 pW3n|p:2,S Sc(|r4 pW2M|p:2,S + |7a4 sz(p,O—)|p:2,S) -l-c;(Io + 7, + A)(l + FOT_) .

Using this inequality it follows
u

Ya-203 9 ! Y1 520919 4—2_9 9
PO s < e [ S Y s e [TV o) s
uo

uo uo

1
+ o (To+ T+ A)? (4.5.12)

The last integral is estimated using assumptions 4.2.11 of Theorem 4.2.2,
see also 3.5.17,

Ct g2 2 __1 / 41, 2972 2
/uo r PV (p,0)[p=2,s 2(a,0) o) | [r°¥*(p, )|
1 1
< < D) . .
< Ca g Rellp (s w) < o5 8 (4.5.13)

To estimate the first integral in the right hand side of 4.5.12 we have to
control |’)”57%W2ﬂ,|p:275. The estimates for |r571%Y72ﬂ|p:2,5 are obtained in a
similar way as in Lemma 4.3.3 for 1 and ji. The evolution equation for Wzﬂ
can be written as

L (V2i) + 2000 (FPf) = B =200 Y26 (45.14)

where F, does not depend on the second derivatives of the Riemann ten-
sor and, therefore, can be estimated with the | - |, ¢ norms. Applying to
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this evolution equation the Evolution Lemma and Gronwall’s inequality we
obtain,

4290 4-2 9 (.
Ir* e Voilp=2,5(u,u) < c||r »YV flp=2,s(u,u,) + [r° Fy|p=2,s

u
b 32
+ suplmnl/ [V Blp=2,s (4.5.15)
u
Moreover on the last slice the canonical foliation of C, implies, see 3.3.9,
4—22 - 4—2 9 1
|Ir pW M|p:2,S(U,Q*) < |Ir pW (tI‘XtI‘XHp:Q,S(’U,,Q*) < C;I* (4516)

The estimates 4.5.15 and 4.5.16 allow to control the integral of |r471% Y72u|12,:275
and, therefore, ||T3Y72u||L2(g(wﬂV(u&)) completing the estimate of Y°7.

The estimates for the remaining O3 norms proceed in the same way and we
do not discuss them here.

4.6 Rotation tensors estimates

The rotation vector fields WO form the Lie algebra of the rotation group
SO(3). They satisfy the commutation relations

[(Z)Oa (J)O] = 6ijk(k)o s 0y ], ke {la 2, 3}

They are defined on the tangent space T'S,, for any p € M.

As the spacetime I is not flat but, in a appropriate sense, “nearly” flat we
expect that the rotation vector fields will produce a set of diffeomorphisms
which are “nearly” isometries and, therefore, that the deformation tensors
associated to these fields have small norms. This will be crucial in the error
estimates of Chapter 6 where we need to control the norms of the various
components of the Riemann curvature tensor in terms of the initial data

To define these vector fields we start by transporting the “canonical”
generators of the rotation group defined at spacelike infinity of 3y, backward
along ¥y up to the surface

S(O) (g*) = Q* AP

using the diffeomorphism induced by the flow normal to our canonical foli-
ation. We then continue to transport them along the null hypersurface C,
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using the diffeomorphism ¢,, restricted to C,, generated by the equivariant
null vector field N = 2. On C, we denote them VO,, i = 1,2,3.
Finally, starting from any surface S(u,u,) foliating C,, we use the diffeo-
morphism ¢; generated by N to transport the rotation vector fields to any
surface S(u,u) of K.

The discussion about the costruction of the (JO vector fields on the initial
hypersurface, ¥y, and on the last slice, C,, is done in Chapter 7. Here we
show how to extend the vector fields YO from the last slice to the whole K.

4.6.1 Technical construction

In what follows we start 37 with the rotation fields ()O, defined on C,. They
satisfy, on any S(u,u,) surface,

[(Z)O*,(])O*] = Eijk(k)o* , 17k € {1,2,3} .

Let ¢ € S(u,u) be a generic point of K. As S(u,u) is diffeomorphic via ¢a,
A =u,—u, to S(u,u,), there exists a p € S(u,u,) such that ¢ = qﬁ;l (p). We
define the element O of the rotation group operating over ¢ in the following
way 38

(0;9) = 5 (Ox5p)

where (O; q) is a point of S(u,u) and (O;p) is the point of S(u,u,) obtained
applying O, to the point p. This extension of the action of the rotation group
to the whole of K satisfies

O =, Oy
This implies that the generators (MO satisfy
[V, 10] =0

where (DO is the extension of (O, to K. From the previous definitions we
easily check that

[(l)O,(])O] = Eijk(k)o , Z]k € {1,2,3} .

3TThe construction on the initial hypersurface and final slice is discussed in Chapter 7
38 At the differential level we can define the extension in the following way:

Do = ¢*_A(i)0* )
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As W0 € TS, we have also  g(?0, e4) = g(PO, e3) = 0. In conclusion the
generators ()0, defined on the whole K, satisfy

(W0, o] = 6ijk(k)o
[N,D0] =0 (4.6.1)
g((l)Oa 64) = g((l)Oa 63) =0

Moreover, as N = QN = Qey, it follows
[0, e4] = OFey (4.6.2)
where
OF = -%0,(V,10g ) , V0. = ¢("0, e.) (4.6.3)

Proposition 4.6.1 The quantities VO, and Wb(i)Oa = (W(i)O)ab satisfy the
following evolution equations

d .. .
)y — gy, ()
=00y = 2370, (4.6.4)

where
(F)ap = [(i)Oc(chﬂa — Xeatl,) + P0cRager + U0 cxe1Ca
+xab (1,706) + POV X)) (4.6.6)
Proof: From [N, ¥0] = 0 we infer that
0D,Y0 = D0,(V,log Q)N + QDypeq (4.6.7)

and, choosing a moving frame satisfying 1D e, = 0,

i(Z')Ob = Qxp Y0,
du

To obtain an evolution equation for Wb(i)Oa = (V%0),. we start from
equation 4.6.7, which we rewrite as

D4(i)0 = (i)OCXCbeb + (i)OcQC€4 (4.6.8)
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Using the commutation relations in the appendix to this chapter, see Propo-
sition 4.8.1, we derive

d

(V900w = @ [$c(V,"0)e = Xae(V.10) + PO xenm, = xeart,)

+(i)OcR4acb + (i)OCchCa + Xab(ﬂc(i)OC) + (i)OC(Wg,X)cb}

In view of 4.6.1 and 4.6.8 we have

9(D.Y0, e4) = —xa POy

9(D490, e4) = a0,

g(D490,e4) =0

9(D,"0, e3) = —x,, V0, (4.6.9)
9(D3%90,e3) =0

g(D40, e3) = —2ﬂb(’ Oy

9(D3%0, e4) = —21,)0,,

Using this we compute some components of the deformation tensor relative
to the rotation vector fields. Denoting (0) = ()7, we obtain

Irys = 29(D470,e4) =0
)

(
(g3 = 29(D370, e3) = 0 (4.6.10)
(
(

i)774a = g(D4(i)Oa ea) + g(Da(i)O, 64) =0
s = —2(mp, +1,) V0, = —4(¥, log )0, = 4OF

the remaining components are

Oy, = g(DaY0, ) + g(D0, e4) = 20H,,
Orsq = g(Da0, e3) + (D30, e,) =49Z,  (4.6.11)
Observe that (i)Za can be written

1

02, = 1 (~004x,, + e5(04) + V09 Dyer, )

and, in view of [(i)O, e3] = —40Z, e, + OFes. we have
(D0, N] = —409Z,e, (4.6.12)

To control the quantities O ab,(i)Zb we derive their evolution equations
along the C(u) hypersurfaces.
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Proposition 4.6.2 The quantities VH , and Z), satisfy the following evo-
lution equations

d L o (i i
%(l)Hab = - (Xac( )ch + Xbc( )Hca) + QXab(Wc log Q)( )Oc

+ ()A(bcya(i)Oc + )A(ach(i)Oc) + Q(i)OC(WCX)ab

d 1 ' o (i i 1 i
2070 = S0ty Z0 + QR V2 + 20007, + 0 [E(Lm ~DF)(C+m))a
1_ . . 1 _
+5 Vo F = 20 H o — 5 (0~ g)a(’)F)] (4.6.13)

Proof: The proof is a long but direct computation and is reported in the
appendix to this chapter.

4.6.2 Derivatives of the rotation deformation tensors

The following relations hold

D49y =0, (DPr)s =0
(D3m)1s =0, (DyPn)gs =0
(D) aa = —2(x4aF + x4 VH cq)
(D3Dm)as = —4(1aDF + 1, DH )

(D4 )3y = 4D,OF

(Dar)3s = 4V, VF = xap'VZ5)
(D3r)3, = 4(D3DF — 21,(07,)
(D4r)g3 = —161, 7,

(Dom)33 = —8x,, 92, (4.6.14)
(D3 r)35 =0

(D4r)g = 2D, DH ), = QQfli(i)Hab

du

(Dc(i)w)ab = 2(Y7c(i)H)ab - 2Xca(i)Zb - 2ch(i)Za
(D3 D)oy = 2(D3VH) oy — 4(n, V2, + 1,92,

. d . . )
(D4Pm)as = 407> (Q0Z4) — d(n, OF +n,Hy)

U
(D)3 = 4(V,Z), — QXba(i)F - 2Xbc(i)H ca — 4617,
(D301) 43 = 4(D3M2), — 4(D3log )2,
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Most of the terms in the right hand side have already been estimated or
their estimates follow immediately from the previous results. The derivative
terms we still need to control are:

Dg(i)H ’ Wc(i)H : Dg(i)Z ’ Wb(i)z

Not all of them are independent, in fact a long, but straightforward compu-
tation gives
(D3Dm)ey, = (Dor )3b + (Dy1)34 + DO (Raape + Rabac)
+ 2(V,"0)exen + (V,70)e,,) + trx(¥,P0)s + (7,70)a)
+ @ Oc((W X)bc (WbX)ac) - 2Xabﬂc(i)00 - (i)Oc(Caxbc + Cbxac)
This equation allows to write Dg(.)H ab 1n terms of Y7 iy b and of Wb Z SO
that, finally, we have only to control Y7 VH, D37, Y7

Proposition 4.6.3 The quantities Wc(i)Hab, Wc(i)Zb and D3 (VZ, satisfy the
following evolution equations

d . 1 i N i - i i
T (V,DH ) + EQtrX(Wc(Z)Hab) =~ Q%ad(VOH) cap + Xad [(77( H)pae — (Y )H)dbc]
+X0a [(VOH ) ade= (VOH )aac| + Ha
di(Wa(i)Zb) = —Q%a V. Zy + U0V, V2 + 21 (4.6.15)
U
d 5.0 i)y ()7,
%(Dg Zb) = 4QUJ(D3 ) 4Q(C W) Zb + QRbC43
u 1 | |
+§QtrX(D3(Z>Z,,) + Q% (D39Z,) + 214 (4.6.16)
where
Hi = {(Wlog 0)cDe, (VH ) + [(Rad4c — 1, Xde) "Hap + (Rpase — ﬂchd)(i)Hda}

- [(Vf()cad(i)ﬂdb + (Vf()cbd(i)ﬂda] + (LoVX)cab + %%ch(LOtTX) - (W(i)FX)cab}
(4.6.17)

2 = 0 {(T,105DDyZ) + (Vo) Ze + 5LoVuC + 1)
%%m‘i’F - % (V.OF(C +m)) = 2(V,C0) VHe — 260(V, OH )
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1 | | |
—3ValVF(C - ﬂ)”)] + [Rocas VZe = O, xae VZ e + Oxanm, 2.

* % (VuOHo + ¥, OH oo = V. Hap) (¢ + 77)0} (4.6.18)

2 = {Q(Dgﬁw)(i)Zb + %(Dthrx)(i)Zb + (D) D27, (4.6.19)

+Ds <Q E(Lmo—(")F)(CJrn)) + 77 OF = 26,1 %("_Q)“(i)F)D}

Proof: The proof is a long but direct computation and is reported in
the appendix to this chapter.

4.7 Proof of Theorem 3.7.4, estimates for the D
norms of the rotation deformation tensors

We discuss how to control the Dy and D; norms relative to the zero and
first order derivatives and the Dy norms for the second order derivatives in
two different propositions, as their estimates are somewhat different.

Proposition 4.7.1 Assume, on C,, the following estimates, for p € [2,4],

0|p,( w) <L, | YO0, s(uu,) < .,

_2_
S( ) * 9 |’f’2 p (Z)Hab|p75(uaﬂ*) SCI*

-
|l
_2 ;
| Z |p, (U’ )S L. | 275 (Z)Zab|p,5(uaﬂ*) <
!
|

pT D3 ab|pS <Ly, |7'1_%7—7D3(i)za|p,5 < L,
T 71_’7'_D3 F|p,S < CI*

then, in view of the results of Theorem 4.2.1, Theorem 4.2.2 and Theo-
rem 4.2.3, we prove the following inequalities, for p € [2,4],

rCIR00), 5 < e(T, + Ay)

DO, ¢ < e(Zo + Ty + Ao)

|7"(1_%)(i)H|p,S < c(Zy + L + Ay) (4.7.1)

D 0Z], s < e(To + Tn + Ao)
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Y O0],.5 < e(Zo + I, + Ag)

P DYOR], s < o(To + T + Ay)

IT(fo%)W(i)Hb,s <e(To+Zi + Ag + Ay) (4.7.2)
rCDY0Z, ¢ < o(To + T + Ao + Ay)

2 .

|’I“27PD4(Z)Hab|p,S S C(I() + I* + AU + Al)

25Dy 2| < c(To + Tn + Ao + Ay) (4.7.3)
2 .

|’I“27PD4(Z)F|p75 S C(I() +I* + A() + Al)

_2 :
|’I"1 pT_Dg(Z)Hab|p7S < C(I() + T+ Ay + Al)
P37 Dy OZ,,s < o(To + I + Do + Ay) (4.7.4)
P D3O, 5 < e(To + T + Ao + Ar)

Moreover from the inequalities 4.7.1, 4.7.2 the following estimates hold

r 100|005 < ¢(Th + A)

rOF|so.s < e(To + T + Ao)

IrOH ] 0o.5 < ¢(To + T + Ao + A1) (4.7.5)
rDZ o5 < ¢(To + T + Ao + A1)

Proof: Applying the Evolution Lemma to the equations 4.6.4 and 4.6.5, we
obtain the following inequalities

r=1=900

VAN

paS (u7 Q)

: <|r(_1_%)(i)0 (1) + [ Qo sl 7 0 ”’S>

IA

_2 g _2 g u, ~ _2 g
P Y0l (v, w) c(|r PV O] (1) + [ QUkloeslrTF IO

+ /_* |7"_%-7:1|p,s> (4.7.6)
u

where, see 4.6.9,

(Zo + Z. + Ap)
,,43

(Zo + T + Ao)

T, .
r2

2 .
Ir~»Filps < ¢ |(l)0|p,S <c
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Using the Gronwall Lemma, we obtain the following inequalities

P PO0], s(u,m) < el P00 s, < o (4.7.7)

r

YO0, s(u,u) < [rrVOO|,.5(u, w,) + ¢ L

and, applying Lemma 4.1.3,
1= 00|05 < e(Zo + I + Do) -

Using the explicit expression of the Lie derivatives with respect to @0 and
the previous results for the connection coefficients we can prove the following
inequalities 37

% Lo trXloe,s < ¢(Zo + s + Ao)
12 LiyoX|oo,s < c(Zo + T + Ag)

and, in view of 4.6.10 , we also obtain
Ir OF| s = |r DOV 1og Q|5 < e(To + T + Ap) .

To derive the estimates 4.7.1, 4.7.2 for WH and ()Z we use their evolution
equations 4.6.13. Thus, in the case of OH, we derive, using the Evolution
Lemma,

e

(Zo + Z. + Ao)
0T L T B0)
du

— 2 N ~
= (Ir7 OHls + (Voo + 17 Xoo.s

IN

P,S
HrVtrxloo,s) )

To+7Z,+A _ 2
(To+ T + Ao) (|r IZ’(Z)H|p,s +o(Ty + T, + Ao)) )

r2

Integrating from u to u, and applying the Gronwall Lemma, gives the in-
equality 40

P OH |, < o(To + Th + Ag) (4.7.8)

391n fact this requires also the control of the norms |r_%Y7(i)O|oo,5 and, at its turn, this
requires also the control of |T17%W2(i)0|p,s which can be proven in tha same way as for
|r7%Y7(i)O|p,s, simply deriving once more eq. 4.6.5.

“00bserve that the different asymptotic behaviour of VH and YO is due to the dif-
ferent estimates they satisfy on C, .
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Proceeding in the same way, starting from eq. 4.6.15, we obtain

(Zo + T + Ao)

d . 1_2_. o 1
%Vl ;W(Z)}ﬂp’sgc > <|T1 2 OH|,.s + - (Zo +I*+A0+A1)>

T
which, again, integrating from u to u, and applying the Gronwall Lemma,
gives the inequality

P2 S VOH |, 5 < e(To + T + Ao + Ay) .
Collecting these results together and using Lemma 4.1.3 we conclude
rOH o5 < e(Zo + T + Ag + Ay) (4.7.9)
Proceeding exactly in the same way for ()Z we obtain

2 ,.
1P =207, 5 < e(To + T + Ag)
2 .
|7“27PY7(”Z|,,,5 <c(To+ T+ Ao+ Ay)

and, therefore,
rZ ol o0,s < e(Zo +Tu + Ao + Ay) .

The estimates 4.7.3 are obtained writing their explicit expressions and esti-
mating them using the previous results. The estimates 4.7.4 require to use
the evolution equation for D3®#Z, see 4.6.15, and then proceed as before.

Proposition 4.7.1 allows to estimate the components of the traceless part

of the rotation deformation tensor 4!,

Q
S S
&
=}
o
I
—
5
=]
o
|
)
-~
T
=]
o
|
)
L
(&%)
=]
o
—~
=
=
=}
IS}
|
)
>N
=
|
N—

m, = Vas, =407, (4.7.10)

)
O)ma = (.)7%4 =0
In = Oirgs = 29(D570,e5) = 0
O)n = (i)ﬁ'44 = 29(D4(i)0, 64) =0

proving the following result,

“1Recall that Dagy, = Py, — iéabtrw and trOr = O, — O
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Corollary 4.7.1 In I, the following inequalities hold:

717 (94,9, ©Ohm)|, ¢ < ¢ (Zy + T + A)

P25 W((O4, 95, Om)|, 5 < ¢ (To + L + Ag + Ay)

12 5, (9%, ©)5, Om)|, ¢ < c(To + T + Ag + A1) (4.7.11)
P15 Py (O, O, Om)|, 5 < ¢ (T + T + Ag + Ay)

The first line for p € [2,00) *2, the other ones for p € [2,4].

The next proposition provides us with the estimates for the Dy norm, see
definition 3.5.45. The Dy norm collects the norms of the second derivatives
of the rotation deformation tensors which will be used in chapter 6 for the
estimates of the “Error terms”.

Proposition 4.7.2 Assume that, on %o the following inequality holds

2

du'|r27%¥72H|§:275(u', g*)> < cT,

u

IV B2 nviu,)) = (/u

then in view of the results of Theorems 4.2.1, 4.2.2, 4.2.3 and of Proposi-
tion 4.7.1 the following estimates hold, the last one for § > ¢ >0

0) (U,

1PV H || 2cwymvway < ¢ (o + e+ A) (4.7.12)

1PV 2| L2 (cwynv wary) < €(To+ T + A) (4.7.13)

r 1
||\/ﬁy7maz||L2(g(g')nV(u,y)) < e (Zo+Z.+A) (4.7.14)

where we denoted A = Ag + Ay + As.

Proof of inequality 4.7.12:

To estimate W2(i)H we use its evolution equation, obtained deriving tangen-
tially the one for W(’)H, see 4.6.15. It can be written as

%(WZH )+ Qurx (Y2 H) = X(V°H) + (LoY’x) + Ha  (4.7.15)

42The estimates hold also for p = oo, but, in this case, their bound depends also on Ay,
see 4.7.8, 4.7.9.
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where Hy collects all the terms which do not depend on third order deriva-
tives of the connection coefficients and, therefore, can be estimated in the
LP(S) norms, with p € [2,4] 3. Applying to 4.7.15 the Evolution Lemma
and Gronwall Lemma we obtain

Y H s < ([P Hpas(un) (4110

L. li 2-2 2 22 li
+/ du’ [I?" » LoV xlp=2,5 + |r 1’7'l2|p=2,5] (u,u ))
u

where the integral with Ho, depending on lower derivatives, does not give
problems and, hereafter, will be neglected. Substituting 4.7.16 in the left
hand side of 4.7.12 we have *

2 " 22,9
||’I"Y7 I{HL2 (w"HNV (u,u’)) = / dul|lr pW H|12):2,S(ulaﬂ)
U

o(u)

2
S/ w du' [ITQ_% PHpy (v, u, (/ du|r* "5 VP s, s (1 )) ]
uo (u
2 v / Y 1 L m o 4—2.3 9 ron
ch*—i—c/uo(w du / ) / du" [P E Y Py g ")

ScIf—i—c/

uo(u

3
,) ( )|| VX7 2 (1)
2 1 3 ? " ! 1
) 2
<cI?’+c (sup r2 (Uaﬂl)||7"3Y73X||L2(C(u,[g’,g*})> <

using the result of Proposition 4.5.1.

Proof of inequality 4.7.13:

To estimate Y72(i)Z we look at its evolution equation, obtained deriving tan-
gentially the evolution equation for W(l)Z , see 4.6.15,

d 1 .
@(WQZ) + §Qtrx(WQZ) = Q(Y?Z) + LoV (( +n) + V' F + (C+n)Y°H + 22
“3Moreover they also have the appropriate asymptotic behaviour to control their inte-
gration.

44Here € is a small constant which bounds c¢Z,. In general with e¢p we denote a small
constant satisfying ¢ (Zo +Z. + A) < eo.
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where Z5 collects all the terms which do not depend on third order deriva-
tives of the connection coefficients and, therefore, can be estimated in the
LP(S) norms, with p € [2,4]. Therefore we will neglect it in the sequel. Ap-
plying the Evolution Lemma and Gronwall Lemma to this evolution equation
we obtain,

2 2

[P Y2 Zlps s () < (|07 PV Zlpms, s (u, )
2

U, _2 _2 _
[ [ LoV nlpmss + 1 FLoWtlp=is + 1 V(0 + 1)lpmss]
u

v, 1 2
+/ —|r* v 2H|p=2,5>
u T
_2 Ly _2 U, 1 _2
< C(I?“2 pW2H|p=2,S(u,u*)+/ & pW?’(n+ﬂ)|p=2,s+/ ﬁl?"?’ pW3XIp=2,S>
u u

The last integral in the last line can be treated as in the previous estimate
and gives a better contribution due to the factor »—2. Therefore we are left
with the inequality

v _2
||TW2Z||%2(C(u’)ﬂV(u,y’)) < / (') du'|7’2 pW2Z|;2):2,S(u,7Q*) (4718)
uo(u

u u, 2
+/ du' </ dg"|7’3_z%y73(77 + 77)|p2,5(u’,g”)> +c(To+ T, + A)?
uo(u) 7 -

The estimate of the last integral is obtained by a straightforward application
of Schwartz inequality and of the result of Proposition 4.5.1.

Proof of inequality 4.7.14:

To estimate YID,()Z we have to look at its evolution equation, obtained
applying D5 to the evolution equation for V7, see 4.6.15,

o (VP2) = [§(TD2) + 5 LoTBuC+1) + 5 V'DuF —2(C + 1) VB3] +6;

where Sy collects all the terms which do not depend on third order deriva-
tives of the connection coefficients and, therefore, can be estimated in the
LP(S) norms, with p € [2,4]. Between the terms in parenthesis the more
delicate ones are: rW3g and TWQQ present in the explicit expressions of

LoYID,(¢ +n) and Y721Z)3F 45 Considering only these terms and applying

5 All the terms in [- -] of 4.7.19 have to be estimated in the L?-norms, but we focus our
attention on these ones as they have the slowest decay.
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the Evolution Lemma and Gronwall Lemma to the evolution equation we
obtain 46

(246)-2 1o L
|r PVP3Z|p=2,s(u’,u) <c
ul

54¢)-2 1, (342
Y s + 0 BBl

Therefore we have

PG YD, 72, (o)

IA

2
o ([ r 0 i astiat)
u 2

" 2(/ R T A, H)> e

and, from it,

2
u U, 5

- SC/ du' / dy"r(§ €) ~ YW s(u / //>

| = VP e <, ( P e s (')
2
" +e 1o —
+c/ (/ du"|rG ) Y26,y o (' )) = c(I3 + Tu) (4.7.20)
wo(u')

To estimate the Z, integral we apply Schwartz inequality and obtain, choos-
ing n > 0,

1 u
I, < c/, du” (/ du" 1+2n> (/ ( I)du | (3Hetm) pW Blr—a,s(u! ”)>
u uo(u

< / W / 22| BLE W) (4.7.21)
r u") J o fuo.u)) -
3 Aj A2
< ¢ o 26( )||T_ v? Bl12 <c 2 (1=20 <c(Zop+I.+A) —5(1=20

where in the last line we used Proposition 5.1.5 of Chapter 5, see ?7?7. Pro-
ceeding in the same way for Z3, we obtain

Y ’ e gy 1 Le (B+(e+m)— 23 |2 1o
nos [ ([ ) ([ s
uo(w ul

u
< C/ du/ du"| (3+(e+m)) —;W w|2 ( /g//)

0

“Sthe term |r(2+E PWDSZ|p:2,s(u,g*) is missing as in Chapter 7 it is proved, see
Proposition 7.5.1, that Z =0 on C,.
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du |’f‘ (3+(e+n)) —;W w|p 2S(ulull)

IN
\
Q.
IS5
\

IN

" ]‘ v / 1N
c du ) /uo(u’) du |r pW w|p 9.5(u'w’)

yl

IA

using the results of Proposition 4.5.1.

4.8 Appendix to Chapter 4

4.8.1 Some commutation relations

We collect in the following proposition the proof of some commutation re-
lations which will be repeatedly used in various estimates.

Proposition 4.8.1

a) Let f be a scalar function, then 47

[D3,D4]f = (Dalog)D3f — (D3log Q)Duf +4¢ - Vf

Dy, VIf = +n)Duf —x-Vf (4.8.1)
b) Let V be a vector field tangent to S, then *8
P,V Vo = —XacVeVo — 0y XacVe + Xav(n - V)
+ (W, log )P4V, + ([Dr, Dy]V5) ejeqey
D3,V lVo = =x,.V Vo —mx, Ve + X0 V) (4.8.2)

+ (Vo log)DsVy + ([Dr, D)V ) e3etef
c) Let f be a scalar function, then *°
[ADslf = = [=1ax,, Vol + trxm¥of = 2x,, (Y F)as
= Xy Vof — (divx)s Vo f = B,Y,f ]

- [(7. 1o ) (Da¥ 1) — (DT )+ .Y, Das

+(Alog 2)Dsf + Ca(V,log 2D f} (4.8.3)

70 course [P,, VIf =P,V f — YDaf.

“Where [P4, Y, ][Vs = (D1YV — YD1V ).

YAf = eweqa¥, Y, f. On a scalar function f, ¥, f = IIf D, f and, on a vector field
X tangent to S, WMX" = II;II; D, X" where II is the tensor projecting on T'S. Finally,
assuming that the vector fields {eq} satisfy D,ec = 0 we have: DsAf = eje; D3y, ¥, f .

2
c (Sl;p ra (uaﬂ)||r3W3&||L2(Q(g)ﬂV(u,y))> < (To+ I+ A (47.22)

[Manca I’espressione analoga
per [P3,V, ]V, . Aggiungere.]
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d) Let X be a vector field tangent to S, then

(D3, div]X = —x_ V. Xa+ ¥, log QD3 X, — na)x, Xe + trx(n - X)
+egege3[Dr, Dyl X,

[Ds, div] X = —xacV Xa + V¥, log QP Xo — 1, XacXc + trx(n - X)
+ebegey[Dr, Dyl X, (4.8.4)

[correzione nella 4.8.4, try(n-X)

al posto di trx(n-x) e trx(n- X)

al posto di trx(n - x) ] ”

Proof: To prove the second line of 4.8.1 we recall the definitions

WGD4f = €éfDuD4f = (Dea€4)0Daf+€geZDuDUf

D.Y, f (DY, f)eq = Da(Il}.D, feg
= e (D4, D,f +epef DD, f (4.8.5)

Therefore

(VoDa =PuY,)f = (Deyea)” Do f = g (Dal)i D, f + eqeq[Dy, Dyl f
1

= _E(Dea64)ye3yezDUf + (De,e4)’ecver Do f — 65(D4H)ZDpf
1

= _§g(D€a647 e3)Daf + g(De, e, ec)Def — eg(Dﬁln)ZDpf

= —CaDuf + XacV.f — e (DD D, f (4.8.6)

the proof is completed observing that efDyllf = ﬂaeﬁ . To prove 4.8.2
observe that

DY Vo = ey DallfII]D,V, = ef(Dallf)ef DyV,
+ eley (D4II)) D,V + efef DuD,V, (4.8.7)

which using the relations
e (Dallf) = Qaefi , €y (DaIly) =n,ef (4.8.8)
can be written as

DyY, Vo = 0, PaVi — 0, XacVe + €hef el Dy D Vo + ehef el [Dr, D)V,
(4.8.9)

*0We always use the notations DW, = (DW), , YW, = (YW )., unless it can generate
confusion.
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On the other side

VPV = eief (LT D,I7D4V,) = efef (DI D4 V)
= (D I} )ef D4V, +ehef Dye DV, (4.8.10)
and, as
”(DHT)"—1 T (4.8.11)
Ca\plis)Cy = 2Xabe4 2X(1b€3 -O-
we obtain

YV PiVy = —xar(n-V) +ebef (Dyey) DV, +ehefe; DDV, (4.8.12)
Moreover, as
egeg(DpGZ)DTVU = XacWCVYb - Ca]pél‘/b ) (4813)
4.8.12 can be rewritten as

Wam4% = _Xab(ﬂ' V) + XachVb - Caﬂﬂ@ + egegeiDpDTVa (4-8'14)

which togheter with 4.8.9 proves relation 4.8.2.
To prove 4.8.3 observe that

D3, Alf = {el(DsT)} e Dy HADAf+€”€”(D3H)TD Dy f
+ eZe" Dy (D3I)2ADyf — €€l (Dyes)’ DDy f
— €Zel D, 1) (Dyes)’ Déf — eqeredR 5, V. f} (48.15)

where the six terms in brackets have the following expressions

et (D3I 7es D IIXDAf = 1gD3(Vf)a
Uey(D:zH)TD IDAf = —nax,,V,f
D,(DsI);Drf = trxm¥y/ +1aV,Dsf + (divn)Dsf
—ege (D e3)’ DsTDAf = =X, (VY )ab — Ca(D3YS)a
—eqep DN Dyes)’ Dsf = =X, (VY )ab — (dhvx)s ¥, f
—(div{)Dsf — Ca(D3Yf)a
—CaX Vo f + Ca(V,log Q)Ds f
R,V f = —BY.f (4.8.16)
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Collecting all these results together we obtain the result. To prove the first
line of 4.8.4, observe that

Dsdiv X = el (D31l )eg D, X + efe, (D3IL)) Dy X, + efep DDy X
and, as
efL‘(Dg,HZ) =naeh , el (D3Il)) = neef (4.8.17)

the result follows.

4.8.2 Proof of Lemma 4.3.5

[Title of subsection modified.]
We start from

D3(2D4)% log Q = OD,D3(Q2D 4 log Q) + [D3, QD] (2D log Q) (4.8.18)
As [Dg, QD4]f = (DgQ)D4f + Q[Dg,D4]f , using 4.8.1,
D3, 9D.)f = (Ds2)Dsf +9((Dilog Q)Dsf — (Dslog DS +4¢ - V)
= (D4logQ)QDsf +4Q( - Vf
and, posing f = 2Dy log (2,

D3, 2Dy4](Q2D4log Q) = 4Q¢-V(QD4log Q) — (2D3log Q)Dy4 (2D log Q)
+(QD4 log Q)Dg(QD4 log Q) + (D39)D4(QD4 log Q)
= (2D4logQ)D3(02Dy4log Q) +4Q¢ - V(D4 log Q) .

Substituting in 4.8.18,

D3(0Dy)%logQ = QD4D3(QD4log Q) + (D4 log Q)D3(QD, log )
+4Q¢ - Y(QD4 log Q) (4.8.19)

As, see 4.3.58,
D3(02Dylog Q) = 290¢ - Ylog Q2 + Q(n - n — 2¢* = p)
eq. 4.8.19 becomes
D; ((2D4)?log 2) = Dy [20¢ - Yiog Q@ + (- 1 — 2¢* = p)]
+(2D4log 0) [20¢ - Viog 2+ Oy n — 262 — p)| +40¢ - Y(2D4log Q)
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= [2D4(C - V1og Q) +Dy(n-n —2¢* - p)]
+ 2(2D4log Q) [20¢ - Viog @+ (y - n — 22 — p)| +49( - V(D4 log 2)
= {49{ Y (2D4log 2)+2(2D4log ) <2S2§ - Vlog Q+Q(n -1 —2¢* - p))}

+ {Q <2D4§ ViogQ+ Dy(n-n—2¢ ))]—QQDM)

= [1]+[2] - 9°Dap (4.8.20)
Using the evolution equation for ¢, see 3.1.45,

D¢ =-2x-¢C—PyY1ogQ -

and the commutation relation, see 4.8.1,

(P4, V]log @ = (¢ +n)Dalog 2 — x - ¥V log
it is easy to show that [2] can be rewritten as
[2]= 0?2 [(GC —2Y log Q)Q_1 (WQD4 log Q+Qx - (¢ —Q) —1—95) +2nD 4V log
so that finally
D; ((2Dy)?log2) = M — 9?Dyp
and

29{ {2@“ -YVQDy4log Q2+ 2(2Dy4 log 2)¢ - YVlog 2
+(QD4log Q) (n -1 — 2% +Qn - D,V log Q2
~(-5 + Y 1og @) (YOD41og @ — O (1~ ) |

+[ o 3g+y710g9)5—(m)410g9)p” (4.8.21)

4.8.3 Proof of Lemma 4.4.1

Starting from

Dy(YV) = VD4V + [Py, Y]V (4.8.22)
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with V' = YD3log © and using 4.8.2 to compute [D4, V]V, we obtain
12)4Y7avb = _XachVl; + Wamélvb + (Wa log Q)]D4Vb
+ {0, (x - V)a + xan(1 - V) + €5l ((Dr, DyVy) €f }
1
= _XachV;) + ﬁyaﬁlzh‘/b

+{=m, (¢ - V)a + Xan(1 - V) + €l (D7, DyJV,) €f }
(4.8.23)

Recalling that

DV, = Y,D4D3logQ+ (YV,logQ)DyD3logQ — xp.Ve
1
= VsDaD3log 2 —xpcVe (4.8.24)

and plugging it in the previous equation we obtain

1
]/Z)4Y7a% = _XQCWCVI; + ﬁya(beD‘lD?) IOgQ - QXI)C‘/C)
+{=m, (¢ V)a + Xab (0 V) + €5e ([Dr, D,JV,) ef |
1
= —Xac¥ Vo — X6c ¥V, Ve + ﬁyabeD4D3 log Q2
—[(V, log D) xeVe + (Y, Xbe) Vel

+ {0, - V)a + xab(1 - V) + €5l (Dr, DyVy) €f }
(4.8.25)

and finally

1 . .
]p4y7av;) + tI‘XWaVb = 577@771)9134D3 log Q- (XacWCVb + XchaVc)

- [(Wa log Q)Xchc + (WaXbc)Vc + ﬂbXach
~Xab(1,Ve) = €ieh ((Dr, D IVo) €f]  (4.8.26)

The commutation relation [D3,div]s

From eq. 4.8.7, with the obvious substitutions, a =6, V=08, 4 — 3, we
obtain

Didivp = e (Dsllf)eq DB, +ehe (D3l]) DB + ehey D3Dy
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It is easy to show that
e (DSTIZ) = n4cf , €4(DsTIS) = noe (4.8.27)
therefore

Dsdiv s =naPsB, — nax, B, + eheqes[Dr, DplB + divDsp  (4.8.28)

4.8.4 Proof of Proposition 4.6.2

To prove the first line of Proposition 4.6.2 we observe, see 4.6.11, that

1

O, = ¢ (7,90 + (7,90),) -

therefore, using the evolution equation for (@0, we obtain immediately,

d . Q . . . .

il O] — 21(x (8) o (%) _ (5 (%) o (8)

du Hy = 2 [( bc(Wa O)c + Xac(Wb O)c) (Xac(WC O)b + Xbc(Wc O)a)
+(i)Oc ((WaX)cb + (W()X)ca) + (l)Oc (XC()C(L + XcaCb) + 2Xab (ﬂc(l)Oc)
+(i)Oc (R4acb + R4bca)] (4'8'29)

A simple computation shows the explicit expression of (Rygep + Rapea)s

Ryaer + Ravea = — (Y X)eb — (VpX)ea + 2(V.X)ab + 2CeXba — (XevCa + Xealp)
which, substituted in 4.8.29, gives immediately

i(i)f[ab =-Q ()A(ac(i)ch + )A(bc(i)Hca) + QXab(WC log Q)(l)Oc

du
+Q ()A(bcya(i)Oc + )A(ach(i)Oc) + Q(i)Oc(WcX)ab

To prove the second line of Proposition 4.6.2 we denote W = Lpg and write,
omitting the indices (),

%W(ea, e3) = QLe,W(ea e3) = Q(Le,W)(€a,e3) + W ([ea, €a], €3) + Wea, [e4, €3])]
= Q[(Le,W)(eas3) — xabW (en, €3) + (Y, log Q)W (e4, €3)
—(Dylog M)W (eq, e3) — 4G W (€q, €p)] (4.8.30)

which can be rewritten as

d 1
%Za =Q Z(£64W)(ea, e3) — XavZp + (Y, log Q) F — (D4 log ) Z, — 2(pHyp

(4.8.31)
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The first term in the right hand side of 4.8.31 can be rewritten as 5!

LW = LeLog = LoLerg + Liey,019
= LoLeyg = L0e]9 =L0Lerg — LFes9
= LoLe,g — F(Leyg)(€a,e3) =2V, F
= LoLe,g—2(C+n)aF =2V, F (4.8.32)

Plugging 4.8.32 in 4.8.31 we obtain

d Q
@Za + Q(D4 log Q)Za + QXabe = Z [(['Oﬁmg)(eaa 63) - 2(C + 77)aF + 2WaF]
+ Q [(Wa lOg Q)F - 2CbHab] (4833)

The first term in the right hand side of 4.8.33 can be written as 52
(LoLesg)(ease3) =2(Lo(¢+ 1)y — (Lesg)ar]O; e3]” (4.8.34)
and as, see 4.6.12,
[0,e3] = —4Zpep, — O (V. log Q)es
we obtain
(LoLe,g)(eares) = 2((Lo — F)(C+m))q + 8xarZp (4.8.35)

Inserting this last expression in 4.8.33 we obtain the expected result

d ; : 1 .
@(Q(l)za) = Qxw(2Z,) + Q7 5 (Lao — DF)Y(C+1))a
1 . 1 .
+ §Va(l)F — 20, H g — 5= n)aVF) (4.8.36)

1 Using the equation
([Less Lirolg)ur = (E_((i)pe4)g)uu = _(i)F([:&;g)w - (Du(i)F)g‘lv - (Dv(i)F)g;A

which follows from the relation LxLyU — LyLxU = Lix y)U and the commutation
relation [V0, eq] = VFey.
»2Writing
(LoLesg)(eases) = ((LoLeyg)uvesIly)eq = [Lo((Leig)uveslly)]eq
— [(Lesg)uv(Loll)ses + (Leyg) w15 (Loes)” ] eq
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4.8.5 Proof of Proposition 4.6.3

We start from the equality

%Wcﬂaw = Q[(VD4H) , + (D4, VIH) 1) (4.8.37)

choosing the null frame in such a way that ID,e, = 0. A standard computa-
tion gives

(P VIH), 0y = [+ ltas DuHyp — (Deea)” (Do Hyp)egey
+eleyeles”(DyDy — D, Dy)H,y) (4.8.38)
where
[ Joat = (DalD)legey + ek (Dall)gep + ebey (DaIl);
As

(D4ID) = n €

it follows immediately that
[ ey DuHyp = 0, Da(Hap) — 1, XeaHap — NyXcaHad -
Moreover
etteneyes’(Dg Dy — DDy )Hyy = (RagacHap + Ryasc Haa)
and
—(Dces)’ (Do H)ap = —XcaVgHap + CcDa(Hap) -

Therefore the left hand side of 4.8.38 becomes

Py, VIH) 0y = —Xea(VaHay) + (Vlog Q)Da(Hap)

+ [(Rad4c - ﬂaXdc)Hdb + (Rbd4c - ﬂchd)Hda]
(4.8.39)

which substituted in eq. 4.8.37 gives

% (WCHab) + QXCd(WdHab) = Q(WDALH)cab + Q(WC log Q) (D4H)ab

+ Q [(Rad4c — 0, Xde)Hap + (Rpase — ﬂbxcd)Hda]
(4.8.40)
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Starting from 53

. . . 1
D4H/u/ = _(Xudeu + XVde,u) + (EO - F)X/LV + EHMV(EO - F)tTX )
we compute explicitely

(VP H)aw = — (VoXad)Hav + (VoXbd)Haa) — (Xad ¥V Hav + Xba ¥V Hda)
V(Lo — F)X)ab + %HW(WC(LO — F)try) (4.8.41)

inserting this last expression in eq. 4.8.40 we obtain
d 1 R R .
%(WCH@) + EQtrX(WCHab) = —QXadV Hao + XbaV Haa + Xca¥V ¢Hab)
+0 {(Wlog Q) cDa(Hap)
+ [(Rad4c — 1, Xde)Hap + (Rpase — becd)Hda}
- <(Y7¢>2ad)Hdb + (ch(bd)Hda>

+HF (Lo~ F)a + 30 (V(Lo - Flirx)
(4.8.42)

Which we rewrite in a more formal way as
d 1 N
@(WCHab) + X (Vo) = —QXaa(VH)ea + {(Wlog Q)cDy(Hap)
+ [(Rad4c — 1, Xde) Hap + (Rpdse — ﬂbxcd)Hda]
- ((VY)aadeb + (VY)cdeda>
- <>2bd(Y7H)cda + Xcd(WH)dab>

HLoV e + 0¥ Lotrx) = (VFX)eas |
+Q([W? ['O]f()cab (4.8.43)

33Starting from eq. 4.6.13,

1
(D4H)ap = — (XaaHas + XsaHaa) + ((Eo — F))%)ab + §6ab(£o — P)try .
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As the following commutation relation holds

([W? 'C'O]f()cab = )A(bd (WaHdc + WCHda - WdHac)
+ Xad (VyHae + Y Hap — YV yHye) (4.8.44)

substituting in the previous expression we obtain the result of Proposi-
tion 4.6.3

(T Hur) + 3T Ha) = ~Qhaa( VH e
+Xad (VH)pdge — (VH)dve) + Xbad [(VH)ade — (VH ) dac)
+9{ (7105 ). Di(Ho)

+ [(Rad4c — 1, Xde)Hap + (Rbase — becd)Hda}
- [(Wf()cadeb + (W)Z)cdeda]

+(LoVX)cab + %%b%(ﬁotrx) —(VF X)cab} (4.8.45)

The proofs of the second and third line equations of Proposition 4.6.3 are
similar and we do not report them here.

4.8.6 Proof of the Oscillation Lemma

We repeat here the statement of the lemma.

Lemma 4.1.6 (Oscillation Lemma) Consider a space time region K with
the “canonical double null foliation” generated by u(p),u(p). Consider also
an initial layer region K's,, of height &, with the “initial layer foliation”
generated by u'(p),u(p). We make the following assumptions:

e On the surface S; = X5 NC, = S'(200 — v, Vi)

(( sup |u(p) — u(p')|> < e (4.8.46)

p,p') €S,

Also, [The assumptions on g(I, L")
have been changed. These ones

1 -
277 < e, | g(L L) < e, |37 V(L' L)] < eq (4.8.47) ¢ the xieht ones]

e On the initial hypersurface X,
30| < e (4.8.48)

[In the next item
has been substituted with “on

K/Kp,” ]



[The conditions on YDe, log
and YDe,log) on IC/IC:;O
have been eliminated as we do
not use anymore on IC/IC:;O
the stronger estimates for
n,n,n',n’, although they are ,
of course, true. We use only
the stronger estimates
9(L,L")]

for

[The previous remark 2 has
been eliminated. The third re-
mark is now the second.]
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e On K/Kj,,

(4.8.49)

e On the initial layer Ky,

OfF + O < €9 (4.8.50)

Then,

Osc(u)(X5,) = sup

velvo.v.]

( sup lu(p) — u(p')|> < ce (4.8.51)
(p,p')ES' (280 —v,v)

Remarks:

1) The norms appearing in 4.8.47, 4.8.48, 4.8.49, and 4.8.50 are pointwise.
2) The assumptions 4.8.47 are verified in view of the canonicity of the foli-
ation on the last slice C,, see Proposition 7.4.1 and Lemma 7.7.2.

3) The assumptions 4.8.48 are verified in view of the canonicity of the foli-
ation on the initial slice Xy and are used in Lemma 4.8.2.

Proof: The proof requires a bootstrap mechanism which has been used
many times in this chapter . We assume that the oscillation of « is bounded
by a small quantity, T'f,

Osc(u)(X5,) < T (4.8.52)
and prove the better inequality
]_‘\I
Osc(u)(E5,) < cep < 70 (4.8.53)

Denoting X [r, 1] the portion of ¥ where 4.8.52 is satisfied, the inequality
4.8.53 allows us to conclude that f [r},r]] coincides with the whole ¥ and
therefore 4.8.52 holds everywhere.

Let {e},e4, e} be the normalized null frame adapted to the initial layer
foliation with

ey =20'L" | ef =20'L (4.8.54)
where Q' is given by

(20~ = —g(L',L) = —(¢9"° 8,u'8,u)
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as in definition 3.1.12, see also 3.3.16. Let us define

N/

N | =

(e —eb), T'= =(e) +¢€b) (4.8.55)

N | =

N'is a unit vector field tangent to 3 , orthogonal to the leaves S'(2d0 —v, v),
contained in ¥ , and T" is the unit vector field normal to ¥ . Introducing
the functions

1 1
V= saru) o = (e —) (4.8.56)

we observe that, see Proposition 3.3.1,

, 19 -, 10

= sy W= o (4.8.57)

Therefore, denoting 7, = 7’|~ s} and introducing °* the angular coordi-
C.NT5,

nates ¢ = {¢', ¢*} on X, In 4.8.58 the term 2% (1", g)

has bgen substituted by the
" ou term B—:f,('y(r”)).]

rl .
u'§) = ulr @)~ [ 5r (" 8) = el g~ [ 2N @), )
r OT r!
rl
= ulrl )= [, (hlw) — eh(w) (4.8.58)
7./
where y(r", ¢) is the integral curve starting from p=(r}, ¢) € S"(200—v., ),
with tangent vector N'.
To estimate the right hand side we express the null frame {€, €4, e/, } adapted
to the initial layer foliation in term of the null frame relative to the double
null canonical foliation, {e4,es3,e,} where

ey =N =2Q0L, e =N =2QL (4.8.59)

It is easy to show, imposing that both frames are null frames, that

Q L,
e = §e4+Q’Q(—2g(L',L))€3—29(—28(L,aL))20a€a

Q/
4 - Lo, (4.8.60)
¢ = eq—2(-2g(L',L))36es

54The angular coordinates ¢ are introduced in the standard way starting from the surface
g y g
S. = C, N5, and moving along the radial curves with tangent vector field N'.
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and
Q , ' ' ' "IN 6. €
er = o+ QY (=2g(L, L))e; + 20 (~2g(L', L)) 264e,
Q
0 — Q/eé (4.8.61)

e =+ Q(-2g(L', L)) 60e}
where the vectors &, satisfy |6]? = 3, 62 = 1. Recall also that
es(u) =Q 'N(@) =0, eq(u) =0, e3(u) =Q 'N(u) =0 (4.8.62)

where N is the outgoing equivariant vector field relative to the double null
canonical foliation. Therefore the last line of 4.8.58 can be rewritten as

wrt )=t [ (- T)ane s

r

[in the second line of 4.8.64 The oscillation of u(r', ) on the surface S'(26y—v, ) satisfies

27 F(¢") is modified i
I @) i moditied i sip fu(p) —u@) = sup [u(r (), 4) — ul (), )]
f7(¢,¢ 'y ds F(o(s)) where o(s) P, €S (200—vv) 6,0/ €S2

is a curve on S? from ¢ to ¢'.] s(¢) g r Q
< swp [w(r;,«zs) —url )+ [ ( / @ (4w~ ) (r",o—<s>>>]
b,/ €S? sig) ds \Jr Q
< sup |u(fr" ¢) — u(fr’ ¢l)| +ec ( sup ( ) g) ('r'l/ ¢) >
— ¢,¢1652 * 9 *9 a ¢652 8¢a’ QQ 9’
r, Q/
IS AICTOE W) o) ar” ) (4.8.64)

where in the first inequality o(s) is a regular curve on S? from ¢ to ¢/. We
are left with estimating the integrals on the right hand side of 4.8.64,

r 02
'Y (') (u)) — ; "W < >E(I)+(II) (4.8.65)

<€ +c < sup
(a,0€5?)

T.I

which in the next lemma are estimated in terms of the connection coeffi-
cients relative to to the canonical and the initial layer foliations and of the
quantities g(L, L") and Y'g(L, L').

Lemma 4.8.1 The integrals in 4.8.65 satisfy the following inequalities

r r r
@ = [ty <2 [Tl w)ligr nl 2 [ 10nvg(n 1)
r r r
7'; 12
02

7'; QIZ
)= [ "V < r(~2g(L', D) (U] + |7 — 0l + 42w + Qw']) (4.8.66)
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Proof: To estimate (I) observe that

!

W= [ @ = [
—20(-2g(L',L))?6 ea(u)> :/ r" ;(9’2(—2g(L',L))) (4.8.67)

where the last equality follows from 4.8.62. Finally

/r Py, (92 (~2g(L, L)) =2 / "2V log O (~2g(L/, L)) ~2 / r"O2 (Y g(L, L))
= [l a2, 1) -2 / (VgL )

<2 / I + ) lg(L, L) + 2 / POV D) (4.8.68)
T.I - T.I

To estimate (II) we write

’ Q/Z QIQ Ql?
”W“W = 2/ <@% log Q' — @77; log Q)

[ (Best + 002600 D)

Q/2 Q/Q L
_2/ (QZ2 n+n)a— 2 (WalogQ—Q’(—Qg(L’,L))z 8310g9)>

- ?z_j ([0 +1)a = 0+ m)a] - 49 (~28(L', 1)) ?60) (4.8.69)

7.1

We write the term [(77’ +1)a—(n+ Q)a], expressing (1 +17) in terms of the
primed quantities. A long, but easy computation gives

n, =1, +Q(-2g(L, L) 6, (4.8.70)
Mo = 1 + (=28 (L, ') 26a(Qw + Q) — Q6.Dy (~2g(L, L)) ?
Finally the explicit computation of D, (—2g(L, L' ))% gives, as discussed in
Chapter 7, see Lemma 7.7.2,
1 _ 1 .
D, (—2g(L, L)% = Q '(=2g(L, L'))? [2(Qw + Q') — & - (1 —n)] (4.8.71)
Using 4.8.70 and 4.8.71 in the right hand side of 4.8.69 we estimate (II) as

' 2 2

) T//Wg% _ ) ?22 " ([(77, +ﬂl)a _ (77 4 ﬂ)a] — 49’(_2g(L” L))%&ag)
Q2 r f L, IoA A / / /

= | G (2a(l 1) 200 (~,,00 + 6 (n —m) — 4w + Ou))
r' Q/Z

1
< | e (-2 D) (R0 + I =l + 419w + 0u)) (48.72)



[The assumptions of the lemma
are modified and are relative
only to g(L, L") and ¥'g(L, L"),
see also the new statement of
the Oscillation Lemma.]
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Therefore the estimates for the Oscillation Lemma require the estimates for
g(L',L) and Y'g(L',L) along Y5, These estimates are obtained writing
the evolution equations for these quantities along 230. the result is in the
following lemma.

Lemma 4.8.2 Under the assumptions of the Oscillation Lemma, the fol-
lowing estimates hold on 230

|7“'3g(L',L)| < cep |r'4Y7'g(L',L)| < ceg (4.8.73)

Proof: Using equations 4.8.60 and 4.8.61 a long computation gives

d t
8L, 1) = (-2g(L, 1) X + {0-28(L I utian
Q
+2— (—2g(L, I'))(Yw + Q') — 200 (=28 (L, L)) 36 - 1

Ql
+20720(—2g(L, L'))?w + %(—2g(L, L')26 - (n— n’)} (4.8.74)

The first term in the right hand side can be written as

0(-2g(1, 1) "X = ~0g(L, 1) (%(trx )+ %(trx 4 trx)) (4.8.75)
= —%tr@g(L,L')—i— (Q—%) %(—Qg(L,L'))—i—%(trxthrx)(—Qg(L,L'))

where

1
trf = 5(trX — trx) = ’yabg(DeaN, 6()) (4876)

and the evolution equation 4.8.74 becomes

(L' L) + yudg(L, 1) = (93 ) (282 L)+ (rx+rx) (~2g (L. L)
dr’ 2 2) 2 4 =
+ {O(-28(L, L) 0000 + 2y (28 (L L) (¥ + ) — 200 (~26(L, ') 6 -1
Q/
+20°0(~28(L, )P + o (~28(L 220 0 — )} (4.8.77)

To apply the analogous of the Evolution Lemma to the equation 4.8.77 we
have still to replace trf), defined in 4.8.78, with

1 ~
trg’ = 5(trx'—trx’) = 'yabg(De:lN', e;)) (4.8.78)
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as trf) is the second fundamental form associated to the S'(20p—v, v) surfaces
foliating 335 , while tr refers to the S(A,v) two dimensional surfaces of the
double null canonical foliation. Making this substitution, equation 4.8.77
becomes

d tro’
Wg(Lla L) + Tg(La L,)
tro

= [ m0—u0 (282, + (03 ) -2 (L 1)+ (imxc+ i) (- 2g(L, 1)

QO
+ {Q(—2g(L,L’)) (&aa,,xa,, +og (Vw+ Qg’)) 200/ (~2g(L, I'))36 -
!

120°0(~2(L, 1)} + o (~28(L, 1) 35 - (n — o) (4.8.79)

which we rewrite as

d tro’

T8(L L)+ —-g(L'\L) = (~2g(L',L))2Fy + (~2g(L', L)) Fi
+ (=2g(L',L))?Fs + (~2g(L', L))’ F;
where
QI
Fro= 55'(77—77’)

1 2 1/1 1 1/2 1\ trf
o= |~ (t0-2)+2(c-=) - (2—tf) + (Q-2) =
! [4<r +2<r r'>+4<r' r>+< 2>2

Q2 AoA s Q ! i
—l—4(trx+trx) + ( Q640pXap + 25(9 w+ Q')
Fy = —200'6 7
Fy, = +207°Quw (4.8.80)

Using assumptions 4.1.42, 4.1.43 for the Oscillation Lemma and the auxiliary
assumption 4.8.52 it follows ®°

Tf + ce
110, 9) < D0 0D g

|Fs|(r', ) < e (4.8.81)
2 ,),,/5

€0

2

€
P3|, ¢) < ez
2 ,),,/5
®5While 7 is defined in 4.8.56, the variable r introduced in 4.8.80 is defined analogously
by r = %(g — u). They differ logarithmically from the standard definition of r given in
3.1.2.

|B2|(r', §) < c
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Observe that to estimate |F%|(r’, ¢) and |Fg|(7", ¢) we used the following

estimates for n and ' on ¥ ,

30| < ceo . |r"3n| < ceg (4.8.82)

These estimates follow from the assumptions 4.1.40, 4.1.41 and 5 Proposi-
tion 4.3.16. Using assumptions 4.8.81 the following inequality holds

d tre’ I+ ce ce 3
—g(L', L)+ —-g(L',L) < M(—g(y,m) 0 _g(L/, L))}
dr 2 T '3
r'2
Cce ce 1
+ (el L)+ =7 (-l 1))7 (48.83)

T2

Applying the Evolution Lemma to the evolution inequality on 2’50 we obtain

2 (T +ce _2
(L s () < 5" P (L L) () + / Qo teeo) S g(r, 1),

C€p

/17—
/2 |

L ce _2
+ [ L L)l g (0 s+
C€
+/ 07“|g (L,L'")| 0,5

We use again a bootstrap mechanism. We assume that, on X5 , |g(L, L")|c,s"
satisfies

r
8Ly L) |oo,s < 75 (4.8.85)
with eg < T' < ceg, and we prove that
1T
8L, Lloo,st < 55 (4.8.86)
This allows to conclude that
ce
(L, L)oo, < (4.8.87)

on the whole 230. To prove inequality 4.8.86 we start applying Gronwall
Lemma to 4.8.84 obtaining

“p 7 ce
g (L, L)y (7)< <Ir' (L, L") p,s (7, +/ =9 T)

6To estimate i’ we use a slightly modified version of Proposition 4.3.16.

»g(L, L)lp,s'18(L, L) |so,st

(4.8.84)
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IA

~ 1
1—2 cegl'?
<|7“I rg(L, L')|p,s (r}) + TT>

~1
€0 cepl'2 ceg
< <772 + T) < ) (4.8.88)
To complete the proof we have only to obtain the analogous estimate for
2
P> »Y'g(L, L' )p,s'(7'), deriving tangentially the previous evolution equa-
tion, and, finally, apply Lemma 4.1.3.

Once Lemma, 4.8.2 is proved we complete the proof of the Oscillation Lemma
using the result of this lemma to estimate the right hand sides of 4.8.66.

4.8.7 Proof of Lemma 4.1.7

Lemma 4.1.7 controls the difference between the norm |r)‘1V|p,S(u0(,,),,,) and
the norm |7“'/\1V’|p,5(0)(,,). Observe that the norm [r* V], g0, refers to
a surface S(ug(v),r) associated to the double null canonical foliation with
r o= (ﬁ|5(u0(y),u)|)%, while |7“’/\1V’|p,5(0)(,,) refers to a two dimensional
surface contained 1in Yo associated to the initial layer foliation and, therefore,
' = (4z1S0)()])2.

We recall also that this result, completing part II of the Evolution Lemma,
is applied, in this chapter, to the estimates of the underlined connection
coefficients.

Let, therefore, V be a connection coefficient which satisfies the evolution
equation

DNV + ApQtryxV = F

Using the relations 4.8.60, 4.8.61, between the normalized null frame adapted
to the double null canonical foliation and the one relative to the initial layer
foliation it is possible to express the connection coefficient V' in terms of a
linear combination of the connection coefficients relative to the initial layer
foliation. The explicit expressions for x,n and w are:

_ Q !
Kab - @Xab
1,
n, =1, +Q=28(L', L)) 764X, (4.8.89)
o -~

w="gu ~(~2g(L, L)) 6 -

(—2g(L', L))GabX,,

Let us prove the lemma in the case V = w, the proof in the other cases
proceeds exactly along the same lines. We observe that, using the results of

[The expression for 1 and w
have been corrected.]
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the Oscillation Lemma and of Lemma 4.8.2,

Mol = A INL, !
|7“ 1UJ|paS(uo(u),u) - /S(’U.()(V)’V)|Ir 1w|p < C/S(UO(V)’V)V Loy |p
1
+c 68/ |/r~’()\1*%),r’/|p +60/ |T/(A13)Xl|p] (4890)
S(UO 1/)71/) - S(ug(u),y) A

It is easy to realize that the terms in the [--] brackets can be treated as cor-
rections. Therefore we fix the attention on the first term, [g(, (). |r ! |P,
which we rewrite in the following way

/S( ) )|r’)\1w/|P < C/SZ d¢7’12|r’)‘lwl|p(u'(¢)’¢) (4.8.91)
uo (v),v

choosing u'(¢) in such a way that

S(uo(v),v) ={p € C(v)|u'(p) = u'(¢)} .

The connection coefficient w' = —%De:1 log Q' satisfies in the initial layer
region the following evolution equation, see subsection 4.3.10,

D4 (YD) log ) = F' —Q'p = F' (4.8.92)
where F” is given by
Fr=20/¢ - V'ogQ + () -/ —2¢?) (4.8.93)
The scalar function |w'|P(u, $) satisfies the evolution equation

d|w,|p :B| ’|P*1i, !

du’ 2 |w’|
and, therefore,
d|wl| / 1 /! !
< Py . .
du' (u', ¢) < 2|F|(u,q§) (4.8.94)

Integrating with respect to v/, at fixed ¢, starting from

Sy (w) = {p € C(u)|v'(p) = ug} ,

where uy = —ug), we obtain, multiplying both sides with riAL

u' ()
P (6), ) < (v’*lw'uua, 0+ du"|r“1F'|<u",¢>) .
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Substituting this last expression in 4.8.91 we obtain

/S( ) )|7’l)\1w/|p = /52 d¢r'2|r'/\1w’|p(u'(¢),¢) (4,8_95)
ug(v),v

u'(¢)

¢ p
< 0/2 d¢r’2|7"/\1w’|p(u6, ¢) + 6/2 dgbr’z (/ du”|7’l/\1F’|(u”, ¢)>
s ; y

0

ul
( SdU”’)”IZ|T‘,)\1F,|(U”,¢)>

<crMWP o (v)+e

p,S(O) u6 LP(S'2)
where, in the last inequality we have chosen
us(v) = 20y — v (4.8.96)

and used that dy is small to bring 7’ inside the integral. Applying Minkowski
inequality to the norm in the last line of 4.8.95, for p € [2,4], we obtain

Ul
paS(O)(g) + C/u,
0

The choice of \; is dictated by the explicit expression of F’ and by the
estimate for w’ on the initial slice g, it is A\; = 2 — %, as expected. The

,,,.)\1 FI
all the estimates done in the rest of this chapter, with the only difference
that all the quantities are here relative to the initial layer foliation. Tts
estimate is, therefore, a repetition of the previous ones.

The estimates for the remaining terms of 4.8.90 proceeds in the same way,
the final result is, therefore,

|’f‘,)\1 'f',)\l Fl

(u” w)du (4.8.97)

i 2Y
W' lp,5(uo(w)u) < €lr™'w ps

estimate for integral f;,s
0

S(u”,g)du” is exactly of the same type as

M Wl s(uo(w).u) < elr'te

p,S(0)(w) T C€O (4.8.98)

proving the lemma.

[The definition of u’; has been
modified.]

[Some simplification here due to
the fact that the term w is, in
fact, absent.]
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Chapter 5

Estimates for the Riemann
curvature tensor

This chapter is devoted to the proof of Theorem MT concerning the esti-
mate of the R norms in terms of the fundamental quantities @ , Q. These
quantities can be expressed, according to 3.5.1, as weighted integrals of the

null components of ﬁoR ﬁTR, ﬁQOR, ﬁoﬁTR and ﬁSﬁTR, along the null
hypersurfaces C'(A) and C(v). We recall their explicit expressions:

Q()‘a V) = Ql()" V) + QQ()H V)

QA v) =2, (M) + Q,(Av)

Qi(\v) = / QULrR) (K, K, K, ey)
C(A)NV(A\v)
4 / QLoR)(R, K, T,ey)
C)NV(Aw)
Q2(>‘7 V) = / Q(zOzTR)(K7K7K764)
C)NV(Aw)
+ / QULOR)(K, K, T, ey)
COINV ()
+/ Q(ESETR)(KaKaKanL)
COINV ()
Q0 = s [P+ [ QLR (KK, K. es)
V(Ar)NZo Cw)NV(Ap)

+/ Q(ﬁoR)(KaKaTa 63)
C(w)NV(Ap)

245



246 CHAPTER 5. ESTIMATES FOR THE CURVATURE TENSOR

QQ(A,I/) = Q(zOzTR)(Kakaka 63)

/Q(V)DV(/\,V)
+ QUEOR) (K, K, Tex)
Cw)NV(Aw)

+/ Q(ESZTR)(K,K,K,G:;)
Cw)NV(Aw)

with T, S, O, K the vector fields defined in Chapter 3, see 3.4.1.

Osservazione 5.0.1 Si osservi che il teorema MT ¢ dimostrato relativa-
mente ad una “double null foliation” generica di K. Nel caso che ci inter-
essa lo applicheremo alla porzione di IKC sopra la superficie i](;o, vedi anche la
discussione all’inizio della sezione 6.2. Pertanto, come discusso la, con ¥
st intende 250‘ Forse ricordare questo con una footnote sarebbe opportuno.

Theorem M7 Assume that relative to a double null foliation on K
O+ 0 < e

Then, if €y is sufficiently small, we have

1
R < cQf (5.0.1)

where ¢ is a positive constant.
Proof: According to the statement of Theorem M7, we make use of the
assumption O + Oy < €9 and prove the following result,

[Q]l + €o (’R’[O} + R[O})
[Q1 + €0 (Rg + Ryp)) (5.0.2)
[Q]l + [Q]Q + 60(7—\)/[1} +R[1})

Ry < [Qh +[Ql2 + €0(Rpyy + Ryyy)

where [Q]12 = Q12+ 2, ,.

From these estimates we conclude that, for sufficiently small ¢, R[Q] + E[Q]
is bounded, by cQx. We then use these results, together with the global
Sobolev inequalities, see subsection 4.1.2, to derive the estimates for R,
RP, RS and R,

Discussion: All the main ideas in the proof of Theorem MT are already
present in the flat case ', see Theorem 2.2.2. We view the proof of the flat

!The only exception are the estimates for 7 and @ which are trivial in the flat case.
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case as a prerequisite to understand Theorem MT. The non trivial character
of the background spacetime, controlled by the smallness assumption O < ¢,
introduces quadratic or higher order terms which have, roughly, the following
structure:

1. Linear relative to the null components of the curvature tensor.

2. Linear relative to the connection coefficients try — 2, trx + %, X X5 1,

r
0, W, W.

3. Linear relative to the deformation tensors and the Lie coefficients of
the vector fields VO, S, T.

These correction terms have two different sources:

e The corrections to the null Bianchi equations, 3.2.8, due to the non
flat character of the spacetime; this is reflected in the presence of the
terms try — %, trx + %, X; Xo MM, W, w.

o The terms generated by commuting E(i)O,ZS,ZT with the null decom-
position of the Riemann curvature tensor.

It is because of this structure that these corrections contribute to the terms
of the form €yR in the right hand side of inequalities 5.0.2. These correction
terms, unlikeky the error terms discussed in the next chapter, are very easy
to treat. We shall show in detail how to handle them in some examples and
later simply ignore them.

5.1 Preliminary tools

We collect in this section a large number of definitions and a family of
propositions and lemmas, without proofs, which will be used more and more
in the rest of the chapter.

Definition 5.1.1 Let X be a vector field in the family {T, S, PO}, the Lie
coefficients of X: P, (Xp  (X)g (X, Opr, Kpr , KON | (DN gre
defined through the following commutation relations, see [Ch-Kl], Proposi-
tion 7.3.1,

(X, e5] = XPye, + FMes + FINey
[X, 64] = (X)Pbeb + (X)Neg + (X)M€4 (511)

1
(X, eq] = T[X, eq] + §<X>Qaeg +Q e

[Slight modification of the first
item, w, w added.



[Corrections of the expression
for a and a, (—2(M —
étr(x)w) goes into (—((XIM +
COM) + gtrOm)]
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their explicit expressions are, see also [Ch-KI], equation (7.3.6b),

P, =g(Dxes,e.) —D3X, , P, =g(Dxes,e,) —DsX,
Qa = g(DXeg,ea) +D, X3, Qo= g(DXe4,6a) + D, X4 (5.1.2)

1
g(Dxeyq,e3) + =Dy X3

1 1 1
M, = —Eg(DX63,€4) + §D3X4 , Mo = - 5

2
1 1
N, = §D3X3 , Ng = §D4X4

The Lie coefficients of the vector field X originate when we commute £y
with the null decomposition of the Riemann curvature tensor. The result of
this commutation is expressed in the following proposition, see also [Ch-KI],
Proposition 7.3.1,

Proposition 5.1.1 Let W be an arbitrary Weyl tensor. Consider the null

components a(W), ...,a(W') as well as the null components a(ﬁXVAV), ...,g(ﬁXW).

Let L be the projection on S(\,v) of the Lie derivative Lx, Lo, Ly«
the traceless parts of tensors Lo, La, then the following relations hold

Bx Wy = ExaWas + (=M + ) + 56 ) (W)
= (P + Q) BW)y — (Y0P, + N0, ) BV,
+ 0a(COP + Q) - BOW)

BLXW), = ¢X5(W)a—§<X>ﬁabﬁ<W)b+(—<X>M——tr<X>7r) BV ).
e
1

p(LxW) = EXP(W)—gtT(

\_/ \/ \ ~
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+ 1 (P +090,) aW)ay
A(LxW)ay = Lxa(W )ab+<—((X)M+( %tr )
+ (e ) (2, + X9,) W)
- da (( Q) - W ) (5.1.3)

Proof: We sketch the proof for the first equation of 5.1.3, a detailed discus-
sion is in [Ch-KI], Proposition 7.3.1. We compute a(LxW )ap = (LxW )aqap
obtaining

Lxa(W)a = alLxW)ap +20Ma(W)a, + (P, + XQ,) BW),
+(CPy + X)) BW)a = 2P - BW) — 25N p(W)da,  (5.1.4)

Recalling the definition of Ly, 3.2.2, it follows that

Lix

A(LXW)ap = a(LxW )ap — §tl“(X)7TC¥(W)ab + 3

3 W) e (5.1.5)

where, see 3.2.3,

MW aipr = (acaW)ep + Otpea(Wea) + trma(W)a (5.1.6)
— gy a(W)ap + Oagp(W)dap — 200 S ieB(W).

Substituting 5.1.6 in 5.1.5 and using the explicit expressions of the Lie coe-
eficients, 5.1.2, we obtain the result.

In the course of the various estimates of this chapter we will use systemati-
cally the fact that the rotation vector fields, defined in Chapter 3, section 3.4,
satisfy the following lemma, see also [Ch-KI|, Proposition 7.5.3 page 178,

Lemma 5.1.1 The rotation vector fields WO defined in Chapter 3, sec-
tion 3.4 satisfy the following properties,

Property 1: Given an S-tangent tensor field f on M there exists a constant
co such that

0! 2 2 2 2, .2 2
it [ VIS [ IEolP e [ (AP 4RI (17

)

where |Lof> =3, [Laof|?
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Property 2: The Lie coefficients ((i)O)P, ((i)O)Q, ((i)O)Q, (o) of the rotation

vector fields O are identically zero in K. If f is a one form or a traceless
symmetric two covariant tensor tangent to the surfaces S(\,v) the following

inequality holds
at[ ks
S(Av) S(A

In the L2 estimates for the first and second derivatives of the Riemann null
components we will often use the following relationships,

) )

: 1Lof|? (5.1.8)

l«Taab = DTaab + (aac ' (X + X)cb + ape - (X + X)ca) —I—(UJ + &)aab
= Dpag + e (x +x) + ((trx +try) + (w + g))aab (5.1.9)

During the chapter we give only the main ideas of the various estimates and
we do not discuss all the technical details?. They can be easily recovered
using Chapter 7 of [Ch-KI]. The estimates of the various Lie coefficients of
the X vector fields and their derivatives can be obtained from their explict
expressions in terms of the null connection coefficients and of the estimates
proved in Chapter 4.

5.1.1 L? estimates for the zero derivatives
We recall the definitions of the R norms, see 3.5.13,

Rig = Ro » Rigy =Ry + sup r’|p|
with
Ry = (Rolaf? + Ro[A]? + Rol(p, )12 + Ro[g)2)”
Ro = (Rolfl? + Ral(p, o) + RolB) + Rylal?) "

and

Ro,12[w] = Sl}éPRo,m[w]()\, V), Ryqw] = S%PEO,LQ[W]()\’V)-

2Some of them are examinated in the appendix to this chapter.
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Proposition 5.1.2 Under the assumptions of Theorem MT the following
nequalities hold

Rolal?(A\v) < ¢ / QLW (K, K, T, e4) + ciRyy”
CONNVAw)

RolBE ) < [ QULOW)(K, K, T,e1) + 3R
CONNV (Av)

Rol(p o)) < e | QULoW)(K, K. T e1) + cfRyy?
COVNV (M)

Ry <c [
- C)NV ()

Ry[FE ) < ¢ [
)NV (Av)

+ceg Q(‘COW)(Kv-KaTa 64)

/C’()\)ﬁV()\,u)

+ / QW) (R, K, T, e4) + ciRog | + Ry 2
CONNV(Aw)

Rol(p, o)) < [ v QEMNE K T e3) + iRy

=
=
S
=
S
IN
e}
S
S
L
N
Q
=
=
>N
~
&
+
(@)
S
2
=2
o

— - C(w)NV(A\v

Ryl (u,u) < c/ QULOW)(K, K, T, e3) + ceiRpg? (5.1.11)
Cw)nvOw)

Proof:
1. Ro[a](A,v) = [Ira

To control HrQaHQ,C(/\)nV()\,,,) we first use the inequality 5.1.8, Property 2 of
Lemma 5.1.1, to infer

l2,co0NV (M)

ria(W)? < c/ | Loa(W)[? (5.1.12)

/C(/\)HV(/\,V) COINV (M)

then we express Loa(W) in terms of a(LoW) plus correction terms, see
equation 5.1.4, and finally we write a(LoW) in terms of a(LoW') using the
relationship 5.1.5, with X = O. From these equations we obtain

(Lxa(W)ay = a(LxW)a+ (%tr(X)w + Q(X)M> (W) (5.1.13)
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1 1
+ Eéab(X)ﬁ' : a(W) - E(X)ﬁ34a(W)ab - 6ab(P + Q) ’ 5(W)

£ (P, + X0, B0, + (P, + Q) B(W),)

In the case X = O, we have, recalling® equations 5.1.2 and Property 2 of
Lemma 5.1.1,

(O = (O = ~0, ¥, log Q
(O)p, = (0)g = (0 = (ON = (O — (5.1.14)

“a

and the previous expression 5.1.13 can be written as
(CoalW)ar = alLoW)a+ (5 +2OM ) a(W)a
+ %5,1,)(0)7% ca(W) — %(0>ﬁ34a(W)a,, (5.1.15)
= alLoW)a ~ 5 Ora(W)a + 560 Vi - a(W)

Using 5.1.15, inequality 5.1.12 can be rewritten as

(W) < c/ ra(LoW)?  (5.1.16)
CONV(Aw)

4 / FQr{(OM, 1O, ©%); a(W))?
C)NV(Aw)

/C(/\)HV(/\,V)

where Qr[A, B] denotes a quadratic term linear in A and B. From the
estimates for the sup norms of (OM, tr(@r and (%, discussed in Chapter
4, see subsection 4.7 4,

sup |[rtr x| | sup [r Q7| , sup [r(OM] < cep
K K K

we obtain
/ rQr[(OM, trOr, O): a(W)]? < ¢ G / ra(W)[?
CNV () ’ Y = r(\ )2 Jeoynv
(5.1.17)
which substituted in 5.1.16 gives
/ ra(W)|? < c/ r*a(LoW)|? 4 [Correction]?
CONNV(Aw) CONV ()

3See also the definitions of the deformation tensors in Chapter 3, see subsection 3.4.3.
4The estimate for (°)M can be easily obtained from the results of subsection 4.7.
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where the [Correction] term satisfies the inequality

1
2

[Correction] < cep (/ 7‘4|a(W)|2> < ceaRyg (5.1.18)
CONNV (M)
Collecting these results we obtain

P Loa(W)|? < c/

T4|C¥(ZOW)|2 + CE%R[0]2
CANV(Awp)

/C(/\)HV(/\,V)
and the first term in the right hand side is controlled by the Q-integral
Jeyrvow QLW (K, K, T, eq) .

2. Ro[Bl(\v) = [I7?Blla,connv (o)

We use first Lemma 5.1.1 to infer

HBE < e [ H1LoB(W)P

/C()\)OV()\,V) CONNV (Aw)

then, using Proposition 5.1.1, we express Lo (W) in terms of S(LoW) plus
correction terms and B(LoW) in terms of S(LoW) and correction terms,
obtaining

LoBW) = B(LoW) + %(O)fr BW) + (OM + %tr(o)w)ﬁ(W) 4+ Lop. a(W) .

Proceeding as in the previous case we prove that the correction terms satisfy

the inequality
+ ( / r4|a(W>|2)
C(AMNV(A\v)

M
(M

[Correction] < ceg [( | B(W) |2> ] < ceaRy

/C()\)HV()\,V)

so that, finally,

BV <

r!|B(LoW)” + ceg Ry
CONNV ()

/C’()\)ﬁV()\,u)

and the integral in the right hand side is controlled by the Q-integral
Jeyavow QLW (K, K, T, eq) .



254 CHAPTER 5. ESTIMATES FOR THE CURVATURE TENSOR

3. Rollp,0)l(A,v) = [Im-r(p =P,0 =7)ll2,cnnvirwm

The control of p — p and of 0 — & is obtained in a similar way. From the
Poincaré inequality,

/S(q)_cw < c/S|7"Y7(I>|2 n

the following inequality holds

2r%p —p)* < c/ 2r?rYVp|? (5.1.19)

/C(/\)HV(/\,V) COINV (M)

We estimate |rVp(W)| in terms of |Lop(W)|, using Lemma 5.1.1, and, re-
peating the same steps done for (W), we obtain

. 1 1
Lop(W) = p(LoW) + gtr(o)WP(W) +:Op.pgw).

5 L
Therefore

/ 2r2(p—p)(W)|? < c/ 7212 p(LoW)|? + [Correction]?

CONV () CONNV (Aw)
and
%
[Correction] < ¢ [(/ 72r2|tr(0)7r|2|p(W)|2> (5.1.20)
CONNV(Aw)

1
2

+ </ 727"2|(O)B|2|5(W)|2> ] < cegRyg
CONNV(Aw)

so that, in conclusion,

721 (p = B)(W)[? < /

2r2|p(LoW)|? + ce%R[O]Q
COINV ()

/C(/\)HV(/\,V)

and the integral in the right hand side is controlled by the Q-integral
Jeoyviw QULLoW) (K, K, T, e4) .

4. Rol[BI(A,v) = 172 Bll2,connviow)

Using again Lemma 5.1.1 and controlling the correction terms exactly as
before, it follows that

B2 < c/

’TE |§(2OW) |2 + CE%R[0]2
CONNV (M)

/C’()\)ﬁV()\,u)

and the integral in the right hand side is controlled by the Q-integral
Jeoyvow QULoW) (K, K, T, e4) .
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5. Ry[Bl(A\v) = HTZBH?,Q(V)QV(A,V)
Using again Property 2 of Lemma 5.1.1, it follows that,

HBE < e [ HIB(LoW)P

/Q(V)DV(/\,V) Cv)NV(Aw)

Applying Proposition 5.1.1, we then express LoB(W) in terms of S(LoW)
plus correction terms and B(LoW) in terms of B(LoW) and correction
terms,

LoBW) = B(LoW) + 5@ - SW) + (OM + Lt Or)p(W) + 1O - (W)

so that finally

r|B(W) 2 < c/ rB(LoW)|? + [Correction]?

/Q(V)DV(/\,V) Cv)NV(Aw)

As in the previous case the correction terms satisfy the inequality

1 1
2 2
[Correction] < cey [(/ T2|,6(W)|2> + </ r2|a(W)|2> ]
C@)NV(Aw) C@)NV(Av)

Observe that the estimate of the second integral of the previous inequality
has to be performed differently. Its bound is provided in Proposition 5.1.4
and, from this result we obtain, with e < 1,

1 . _
rlaWP < [ / QLoW)(K, K, T, e4)
T c)NV(Av)

/Q(V)HV()\,V)
+ / QULrW)(E, B, T, e1) + iRy
CONV(A\w)
Finally

/ HBE < e f QLoW)(K, K, T, e3) + ceiRyy”
Cw)NV(Av) Cw)NV(Av)
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6. Ro[(p, o)\, v) = [Ir*(p = 7,0 = F)ll2,cm)rvirwm
The estimate proceeds exactly as that for Ry[(p,o)](A,v), but with a bet-

ter weight, due to the expression of Q(LoW)(K,K,T,e3), see 3.5.1. The
[Correction] term is controlled as in the previous cases, the final result is

Pl -pE < [

C)NV (u,u)

/ Plp(LoW)[? + ceRyy”
C@)NV(Av)

and the integral in the right hand side is controlled by the Q-integral
fg(u)ﬁV()\,u) Q(LOW) (K? K,T, 63) .

7. Eo[ﬁ]@\a’/) = ’|7'J"ﬁ’|2,g(u)mv(>\,u)

Proceeding as in the estimate of R[](A, ) we obtain

P22 B(W)2 < c/ 202 B(LoW)| + ceiRey”

C)NV(Aw)

/Q(V)HV(A,V)
(5.1.21)

and the the integral in the right hand side is controlled by the Q-integral
fQ(l/)ﬂV(/\,u) Q(LOW) (Ka K,T, 63) .

8. Ryla](A,v) = ||ng||2,Q(V)QV(A,V)

The estimate goes as the one for Ry[a](A, ), interchanging the underlined
and not underlined quantities and substituting e4 with es; also the estimate
of the correction terms goes in the same way. The final result is

e < [ P alLoW) + iRy

)NV ()

/Q(V)NV(A,V)
and the integral in the right hand side is controlled by the Q-integral
Jewynvow QULoW)(K, K, T,es3) .

5.1.2 [L? estimates for the first derivatives

Proposition 5.1.3 Under the assumptions of Theorem MT the following
inequalities hold

Rl[a]Z(A7 V) < c </C()\)I"IV(/\ v) Q(‘&OW)(Kv-KaTa 64)
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+/ Q(zTW)(K,K,K, 64)) +CG%R[0}2
CONNV (M)

s
=

Do
>
S
A

c/ QLoW) (K, K, T, eq) + CE%R[O}Q

CONNV ()

Rl < o QLW (K, K. T,
C(ANV(A\v)

+/ Q(ETW)(K’KaKa 64)) +C€3R[0}2
C(ANV(A\w)

‘.
C)NV (Aw)

=
=
[N}
>
=
VAN
o
S
S
)
=
~
S
O
D>
E
=
=
~
D
&

+ Q(LOW)(K, K, T, 64) + CE%R[0]2 + CE%R[U]

Ril(p,0)?(\v) < ¢ /C iy QEOWIE K T3

Ry[B) (A v) < C/C(u)mv(A v) @

Ri[a]*(\,v) < ( /C o V)Q(ﬁoW)(KKT, e3)+ /

Proof:

1. Ri[a](N,v) = ||7"3WOK |2,C(A)nV(>\,u)+||7”3C¥3||2,C(A)mV(A,u)+||7"3044
Proceeding as in subsection 5.1.1, the various terms of R, [a](), v) are con-
trolled in the following way:

l2,co0NV (M)

a) Using Lemma 5.1.1 ||r3Ya||2 )NV (A 18, first, bounded in the following
way:

PIFa)P <c | rLoa(W)P

/C(/\)ﬂV()\,u) CONNV(Aw)

Then we proceed as in the previous estimate of ||rcl|2 )NV (A Obtaining

Y Loa(W)]? < / rta(LoW)|? 4 [Correction]

/C(/\)ﬂV()\,u) CONNV (Aw)

2
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IN

/ T’4|O[(£OW)|2 +CEgR[O}2
CONNV (M)

and the right hand side integral is bounded by fC(/\)mV(/\,u) Q(LoW)(K,K,T,ey).

b) ||7“3043||§,C(A)0V(/\,V) is controlled using the Bianchi equation, see 3.2.8,

1 ~ N
a3 = Paa+ jtrxa = V8 + [twa — 3(tp+ %) + (¢ +4n)96| (5.1.23)
Neglecting the terms in square brackets we are left to estimate

/ PITBON)PE
CO)NV(Av)

This term, using Lemma, 5.1.1, is bounded in the following way

HIvBW)I <e [ P|LoB(W)P

/C()\)QV(/\,V) CONV (Aw)

S C/ T4|B(20W)|2 + CE%T\)/[O}2
CONNV (M)

where the second inequality has been already obtained in the estimate of
Ro[B](A,v). To control the terms in the square brackets of the Bianchi null
equation 5.1.23, we observe that, recalling the assumption O < €y on the
Ricci coefficients, see Theorem M7, it is easy to recognize that these terms
are small and being quadratic, linear in the Ricci coefficients and in the null
Riemann components, have the same structure as the correction terms °
discussed in subsection 5.1.1. Therefore we write

/ rlas? < c/ r®|YB(W)|? + [Correction]?
C(ANV(A\w) CA)NV(A\v)

< cf VB + e Ry
C)NV ()

and the integra} appearing in the right hand side is controlled by
fC(/\)ﬂV(/\,u) Q(LOW) (K? K,T, 64)‘

c) |3y “g,c()\)rwv()\,u) is estimated in a different way as the Bianchi equations
do not provide an evolution equation for «, along the forward null hyper-
surfaces. We write, therefore, Dya = —ID3a + 2ID7a and use the Bianchi
equation along the C'(A) null hypersurfaces, as we did before, to control the

term [|r3aslo,c00nv ()

®Moreover they have a better asymptotic behaviour.
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To control the term ]|7’312)Ta(W)||2,C(/\)ﬂv()\,,,), we express first Dra(W) in
terms of Lpa(W) plus corrections, using the relation 5.1.9,

Dra(W) = Loa(W) + DH - o(W) (5.1.24)
where

((T)H . a(W))ab = dwpa- (X +X) + ((trx +try) + (w + g))aab

Moreover using the estimates of subsection 6.1.1, it follows that (")H satisfies
sup [FDH| < ce .

We apply Proposition 5.1.1, see 5.1.13, with X = T, and observe that, using
again the estimates of subsection 6.1.1 we have

sup { [r@P, [r Q) [r M|, [rPr|} < ceo (5.1.25)
We end, therefore, with the following inequality

S Pra(W)? < r8la(LrW)|? + [Correction]?
)

/C()\)m/()\,u /C(/\)ﬂV(/\,u)

where the first integral in the right hand side is bounded by the Q-integral
fc()\)m/()\’y) Q(LrW)(K, K, K,e4) and the [Correction] term has the same
structure as discussed before and, therefore, satisfies

[Correction] < cegR[m2 .

All these estimates imply
Rila*(\v) < e (/ Q(LoW)(K,K,T,ey) (5.1.26)
C(ANV(Av)

+ / Q(ZTW)(KaKaKa€4)> +C€3R[0]2
CA)NV(A\v)

2. Ry [Bl(\,v) = ||7'3Y75||2,C’()\)HV(,\7V)+||7'_’I"253

The control of these norms proceeds as in the previous case. The main dif-
ference is that for § we have the evolution equations both along the forward
and backward null directions, see 3.2.8,

B = Psf + trxB = Vp+ 2w + Vo + 2 - B+ 3(np + o)
Bi = Daf + 20rxB = diva — [2wf — (2¢ +n)a] .

la,connvou) HIr? Balla,coonviaw
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Using these equations, taking into account the main terms and controlling
the corrections in the square brackets as previously discussed, we obtain for
R1[B](\,v) the bound ©

Ri[BP(\v) < c Q(LoW)(K,K,T,e4) + cegRyg” (5.1.27)

/C(/\)ﬂV(/\,u)

8. Ril(p,0)I(\,v) = 712V (p,0)lla,cnnv ) + 172 (0, 0)alla,connviw) +
||7"TE (p,0)3 ||2,C’()\)ﬁV()\,u)
The norm [|7_r?¥(p, 0)ll2,c(xnv(rw) has been estimated before in the es-

timate of Ry[(p, o)] and it is controlled, apart from corrections, by the Q-
integral [y v @LoW) (K, K, T, e4).

The norm ||73(p, o o)all2,c(0nv(rp) is estimated using the Bianchi equations
_ 3 1
pi=Dup+tixp=divf — |5k -a=C-f -2

3
oy =Dyo + —tryoc = —div*B + [

1
. 3% "= ¢ = 2-78]

2
and, apart from the estimate of the terms in the square bracket which pro-
duce standard correction terms controlled by ce%R[ ]2, we are reduced to
control the integral [o(y)ny () r%|¥B|? which, as already discussed in the
previous estimate, is bounded by fC AV QLoW) (K, K, T, ey).

The norm |r72 (p,0)3 ll2,c(0)nV () has to be estimated in a slightly different
way . Using the decomposmon

3
P3Z2DT,0_P4+§

we are reduced to the estimate of the norms

(trx + trx) p

||7"TEDTP||2,C( NV (A |rr2 pall2,co0nv(aw)s ||r72 (trx+trx)plle,connv () -

®The weight r_r? for the L?(C) norm of (33 is due to the presence of Vp in the Bianchi
equation for f3s.
In fact if we use the Bianchi equations

pgzDgp—f-gtrxp:—d(ivﬁ— [%X'Q—C'ﬁ-i-zn'é]

3 1
o3 = Dso + EtrKU: —div’s + [EX-*Q—C-*Q—Zn-*ﬁ]

the component o appears in the bracket terms. As o never appears in the Q-integrals
along C()), this will require to estimate differently the integral fco\)nvo\ v) r 21 o)’
This is, nevertheless, possible and will be discussed in Proposition 5.1.4.
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The second and the third ones are immediately bounded by

/ QULoW)(K, R, Tyer) + cdR g%
CONNV(Aw)

using the previous estimate for [|r3(p, )4 l2,co)nv(aw)s the estimates® of
Rol(p,0)](\,v) and observing that (try + try) = O(r~'7-'), see Corol-
lary 4.3.1. B
The norm ||TTEDT,0||2,C()\)|’1V(/\,V) is estimated in the same way as the norm
|3 Dra(W) l2,c(0)nv(Aw)- First we observe that

Irm2Drplla.connv o = 1172 Lrpll2.connvow) »

then we apply Proposition 5.1.1, for X = T, and observe that, using again
the estimates of subsection 6.1.1, see also 5.1.25,

sup {|r"PY, [r PP [rQl, 1), r M|, [T < ceo

In conclusion we obtain the inequality

2 Prp(W)? < c/ 27t | p(Lr(W))|? + [Correction)?

/C(/\)ﬂV(/\,u) C)NV(Aw)

where the first integral in the right hand side is bounded by the Q-integral
Jeoyvow) QILTW)(K, K, K, e4) and the correction terms has the same
structure as discussed before and satisfies [Correction] < ceoRyy- Finally

Ri[(p, )2 (N v) < c(/C(/\)ﬂv(/\y)Q(ZOW)(K,K,T,64) (5.1.28)

+ / Q(ZTW)(KaKaKa€4)> + CE%R[0]2
CANV(Ap)

4. R[Bl(\v) = |72 VB

To control the norm ||TETY7§||270(A)QV(/\7V) we use first Lemma 5.1.1 to obtain

l2,co0nvw) + ||T—7"2ﬁ4 l2,co0NV (M)

)Tfr2|y7ﬁ(W)|2 <c T LoBW)|?

/C(/\)HV(/\,V)

more precisely we need also the norm estimate for p which is discussed later on in this
chapter.

/C’()\)ﬁV()\,u

8
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The integral on the right hand side has been already estimated when we
controlled R[5](A, ) so that, finally,

/ YBWE < c | QULOW)(K, K, T, e1) + Ry
cNV (M) CONNV (uu)

The norm ||7_r%3 2,000V (A is controlled using the Bianchi equation

B, = Dy +trxB = -Vp+ Vo + [2wé+ 2x - B+ —3(np —*Qa)] .

Apart from the terms in square brackets, this amounts to control the inte-
grals [oovnviouw) 7274V (p,)|?. These integrals are bounded, as in the esti-
mate ofRO[(p, 0)](A,v), by fC NV ) Q(LoW)(K, K, T,eq)+[Correction)?.
The terms in square bracket appearlng in the Bianchi equation produce, as
already discussed in the case of ||r3a3||g,c()\)mv()\7y), some terms with the
same structure as the [Correction] term ? and therefore can be inglobed in
it. In conclusion,

RLBP(\,v) < c/ QLoW)(K,K, T, eq) + cegReg” (5.1.29)
— C(AMNV(Ap)

5. Ry [Al(A;v) = I

The norm ||r C(v)nV(xv) has been already bounded during to estimate
of Ry[B](u,u). The result is

v T 1T Bslle.c)nv i)

/ A < e f QLoW)(K, K, T, e3) + ceiRyy
Cw)NV(Av) )NV (Av)
v ce / Q(LoW)(K, K, T, 1)
C(N)
+

The norm ||r343 )NV (A 18 controlled using the Bianchi equation

B3 =3B+ trx = Vp + [2&5 + Vo +2x - B+ 3(np + o) ]

Repeating the previous arguments apart from corrections, we have to con-
trol the integral fC YAV () 78|¥p|? which is bounded, see the estimate of

9Moreover they have a better asymptotic behaviour.
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Rolp] ; by fg(u)mV(A,u) Q(LoW)(K,K,T,es). Therefore, in conclusion,

RBIOAY) < e f QULoW)(K, K, T, e3) + ceiRyy
C)NV(Aw)
+ e [/ Q(LoW) (K, K, T, e4) (5.1.30)
C(N)

_l’_

6. Rl[(pa U)]()‘a V) = “TSW(pa U)“Z,Q(l/)ﬂV(z\,V) + ||T—r2(paU)3||2,Q(V)0V(A,V)

The estimate of R, [(p, o)](A, v) proceeds exactly as the one of R [(p, o)](A, V)
with the obvious substitutions.

The norm [|r*V(p,0)|l2,c()nv(r) has been already bounded in the esti-
mate of Ry[(p,0)] and it is controlled, apart from correction terms, by
fQ(V)ﬂV()\,I/) Q(EOW) (Ka K,T, 63) :

The norm || 7_r2%(p, 0)3 ll2,c()v () 18 estimated using the Bianchi equations

3 1
p3ED3p+§trxp:—d/1vﬁ— {§X'Q—C'ﬁ+2n‘ﬁ]

3 1
03 = Dgo + 5“&0 = —divp + {52-@— ¢-"B— 277‘*é]

and, again, this implies that, apart from the corrections arising from the
terms in the square brackets, which we have already discussed, we have to
control [,y (au) 7274 ¥B|%, bounded by Jewynv o QILoW)(K, K, T, e3)
plus corrections. Therefore, finally,

Ryl(p, )2 (A v) < c/ QW) (R, K, T,e5) + cdRyy?  (5.1.31)

Cv)NV(Aw)

7. Ry [B](\,v) = |7-r?*VB

The estimate of the norm R, [](A, v) proceeds exactly as the one of R, [B](A, )
with the obvious changes. the final result is

|2,Q(u)ﬁV(/\,V)+||TETé3 |2,Q(u)ﬁV(/\,V)+||T3é4||2,Q(V)HV()\,u)

R B (A v) < C/C(V) Q(LoW)(K, K, T,e3) + cegRip> (5.1.32)
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8. Ry[a](\,v) = [I72rValls,copnv oy HIT2aslle.convion HIT-r’alls.coinv o -

The estimate of the norm R [@](A, ) proceeds exactly as the one of R [a](A, V)
with the obvious changes. the final result is

Rila*(A\v) < ¢ ( / Q(LoW)(K, K, T, e3) (5.1.33)
C)NV ()
+/ Q(ZTW)(K,K,K,63)> +CE%E[0]2
C)NV(Ap)

Remarks: Some observations relative to the previous proposition, are now
appropriate.

1) The quantity R[] does not contain an L? norm for B,- Nevertheless
proceeding as in the case of (p, )3, one can easily '° bound ||T§ﬁ3 l2,c00nV(Aw)-
A better result can be obtained using the Bianchi equation

By =M3p + 2try = —diva - [2% + (=2¢ +1n) -Q] :

The problem here is the presence of diva in the right hand side. As «
never appears in the Q-integrals along C'()), we have to estimate differently
an integral like [c(y)q1().) r770 |Va|?. The final result, stated in Proposi-

5
tion 5.1.4, is the control of ||r)‘73§3||270()\)mv(,\7,,), with A < .

2) In R,[B] we would like to control also the norm ||r33, l2,c)nV ()
The estimate we obtain is slightly weaker, in fact we control ||r* 4 l2,c)nv ()

with A < 3. This result can be obtained either writing

By = 2D, — B3 + (2tryx + try) B

11

and then estimating the corresponding norms™, either using the Bianchi

equation '?

B =B+ 2trxB = diva + [-2wB + (2C +1) o] .

This result is discussed in Proposition 5.1.4.

19A weaker estimate than the one in [Ch-KI]

"1n this case we cannot obtain A = 3 due to the corrections which arises when we
express the norm of IP.3(W) in terms of the norm of B(LTW).

1211 this case we cannot reach A = 3 due to the presence of the component diva.
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3) Under the assumptions of Theorem M7 it is possible to control also
the norm |[|r*(p,0)4 cwnv(aw) With A < 3, see Proposition 5.1.4. To
obtain it we have to use '® the Bianchi equations

p4ED4p+;trxp=d/WB— EX'Q—C'ﬁ—%'ﬁ}
o4 = Dyo + ;trxa——d/iv*ﬁ—i- B a—(-B—-2n- *ﬁ}

We cannot reach the value A = 3 due to the presence of « in the right hand
side.

5.1.3 Some extra L? norms for the zero and first derivatives
of the Riemann components

As observed in the last remarks of the previous section, we can control
in terms of the Q-integrals introduced in subsection 2.6.3, some other L2
norms of zero and first derivatives of Riemann components. We collect these
estimates in the next proposition and discuss its proof in the appendix. The
main strategy is to use the estimates for the | - |, ¢ norms in terms of the
appropriate L2(C,C) norms, see Corollary 4.1.1.

Proposition 5.1.4 Under the assumptions of Theorem MT, we have the
following L? norm estimates,

5
||T 20[”2 C(ANV(Aw) S (QIC + EU(R[U] +R[0})) 5 fOT 0 < —%

||T67-EY7Q||2,C(/\)HV(/\,V) <ec (ch +e(R; )) , ford < i
||T673Q4||2,C(A)0V(A,u) <c (Q;c + (R ) , ford <1
||7"67—%Q3||2,C NV S € (QIC +e(R ) , for 6 < —3%
"T(ST—gég,HQ,C(/\)ﬂV(/\,u) <ec (ch +e(R ) ,ford <
(5.1.34)
||7"504||2,Q nviaw) < e (QKJ + €0(Ryg) +E[o})) , for § <2
17 Valla,.cwnviw) < ¢ (ch +e(Ryg +E[0])) , for§<3
I esll2,cmvio < ¢ (ch + eo(Ry) +E[0])) , for 6 < 3

!31n this case we cannot proceed as we have done for the norm ||r®(p, )3l2,c0nV (A
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||T60‘4||2,Q V) S C (QIC + €0(Ryg +R[o})) s for d <3

I Ballo.corviom <e(Qc +eoRig +Rg))  , ford <3

I (0, ) all2,cyrvaw < ¢ (ch + €0(Ryg) +E[0])) ; for 6 <3
(5.1.35)

Proof: See the appendix to this chapter.

5.1.4 Control of the L? norms of the second derivatives of
the Riemann components

Proposition 5.1.5 Under the assumptions of Theorem MT the following
inequalities hold

RZ[a]Q()‘a V) < ¢ (/ Q(ZQOW)(KakaTa 64)
C(AM)NV(Aw)
+/ Q(EOZTW)(KaKaKa&I)
CONV(Aw)
+/ Q(zSzTW) (Ka K? K? 64)) + C(l + 63)7?’[1]2
C(ANV(\v)
R8P0 < f QULLW)(K K, T,ex) + 1+ Ry
C(A)NV(Av)
~9 _
Rallp,)F00) < e ( / QUEGW) (K, K., 1)
C(A)NV(Aw)
+ Q(zOzTW)(Ka‘[_{?I_{?&l)) (1 +60)R[ }2
C(ANV(A\w)

R2[é]2()‘al/) < (/ Q(E?)W)(K,K,T,&;)
CcC)NV(Aw)
+/ N )Q(EOZTW)(K,K,K,64)

+/ Q(LsLrW)(K,K,K,e )) +e(l + ) Rpyy”
ANV ()
and

Ro[B(\v) < ¢ ( /C o) Q(LoW)(K,K,T,e3)
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Rol(po)* (A, )

Ryl (A v)

Rola]* (A, v)

+/ Q([,()[,TW)( K, K,e )) +c(l + EO)R[ ]2
NV (Av)
c (/ Q(‘&QOW)(K?KaTa 63)
CE)INVw)
+/ Q(ZOZTW)(KaKaKae?))) +C(1 +6%)R[1]2
NV(Av)
‘ ( / QULGW)(K K. T c3)
Cv)NV(\v)
+/ Q(ZOZTW)(KaKaKae?))) (1 +60)R[ ]2
NV (A\v)

c (/ QULLW) (K, K, T, e3) (5.1.36)
CENV ()

+/ Q('&O‘&TW)(KV[_(M[_(?Q?))
NV (Av)

+/ Q(LsLrW)(K,K, K e )) + (1 + )Ry
NV (Av)

Proof: The proof is in the appendix to this chapter.

Remarks: To understand in detail where the various integrals composing
Qs and Q, are needed, we make the following observations:

i) fC(u)Q(EQOW)(K’,K,T, eq) and fg(u)Q(ZéW)(K,K,T, e3) are used to

control the integrals

with v+ = 4.

[ ¥, 50,0, )

C(u) -

/ r'r 172V (B, p, 0,8, )| (5.1.37)
Clu) -

ii) The presence of the integral norms

/ Q(LoLrW)(K

Q (LoLrW)(K,K, K e3)

and of the integral norms

/ QLsLrW) (K

/ QLsLrW) (K, K, K, e

w
~—



268 CHAPTER 5. ESTIMATES FOR THE CURVATURE TENSOR

is due to two different reasons. The first one is that the Bianchi evolution
equations for the Riemann components o and « exist only relative to the es
and e4 directions, respectively. This implies that the terms D4a and D3q,
in the integrand, have to be trasformed into Dsa + 2Dra and Dya — 2Dra
and that the Bianchi equations can be applied only to the first part of them.

The second reason is that the norm integrals along C(u) do not contain
terms with a(W) and the norm integrals along C(u) do not contain terms
with a(W).

Recalling the definition of signature given in Chapter 3, see 3.1.23, it follows
that, when we are considering te norms along C'(u), each time the signature
of the integrand is +3, giving signature +1 to Dy and —1 to D3, then
the integrand is of type YDy« or, using the Bianchi equations, contains a
term of this type. This implies that, to estimate it, we have to estimate an
integral norm of YDy« which requires fC(u) Q(LoLrW)(K,K, K, e4) to be
bounded.

If, viceversa, the signature is +4, the integrand must contain Dia and, to
estimate this term, we have to express again Dy as D3 4 2D7. This implies
that, finally, we have to consider integrals of DQTa which require 4, to be
controlled, the norms [, Q(LsLrW)(K,K,K,ey).

The second reason shows up in the following way: when the integrand of a
C(u) integral norm has signature —2, it contains a D3 or a D3(p, o) term
which produces, using the Bianchi equations, a Ya(W) term. This term
cannot be estimated in a straightforward way using the Q norms'®. There-
fore, in this case, the strategy is to substitute D3 with —Dy4 + 2D¢ which,
again, implies that we have to use the fc(u) Q(ZﬁoﬁTW)(I_(, K,K,es) norm
to control the terms containing D7/ or YD . If the integrand signature is
—3, repeating the previous argumeﬁt, it follows that we have to control also
terms derived twice with respect to T' like, for instance, DQTQ , which again

require, to be controlled, the norms fC(u) Q(LsLyW)(K,K, K, ey4).

Exactly the same discussion holds for the integrals along C(u) with all the
signatures interchanged. These integrals norms are needed, in this case, for
the integrands of signature +2, +3 and —3, —4.

“The reason why the integral norm fo(u)Q(E;W)(K',K',K', e4) is not sufficient is
connected to the weight of the integrand.
15Nevertheless see Proposition 5.1.4.
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5.1.5 Asymptotic behaviour of the null Riemann components

It is an immediate consequence of Corollary 4.1.1 and of Propositions 5.1.2,
5.1.3, 5.1.5 that the sup norms in the inequalities 3.7.1 are bounded by Oy,

supr7/2|a| <cQx , Supr|u|%|g| < ¢Qx
K K

3
Sl}épﬂ/Qlﬁl <cQxk, S%PT2|U|2|Q| < cQxk

1 _
Sl}épr?’lpl < cQx , Sl}épr?’IUI?I(p —P,0)| < cQx
Theorem M8, proved in the next chapter, completes the proof of 3.7.1.

5.1.6 The asymptotic behaviour of p

We prove the following lemma,

Lemma 5.1.2 Assuming that the connection coefficients satisfy the inequal-
1ty
@ < € )

the average of p on the two dimensional surfaces S(\,v),

1
1
PO = 50071 fon

satisfies the following estimates:

sup |r*p| < sup |rp| + ¢ (sup/( : Q(LoW)(K,K,T, 63)> + ceo Ry
K 2 v

KNXo K

Proof: proceeding as in Lemma 4.3.4 we obtain that p satisfies the following
evolution equation

d - 1 dp
4o o —+7/ (_mtr )
' XIS Jsowy \ax AP

Using the Bianchi equation 3.2.4 for p along the C(v) null hypersurfaces

d
—p+;ﬂt7xpzﬂ(—d/w§—2n-§— X-a+¢-p)

dX
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it follows denoting f = 735,

d d 5 d
= WP—T (597 537)
1
= / (Qiry — Qtry)(p —p) (5.1.38)
2|S | S(Av)

+ m/m (~dvg—2m-5-55a+c5)

From the assumptions on the Ricci coefficients

d 1
— fl < Zlp—p
dAf‘_c</S(A7V)T|p e [ s+ [ ”_|+/ )
so that, integrating along C(v) NV (A,v),
[ v qn < ef O -p)I+ [ O N divp
Ao dA ’ - C()NV(\w) r3 por CWNV(Ap) r\ N

! 1
+ / 1) A2q +/ 0 Vel
corvinn I Jov0, G I

Applying the Schwartz inequality, we obtain
1
2
Cai 2 < e ( / o - ﬁ)l2> - ( / m’?m&wﬁ)
Cw)NV(rv) Cw)NV(Aw) -

1
2 2
n (/ )\/4|g|2> n (/ r2>\'2|ﬁ|2>
CNVO) Ccwvow) o

Using the estimates for the L? weighted norms of the Riemann null compo-
nents, proved in Propositions 5.1.2 and 5.1.3,

1
2

/ Mp-pP<e / Q(LoW)(K, K, T, e5)
C(W)NV(Ap) Cw)NV(Av)

PN < c | QULW)(K, K. T e3)
- Cw)NV(av)

w
~—

Je

/ Vol < QULoW) (K, K. T.c2)
Cw)NV(Av Cw)NV(Aw)

P22 < c/ QLoW)(K, K, T, e

()

/Q(V)HV(/\,V
() Cw)NV(xw)
()

)
NV (A\v)
(Aw)
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and taking the sup over K the proof is completed. Using the previous result,
see Proposition 5.1.5,

1
1 R o 2
Sllp|'r37'_2 (p=p)| < ecsup [(/ Q(LoW)(K,K,T, 63)>
K K C(v)

+ ( / QULoW) (K. K.T, e3>>
Cw)nvxw)

we conclude that

sup[r’p| < sup [r’(p — p)| + sup [r’p]
K K K

sup |r3p| 4 csup [(/ Q(LoW)(K,K,T, 63)>
reknso K C)NV(Av)

1
+ (/ QULEW) (K, K, T, 63)> (5.1.40)
CWNV ()

M

IN

5.2 Appendix to Chapter 5

5.2.1 Proof of Proposition 5.1.4

We recall
Corollary 4.1.1: Under the assumptions of Lemma 4.1.1 and Lemma 4.1.2
the following estimates hold

1

1 1
o) <
S(\v) C(M)NXo
1
e (/ FI? + r2|WFP? + r2|1Z)4F|2>
CONNV (Aw)
i i
</ r272|F|4> < (/ 7‘27'2|F|4> (5.2.1)
SOW) C(MNSo

1
2

+e ( / P+ 12 PF? + Tz|m4F|2>
C)NV(Av)

and

4
S(Aw) C(¥)NXo

N
=
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2

+e ( / PP+ 12 (PP + r2|12>3F|2>
C)nv(Aw)

1 1
1 1
(/ r273|F|4> < (/ r2TE|F|4> (5.2.2)
S(A\v) C(v)NZo

2

+c </ |F|2+r2|Y7F|2+TZ|lZ)3F|2>
Cw)NV(Ap)

Proof of inequalities 5.1.34: We discuss the proof of the more relevant
inequalities in 5.1.34. The other ones can be easily deduced with the same
technique.

5
i) ||7"57—22||2,C(>\)mV(A,y)

From the second equation of 5.2.1 we have

1 1
1-2 8 2 10 14\ 2 10y 14\
P P2 alpmas = / rérlalt | < / rral
S(\v) C(v)NZo

o ([, ol 7 Tl ¢ sl
Cw)NV(Aw)

(M

Moreover

(rtlaf? + 1t Val®) < | QULW)(K. K, T,c)
Cw)NV(\v)

/Q(V)HV(A,V)
To estimate [c(,)nv(a ) 78|P;a|? we express aj in terms of oy and Iy

5 1
a3 =2Dpa —ay+ (Etrx + §trx)g .

As try, trxy = O(L) we are left with estimating

||T§DTQ

The only term we have to estimate is the first one. In fact the second
one can be bounded by ||T_7"2g4||2’g(y)mv()\,y) which has been bounded in
Proposition 5.1.3 and the third one is controlled in Proposition 5.1.2. Apart
from correction terms, this amounts to estimate [c(,)ny (5 78 |a( Ly W) |2

which is controlled by [, Q(LrW) (K, K, K, e3).

2,C(v)NV(Aw) ||T§Q4||2,Q(V)HV()\,V)a ||TEQ

2,C(v)NV(Aw) -
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In conclusion

4 2 2,4 2 6 2
Loy, (712 27 Va4 Da?)

<c QULoW)(K, K. T.e0) + | QULIW)(E, K, K es)
Cw)nvV(Aw) Cw)nvV(xw)

Therefore

/ P75 o2 :/ / r2075 |2
C(NNV (M) vy JS(AV)
v 1 1.9
2 4
<e [, Unun) 1Ly %t)]
vo \Js() SO
v i 2
< c/ r(A, 1/)25[(/ T2Tlo|g|4> }
Vo S(Av")

<c[ 1) ( / QLoW)(K, K, T, e3)
v Cw)NV(Aw)

0
+/ Q(ETW)(KaKaKa 63))
C(w)NV(Ap)

In conclusion, if § < —%, we have

5 o _
72 allbeoyvon < ¢ sup (/ QILoW)(K, K, T es)
veV(Ap)Nse \JC@)NV(A)

N——
M

+/ Q(ETW)(KaKaKaeii)
CHNV (A

ii. 778, ll2,co0nv ()

To estimate this term we use the Bianchi equation
ﬁg =3B+ 2try B = —diva — [2&@4— (—=2¢ +n) -g] .

it comes out that the main term to estimate is ||'f'57'zy7g||2’c(/\)ﬂv(/\,y). From

5
its estimate, which can be done as for the estimate of ||r57_2g||2,c()\)nv()\,,,),
we conclude that this term is bounded for § < %, o< g Therefore

177 B, lo.conmviw < ¢ sup (/ Q(LoW)(K,K,T,e3)
VeV(ar)Nse \JCW )NV (AW
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+ QUELW) (R, K T, e3)
c)NVaw)

iii. ||7"57(_’Ot||2,g(u)mv(/\,u)

This term is estimated in the same way as the term ||r‘57‘jg||270()\)mv()\,,,)
with the appropriate weights. Therefore we have, for § < 2,

Irallo.coypvow < ¢ sup (/ Q(LoW)(K,K,T,es)
NeVar)nse \/C)NV(N )

K,
4 / QULrW) (R, K, K, e )
CONV (N )

iv. ’|7"57'3ﬁ4||2,g(u)mv(/\,u)

The estimate of this term proceeds as that of ]|7’57{ﬁ3||270()\)mv()\,,,). We
conclude that

’lTA/B4||2,Q(V)ﬂV(/\,u) < c sup (/ Q(‘&OW) (Kvvav 64)
MNeV(Av)NZo CANV(Awv)

Lo (LoW)(K.K.T.e1)
MNV (Ap)

1
_ 2
+ / Q(LoLrW)(K,K K, e ))
ANV (Av)
with A < 3.

v. P77 (p,0)4ll2,cm)nv ()

This term is estimated differently ' from ||r°77 (p, o)sll2,c(0nv(ay)- From
the Bianchi equation

%X'Oﬂ—('ﬁ—?ﬂ'ﬁ

161f one tries to proceed as done for ||7"5Tf (p, 0)3|l2,c(x)nv(r,v) One gets a weaker result.

3
p1=Dap+ trxp = divf —
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we observe that the main term to control is ||r‘STSY76||2’C(/\)ﬂV(A,,,) which
has been bounded in the estimate of the norm R,[f](u,u), by the integral
Jowynv o QULoW) (K, K, T, e3) for A <3, 0 < 0. For the main correction

_3
term we have to estimate ||7"(571)T£U 2,

|2,Q(V)m/()\,,,). From the previous
estimate of |77 all2, o)AV (a) it follows that

o—3 N _
1= 7 2ol oyvow S ¢ sup (/ QUEOWIUE I T )
NeV(Awr)NSg C(AM)NV(N,v)

1
2

+ QULrW) (K K., e4)>
CO)NV (N )

with § < 3 and ¢ < %, so that finally we have

Ir°7%(p, 0)allo.coyvinw < ¢ sup </ Q(LoW) (K, K, T, e4)
MNeV(Av)NZo CNV(A\w)

+ [ QULrW) (K. KK, e1)
COVNV ()

+/ Q(EOW)(K?KaTa €4)>
C(AMNV(A\v)

for d <3 and o <0.

5.2.2 Proof of Proposition 5.1.5

We give the main ideas of the proof, neglecting all the correction terms
coming from the commutation relations, the relation between the covari-
ant derivatives and the Lx derivatives and those between the Lx and the
modified Ly derivatives. At the end we discuss, in some specific case, the
structure of the correction terms for the second derivatives. Therefore the
equality sign appearing in the proof has always to be interpreted as “equal
apart from correction terms”!”.

1. Rylal:
Role](\,v) = |r'V’a l2,connvw) + [

H|r*Vello,connvio + IT-rPass

l2,co0NV (M)

l2,co0NV (M)

+llrtesalla,connv o) + IT=r*eualla,connv o)

"The results here are exact if we interpret the Riemann components as the components
of a Weyl tensor in the Minkowski space as the background space. We also omit the
numerical coefficients in front of the various integrals.
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Estimate for ||r

NNV (Aw)
IFYasldeopwon = [ rFaw)?

C(ANV(Aw)

= Loy TP [ YDl
C(ANV(A\v)

S T ) 2 P+—/ la(Colri)
CANV(Awv) ANV (Av)

< [ QLW (K, K, T, e4)
CANV(Awv)

+ / Q(LoLrW)(K,K, K, eys) (5.2.3)

ANV (Av)

Estimate for ||7_r3ayy ll2,co0nv ()

2.6 2
Im-r* el cognviow = “r|ous (W)

/C(A)DV()\,V)
-/ (W) + | 2Dy a)a (W)
CANV(A\v) CANV(Awv)

:/ TET6|C¥43(W)|2+/ TET6|C¥4(ZTW)|2
CO)NV(Ap) CO)NV(Ap)
:/ TET6|C¥43(W)|2+/ TET6|C¥3(ZTW)|2
COVNV () COVNV ()
+/ 2,6 a(LrW)|?
C(/\)ﬂV(/\,u)T HDT ( 4 )|
-/ 2o+ [ ST
CONV(Ap) CONV(Ap)
1 N
+/ 2p6 a(LyW)|?
C(/\)ﬂV(/\,u)T T.%'DS (LrW)]

-/ 21+ [ 2B (Lo L)
CNV(Aw) CNV(Aw)

+/ 2rta(Ls L W))?
CONNV (A

S/C(A)nV(Ay)Q(EOW)( KT +/ nv,\,,)Q(LOETW)( K,K,e,)

+ / QLsLyW) (K, K, K1) (5.2.4)
ANV (A,p)
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Remark: To estimate ||7'_7"30(44||2,C'()\)mv()\’,,) we are obliged to use the Q
norm [ooyav) @LsLrW) (K, K, K, e4) .

2. Ry[pl:

RolBIN,v) = [V Bllo,conmviow) + I7-r*VBslla.coonvow)
+Ir* Y Ball2,coonv () + 17277 Baslla,coonv ()

+[Jrt Ballo,coynv ) + [t Basllo,cynv(aw)

Estimate for [[r*Bull2,c00nv ()

dg 12 _ 818, (W2 :/ 8 W2
I Bilioomon = Lo, BeE= [ e w)
nv

-/ I Pas (W[ + (YD a(W)
C(M)NV(Aw) )NV (A\v)

_ / 8|V (W2 + / Sl LoLy W)
CONNV(Aw) cONV(A\w)

+ / Q(LoLrW)(K,K, K, ey4) (5.2.5)
CNV(Ap)

3. R2[(pa0)]:

Rol(p, o) (w, 1) = -3V (0, 0) lo,cnv ) + 17272V (0, 0)3ll2,c000v ()
+“7“4W(PaU)4H2,C(A)nV(A,u) + 77" (p, o)sall2,co0nv ()

+r* (0, 0)aallz,cnnv o) + 1727 (0, 0)s3ll2,connv ()

Estimate for [|727(p, 0)33/l2,c00nv(a0)

737 (p, 0)33 ||§,C(/\)HV(/\,V)

-/ 7512 (p, @) (W) = / O r2 VB, (W)P
CO)NV(Aw) CO)NV(Ap)

-/ 128, (W) + / 12T AW
CO)NV(Aw) MNV(A

-/ 17, 0) (WP + / YL
C(A)QV(AJ’ ﬂV A, l/
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6 2 L
:/ » |(p,0)(ﬁoW)|2+/ 818(LoLrW)?
cNV(aw) T NNV (Aw)

<o QEWE KT e+ [ Q(EoLrW)(K, K (§2)
4. Ro[pl:
Ry[Bl(A,v) = ||TET2Y72§||2,C(/\)0V(,\,V)+||T_7"3Y7§4||27C()\)mv()\,y)

||T§7”W§3||2,C(A)0V(A,u) + ||TET2§34||2,C(A)0V(A,V)

+ o+

||7"4§44||2,C(A)0V(A,u) + ||T§T§33||2,C(A)HV(A,V)

Estimate for ||T,T3Y7é3||270(/\)ﬂv(/\,y)

6,.2 2
/C()\)DV()\,V) V|
- [ v+ [ S, P
CONNV (M) = CONNV (M) =

:/ TET2|Y72,0(W)|2+/ TET2|W§(ETW)|2
ANV (A ()

I72 rVB, “20 NNV (Aw) =

—/ — Ip(ﬁoW )[? +/ 8 18(LoLrW))|? (5.2.7)
ﬂV )\1/) r y)

: /C‘(A)HV(A,V)Q(EOW)(K’ +/ nv,\,,)Q(['OETW)( K,K,eq)

Estimate for ||T§r§33 2,00V ()

3 2 _ 6,2 2 _ 6,2 2
||T—7"§33||2,c NNV (Aw) = /C(A)ﬁv(A ”) T_T |§33| = /C()\)HV(AW)T—T |§44|

2 2 21TA2 212
oo™ |lz>Tﬁ|+/ 1 gl

2 2 2 2
= Lo B[ r|lz>TWp(W>|
o BEWP = /C v SBEI?

+f oLl )P+ [ O B(LsLaW)?
NV V)
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<[ QUEGW) (K, K. T,e0)+ QULoLrW) (K. K, K e
CNV(Av) cNV (Aw)
+/ Q(»&S,&TW)(K,K,K,&Q (528)
C(M)NV(A)
5. Ry[A]:

Ry[B](A,v) = ||T4Y72/3||2,Q(V)QV()\,V) + 1PV Bslla,coynvio) + T VBilla.cwinv o)

+Ir*Basllz.cyrv o) + 1T Bssllz.cwynvow) + IT-r*Baslla.cwinvow)

Estimate for ||[r*Yf4l2,co)nv o

P V11 cminm = | PP
CW)NV(Aw)

a /Q(u)mv(/\,u)r (VB (W) +/ YD B(W)|
:/ 7"8|7753 |2+/ r8|y75(ZTW)|2
NV (A\v)
_/ el +/ R LoLrW)P (5.2.9)
NV (Av)
<, QUEOW)(R K Tyes) + / QULoLrW)(E, K, K e3)
CE)nVrw) V()

Estimate for [|[7_7*Su4ll>.c)nviw)

||T*713/644“§,Q(V)mv(/\7y) = / 6|B44(W)|2
Cv)NV(Aw)
2.6 2 6 9
= 2 4 / -
/Q(u)mV(A,u)T ' |Bs3 (W) 21D (W)|
+ / 26 14
Q(u)mv(/\,u)T r[PrAW)P
C(W)NV(Av) C()NV(A\w)
+/ 2t B(Ls LW
Cw)NV(Av
~2 _
NV V)NV (Av)

/ Q(LsLrW)(K,K,K,e3) (5.2.10)
C(v)NV ()
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6. EQ[(IO’U)]:

Ryl(p, o)l(Asv)

||T4V2(Pa o) ||2,Q(V)I’1V(/\,u) + ||T—7"3W(Pa 0)3 ||2,Q(1/)HV(/\,V)
174V (p, ) allo,coymvinw) + IT=r" (0, 0)3all2.cw)nv ()

||TE7“2(P, 0)33||2,g(u)mV(A,u) + “7"4(97 U)44H2,g(u)nV(A,y)

Estimate for |r(p, 0)aall2,c)nv ()

4 2 _ 8 2
I, sl cwmvon = [ o rleoum)

-/ Pl )W)+ [ Do), ()P
Cw)NV(Aw) Cw)NV(Aw)

(e )W)+ | r¥|(p, )4 (L W)?
Cw)NV(Av)

o) (WP + [ PIVBL)
Cw)NV(aw)

/ (0, )34 (W)[* + / r|B(LoLrW)|? (5.2.11)
Cw)NV(Av) CW)NV(Aw)

< / Q(‘&?)W)(Kaf(aTa 63) +/ Q(Z"OzTW)(Ka‘[_{aKa 63)
Cw)NV(Aw) Cv)NV(Aw)

/Q(V)QV(A,V)

/Q(V)QV(A,V)

|
®
=
>
S
[

1TV Blla,cwynv ) + 17277 VB, ll2,cmnv aw)
||T4Wé4||2,g(u)ﬂ‘/(/\,u) + “TET§33H2,Q(V)QV(/\,V)

Im—r*B5,ll2,cnv o) + 17 B, lla.cnv o)

Estimate for ||T§’I"é33 l2,c)nv(aw)

172 rBysllo.c)nvine = / 787 B (W)

Cw)NV(Aw)

- [ V(WP + [ O By a(W)|*
CW)NV(Aw) Cw)NV(Av)

-/ VW) + | o V(L W) !
C)NV(Aw) - Cw)NV(xv)
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76
= / BLWI + / 2 |B(LoLrW)I? (5.2.12)
CwNV(Aw) T NV (AY)

S/ Q(LOW)(K3K3T363 +/ Q(zOzTW)(KaKaTae?))
C(v)NV(A\p) Cv)NV ()

8. Rylal:

Ryla](Av) = ||TE7"2WQQ||2,Q(V)0V(,\,V) + ||TETWQ3H2,Q(V)QV(/\,V)
||T—7"3WQ4||2,Q(V)0V(A,V) +ma

’22

)NV (Ap)

+ +

Cw)NV(Aw) )NV (Ap)

Estimate for “TETWQ:}HZ,Q(V)HV(A,V)
||TETWQ3||2,Q(V)QV(A,V) :/ 2|77043( )|2
Cw)NV(Aw)
- [ VDRIP4 [ S e ()P
C(v)NV(A\p)
= Loy WP [ )P
NV (Av) -

NV ()
T ~2 2

= [, a0 LI + / ZI8LoW)]
NV ( )\V) NV(Aw) T

- (5.2.13)
. /C( NV (Aw) Q(EOW)(K’ ) + / V) Q(LoLrW)(K,K, K, e3)

Estimate for ||Tz7"2g34||2,g(y)mv(>\,u)

1722 az4ll2.c v = Tf7“4|234(W)|2
Cv)NV ()

:/ |\ yB, (W |2+/ 4 V(W) 2 (5.2.14)
Cv)NV(Aw) Cw)NV(Aw)

N ~ 9 _
_ / AaLEW)P < / QULLW) (K, K, T, e3)
AV (Av) Cw)NV(\v)

Estimate for ||ng33 ||2,Q(u)ﬂV(/\,u)

I asla v = | Pl = [ W)
V)NV (Aw)

Cv)NV ()
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- FEBPraP s [ W) ()P
)NV (Aw) NV (Av)
)
- PlaW)P+ [ sl
)NV (Aw)
+ VAL = / ey (W)
)NV (Aw) Q(V)HV()\,V)
8
T° ~ A
Pla@wiP s [ S8 W
)NV (Aw) NV(Aw) T

78 gy (W)[? + / (s bW
(v)NV(Ap) CwNV(aw) T

WNV(aw) T

+ QLolrW)(K, K, K, e3) + / oy QUESEI(E,

+
S IQ\ O S e

)NV (Aw)

We end the appendix discussing at length some of the more delicate
estimates of Proposition 5.1.5. The detailed estimates for the other norms
are easier and proceed along the same lines.

1.1 ||T4W204||2,C(A)mv(x,u)
Using Proposition 7.5.3 of [Ch-K]] it follows

/ |V a(W)|? < c/ S LoVa(W))? (5.2.16)
CINV(Ap) cINV (M)

_ . / Y Loa(W)[2 + ¢ / (Lo, Y]a(W)?
CINV(A) CNV(Ap)

We use the relation, see 5.1.15,
Loa(W) = a(LoW)+ SO, OM) . a(W)
where
SO, OM)apeq = — tx Ot + 500l
to rewrite the first integral and estimate it as

r*|VLoa(W)[* = | Ve LoW)[?

/C(/\)HV(/\,V)
+ IIS(Om, OM) - oW
CNV(Aw)

/C(/\)HV(/\,V)

K K,e

8

Z . 52 _

—2|B(£0£TW)|2 g/ QLoW)(K,K,T,e3)  (5.2.15)
CW)NV(Aw)

3)
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<o ( / #Loa(LoW) + [ 0|¥S (O, OM) (W)
CINV(AY) CNV(Aw)

+f 18(©r, <0>M>|2|Wa<w>|2>
CO)NV (Aw)

< ( / Pla@ow)E + | r15(On, O Pla(LoW)?
C)NV(Aw) C)NV(Av)

17O, OMPla(W + [ r915(©, <O>M>|2|Wa(W>|2>
) CONV(Av

+
cONV (A )

2
< c/ 7"4|a(£20W)|2 + ce—g </ ra(LoW)|?
cONNV(A\w) r2 \Jeonviww)
+/ r4|a(W)|2> < c/ 7’4|oz(2201/V)|2 + cegR[Of (5.2.17)
cONNV(A\w) CONV(Aw)
where we used the following estimates for S((Or, (?)M) which can be easily
deduced from Chapter 3, section 3.7, for p € [2,4],

sup |rS (O, O] < ceg
K

sup |2 »¥S(Or, OM)|,.5 < ceq (5.2.18)
K

To estimate the second integral of 5.2.17, fc()\)m/ ) r8|[Lo, V]a(W)|?, we
observe that, see 4.8.44, and Corollary 16.1.31 of ECh—Kl]

(V. Lol®) e = (VyHaa + VoHay — VyHpa) e
+ (WbHda + WaHdC - WdHca) Cdp

As, from the estimates of Chapter 3, section 3.7, the following inequalities
hold, p € [2,4],

2
€
Lo, V]a(W)[ 5 < CT—Ola(W) o
we obtain

[0, Via(W)P? < cél (W) < cddRyy?

/C’()\)ﬁV()\,u) /C’()\)ﬁV()\,u)

so that, finally,

~2
T4|Oé(£0W) |2 + CE%R[O}Z

472 2 < /
[ a||2,C()\)ﬂV(/\,u) sc OV )
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1.2 [[r'Vaulls,convow) -

4 2 =
I Veaullz,connvow = /c(/\)ﬁV(/\:V

Sc</’ PP (WP + [ r|FPa(W)
CONV () C)NV(Aw)

5 1
+/ |V (S trx + ot w))|?
C(A)ﬂV(A,u)T |W(2 X 2 rx)a( ) >

< 8 W 2+/ 8 W2
=¢ </C(/\)HV()\,V)T (Vs (W) C(/\)ﬂV(/\,u)r YPra(W)

8|V (trx, tryx) | la(W)|* + / rsl(trx,trx)IQIWa(W)P)
cONV (M)

)7“8|77014(W)|2

o).
CNV(Aw)

< 8 e 2+/ 8 W2
= </C(/\)HV()\,V)T [Vas(W) C(/\)ﬂV(/\,u)r YPra(W)]

+ PP + 6 [ ﬂmwﬁ)
CNV (M) CO)NV (Aw)

<c (/ r®|Was(W)[? +/ S| YDra(W)[* + Ry + G%R[0}2>
CONNV () CONV ()
(5.2.19)

where we used the relation s = —a3 + 2pa + (3try + stry)a and the
estimates of Chapter 3 for try, try, Ytry, Ytry. Using the Bianchi equation

a3 = VOB + [4wa = 3(xp + o) + (¢ + 4n)&F]
and the estimates on the Ricci coefficients proved in Chapter 3 we obtain
HIYas (W < e PP BV + Ry
CA)NV(A\v)

S CT\)/Q [,8]2 + CE%R[1]2

/C()\)HV()\,V)

to estimate the last integral of 5.2.19 we recall that, see 5.1.24 and Propo-
sition 5.1.1,

Dra(W) = Lra(W) + DH - o(W) .
Moreover, using Lemma 5.1.1, we write

VLra(W) = Y (aALrW) + G (DM, Dm)a(W) + Go(1P,1Q)8(W))
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=WMGW+W&W“KWM(WHGM M, D) (Va(W))
+ (VGo(TP,1Q)) BW) + Go(DP, 1)y B(W)

and, from it,
8 2
<
Lo, TPz <
< la(LoleW)P [ O Pla LW
C()\)ﬂV()\,V) ANV (A,p)
+ [ A Huawﬁ+/ PIDH | Ya(W)?
COVNV () COINV ()
+ 906 Pl + [ P0G Fa ()
C)NV(Av) C)NV(Aw)
+ PGP+ | AR CUTh
C)NV(A) CONV ()
Using the estimates, previously proved,

sup (|7“(T)H| + sup |7"(O)G1|) < ceo
mmw3m+vm@+vaHW”W)ﬁm

2,_

|r DH|, 5 < ceg

P23V OIP), 5+ P23V Ql, s + 2P Y IOM s + 1723 rl, ¢ < ce

for p € [2,4], we obtain

/ PP < | Pla(LoLrW) + Ry,
CONNV(A\w) CONNV(A\w)
and, finally,
Ir*Yeull3 copav o) < /( . )7"6|04(2OETW)|2 + Ry [B + c(1 + )Ry
g/ QoL W) (K, K, K, 1) + Ry[B) + e(1 + )Ry, 2
cONV(A\w)

< / Q(Z’ZOW)(Ka-[_(aTa 64)+/ Q(zOzTW)(K7K7K764)
C(NNV (M) CANV(Awp)
+C(]_ + Eg)R[H?

where we used the estimate of Proposition 5.1.5 for the R[] term.
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1.3 ||T,r3oz44||2,c(/\)ﬂv()\,,,) . Starting from the relationship, easy to derive'8,

5trxoz3 + = [5]D4(trxoz) + D4(trxa)]

g4 = —Q34 — 2D3]DT0( + 412)T0[ + 9

it follows

/ 72 g (W) < ¢ (/ 725 gy (W) 2
CONV(A\w) cONNV(A\w)

o BP0 [ )
cNV(\v) C(MNV (M)

+f w2 ag (W) + [ 21 an (W) + Ry
C(A)mV(A,u) CO)NV(A, y)
< .6 +/ 6 W2
<e ( Loy P s B9 210 p,ya(W)
+/ 72r6|17)2Ta(W)|2> +c(1 +63)Rm2 (5.2.20)
c(NNV(\v)

Let us examine the second integral of 5.2.20, [c(x)ny(a) 2r8 PP ra(W)|2
From 5.1.24 and Proposition 5.1.1,

Dra(W) = Lra(W) + DH - (W) .
Moreover, using Lemma 5.1.1, we can write
DyLra(W) =Dya(LrW) + Py (G1(TM, Dr)a(W) + Go(TP, MQ)B(W))

and derive the inequality

2rf w)|? </ 2,611 o Lo W2
/C(A)HV(/\V)T [P Dra(W)|* < C()\)ﬂV()\,y)T r|Pya(LrW)|

’

+ce (/ 2r Dya(W))? +/ r4|a(W)|2>
cC)NV(Ap) cC)NV(Av)

au = Dyoa+ ;trxaz; D, [—as+ 212)Ta + = (5trX + try)a]
= Doz -2D,D.a+ 412)Ta + = [512)4 (trya) + 12)4(trxa)]

= —au—2P,Pra+4Pha + Ztrxa3+ [5D, (trxa) + P, (trxa)]

18
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< / 218 Dya(LrW)|? + cegR[l]Z
COVNV ()

VAN

C

PVBEWIP e [ e

/C’()\)HV(/\,V) ANV (M)

+C€g (R02(2TW) + R[l} )

¢ / 2 B(Lo LW + ¢ / 72 o L W)
C(ANV(\v) C(ANV(A\w)

+C€% (R02(2TW) + R[H?) .

IA

The third integral is estimated in a similar way, the main difference being
that its main term, [oy)qv(\.) 72r5|D,a(L7W)|?, has to be estimated using
the expression D, = %]Z)Sa — 2%13304, in the following way

2P < [ a2 Da(En)P
ﬂV(Al/)

S R MR
NNV (A\v)

/C(/\)ﬂV()\,u)

The only term left to estimate is

2t Pga(LrW)|? < T2t a(LsLeW)|? + Ro* (LTW) -

/C’()\)ﬁV()\,u) /C(/\)HV(/\,V)

Collecting all these estimates togheter we infer that
/ 200 ss (W)
CO)NV (Aw)
= B Sl P2 (Lo Ly W) 2
NNV (Av) C(AMNV(Ap)
+/ VO 2t ja(LsLrW)|* + e(1 + €) [ROQ(ZTW) + R[”?]

concluding the estimate.
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Chapter 6

The error estimates

In this chapter we assume the spacetime K foliated by a double null canonical
foliation, verifying the assumptions

@) S €0 , D S €0 (601)
and we are going to make use of the inequality, proven in Theorem 3.7.8,
R < cQk (6.0.2)

The main result of the chapter is the proof of Theorem 3.7.10, which we
restate below,

Theorem 3.7.10 Under the assumptions 6.0.1 and 6.0.2 with €y sufficiently
small, then the following estimate holds:

Qx < c1Qxynk (6.0.3)

with ¢1 a constant independent from eq.

Remark: Observe that the true assumptions of Theorem 3.7.10 stated ! in
Chapter 3 imply the assumptions stated here.

To prove this result we need to control the quantity
E(u,u) = (Q+ Q)(u,1) — Lsynv(uu)

which we call Error term, for all values of u and u on K. Using the expression,
see Proposition 3.2.3,

DiwP = DivQpsX Y77’ (6.0.4)
1
+ §Qaﬁ75 ((X)wa5Y7Z5 +(Y) Wa/3Z7X5 +(Z) Wa5X7Y5)

!The assumption R < eo stated in the Chapter 3 version of this theorem is needed to
control the deformation tensors of the angular momentum vector fields, see Theorem 3.7.4.

289
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and Stokes theorem, it follows that

{ / QUV)(X.Y. Zyes) + | QUV)(X.Y, Z,ex)
Cuw)NV (u,u)

C )V (u,u)

- / QW)(X,Y, m)}
SNV (u,u)

/V(“,E)

+ s Z, X5 +D 1o vaa)] (6.0.5)

. 1,
[DwQ(W)M(;XﬁYVZ‘s +5Q o (w) ((X%raﬁ)@z(;

Therefore
g(uaﬂ) = 51 (’LL,Q) + 52 (’LL,Q)

is a sum of terms like the right hand side of 6.0.5 where W is replaced by
LrW, LoW, LolrW, LslrW, LoW and X,Y, Z take values in {T, K}.
& and & have the explicit expressions 2:

Sl(u,u) = /V D’iUQ(ZTW)575(KﬁK7K5)
(

u,u)

+ DivQ(LoW)grs(KPKT?)
Viw,w)

3 a = _
+3 . QLW ) aprs (TP KTK?) (6.0.6)
(w,u)

+ Q(ZOW)aﬁvé((f()"TaﬁK’YTa)
Viw,w)

+l Q(zOW)aﬁvé((T)"TaﬁK’YKJ)

2 Viu,u)

Eww = [ DQULW)ss(KKITY)
(

u,u)

+ DivQ(LoLrW)gs(KPKTK?)
Viw,w)

+ Din(ﬁgﬁTW)575(K5K7K‘S)
Viu,u)

Differently from Chapter 3 we do not distinguish here between the functions u,u and
the values A, v they can assume, as in this chapter no ambiguity can arise.
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n QLW ) agys (B RYTY)
V(“,E)
1 A _
5 | QUEW )aps (D RTE)
V(“,E)

3 - - _
+5 . Q(LOLTW )apys(B TP KYK®)  (6.0.7)
(uw,u)

3 ~ = _
+= . Q(ACS,CTW)Q/B,Y(S((K)T('aﬁKVKJ)
(w,u)

The estimates of these terms are algebraically quite involved, the final result,
however, is very simple. We shall show that

E(u,u) < cepQx (6.0.8)

with ¢ a generic constant. This implies

Qr <
1—060

Osynk

which, choosing ¢y sufficiently small, concludes the proof of the theorem.
The next sections are devoted to the detailed estimates of the error terms
required to prove eq. 6.0.8.

Discussion 6.0.1 The estimates of the spacetime integrals appearing in
6.0.6 and 6.0.7 are the most sensitive part of the proof of “Main Theorem”.
To understand how this is done it is useful to remember the discussion, con-
cerning global existence for non linear wave equations in Chapter 2. To
estimate the error terms, appearing in the derivation of energy estimates for
the model problem 2.1.23, we had to introduce the commuting vector fields
2.1.27, define the generalized energy norms 2.1.29, use the global Sobolev
wnequalities 2.1.30 to derive decay estimates. These allowed us to prove
2.1.32, which implies the desired global existence result for n > 3. In dimen-
ston n = 3 we had, in addition, to rely on the special structure of nonlinear
terms, called the “null condition”. All these elements, except the last, were
already incorporated in our discussion of the proof of “Main Theorem”. To
estimate the error terms 6.0.6, 6.0.7 we need also to use the special structure
of these terms. Just as in the simple case of the null condition for nonlinear
wave equation, we have to make sure, by carefully decomposing all the terms
appearing in the above integrals in terms of their null components, that the
slowest decaying components are counterbalanced by terms which decay fast.
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For this reason we need to know the precise asymptotic behavior of all com-
ponents of R, and its derivatives as well as those of the various deformation
tensors. The behavior of the null components of the deformation tensors
depends crucially on that of the null Ricci coefficients.

6.1 Definitions and prerequisites
To estimate the first two integrals of &1 (u,u) *

/V DivQ(LrW) g5 (RPRE?) /V DivQ(LoW ) s(K° KT
(uw,u) (uw,u)

we have to compute explicitely DiUQ(Z',XW) with X =T, 0. Denoting
D(X,W) = DivQ(LxW)

it follows, by a straightforward calculation, see also [Ch-Kl] equation (8.1.3.c),
that

DOX,WYK,K,T) = ort (DO W)aaa + DX, W)gar)

1
+ZT3_TE (D(X,W)344 + D(X, W)334)

+%Té (D(X,W)s3s + D(X,W)ss3) (6.1.1)

I 1 3
D(X,W)(K,K,K) = gTED(X, W)444+§TiTED(X, W)344
3 1
+§T3_TED(X, W)334 + gTED(X, W)333
(6.1.2)

where

DX, W)y = 4a(LxW)-O(X, W) —8B(LxW)-E(X,W)

DX, W)z = 8p(LxW)AX, W) +8c(LxW)K(X,W)
+8B(LxW) - I(X, W)

D(X,W)s3s = 8p(LxW)AX, W) —8a(LxW)K(X,W) (6.1.3)
—8B(LxW) - (X, W)

D(X,W)ss3 = 4a(LxW) O(X,W)+88(LxW)-E(X, W)

3The following expressions are used also, with slight modifications, to estimate the first
three integrals of £>(u,u).
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where

AX, W), K(X, W), I(X,W), O(X,W) , =
AX, W), K(X,W), I(X,W), O(X,W), E(X,W)

are the null components 4 of
J(Xa W)ﬁ’yé = DQ(ZXW)aﬁ'yJ )

and ®

1 1 _ 1 _ 1
A(J) = ZJ434 , A(J) = ZJMS , 2(J)e = §J44a , 2(J)e = §J33a (6.1.4)

1 1 1 1
Iunzghm,ﬂﬂazghm,Kuw=1@%mm1gﬂzze“hw

O ab = Juap + Joaa — (0T e1a)0ab » O(T)ab = Jazp + Jo3a — (0“4 Te3a)dab

where we used the relations

A(J*) = K(J) 5 A(JY) =-K(J)
K(J*) =-A(J) ; K(J*) =A()
E(JF) =-E() 5 E(JY) =E() (6.1.5)
I(J*) =-1(1) 5 IL(J*) ="1(J)
e(") =-0() ; e =18
Finally ¢, J(X, W) can be decomposed in three different parts 7
J(X; W) =T (X W) + (X W) + JP(X; W),
1 v
where JY(X;W)gys = §<X>fr“ D, W55
1
T2 (X; Wgys = §(X)p/\W)‘g75 (6.1.6)
1
PXiWew = 5 (MaasrW s + Doy W55 + VoW, )

*If X is not a Killing or a conformal Killing vector field, J(X, W) is different from zero
even if W satisfies the homogeneous Bianchi equations.

SWe remark also that Jaap = O(J)ap — Adap + K €ap , Juzp = O(J)ap — Adap + K Eup,

Jave =€ve (*I(J)a +"L(J)a)

®See also Proposition 7.1.2 and equation 8.1.2b of [Ch-KI].

"To estimate £2(u, ) it is necessary to consider also the divergence of the second Lie
derivatives of the Weyl field, J(X,Y,W)gys = D*(LyLxW)apys. We will give their
explicit expressions later on.
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and

Xp, = D* Wi, (6.1.7)
(Ngos, = DPXi DIy % (9,905 = Dpagar)
It follows that the various factors (X, W), E(X, W), A(X,W),.... of 6.1.3
can also be decomposed in three parts, depending which part of J(X, W)
they are connected to.
All these null components of the Weyl current can be explicitely written
in terms of the null components of the Riemann tensor and of its first
derivatives, the null components of the traceless part of the deformation
tensors and their derivatives (X)p, (X)g which appear in the expressions of
JYX, W), J2(X, W), J3(X,W). Recalling the null decomposition of the de-
formation tensors, see 3.4.6,

igp = Tab J= T34
(X)ma = (X)'fr4a ; (X)ma = (X)ﬁ-?)a
Np = ®g,, . Dy = Oy,

the explicit expressions of the components of J(X, W) are 8,

(1]

(/1)

Qr [Mi; Ya| + Qr [Ym; a5] + Qe [Fm; oy

Qr [©m; yg] +Qr [V 8] + Qe [Vn; 8]

trx (Qr [Fm; o] + Qe [(V4,%); 8] + Qr [Om; (p,0)])
trx (Qr [Ym; o] + Qe [n; ) + 1o, (6.1.8)

+ o+ o+

0" = Qr[Mm; Ya| +Qr[Mn; a5] + Qr |V ]
+ Qr[Mi; v8] + Qr [Ym; g,] + Qr [F)m; g
+ Qr [(X)m; V(P,U)] +Qr [(X)j; (93703)] +Qr [(X)g; (94,04)]
+ trx (Qr [On; o] +Qr [Pm; g] + Qr (4, M) (p,0)]
+ Qr[Mm; p))

8See Proposition 8.1.4 of [Ch-KI]. Qr[; ] is a generic notation for any quadratic form
with coefficients which depend only on the induced metric and area form of S(u,u). We
note also that the terms which are boxed below are in fact vanishing; we include them to
emphasize the importance of the corresponding cancellations.
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X
e
++ + + 01+ + + + +

+ o+ o+ o+

+ o+ o+

o (| @@ise] |+ ar[®hsa] +Qr[¥m; g
Qr [(X)g; (p, J)D + Lo.t. (6.1.9)

Qr [%; v8] + Qr [ '5]+Qr{ 8]

Qr [Mm; W(p,0)| +Qr Y55 (03, 09)] + Qr [Vn; (o1, 04)
trx (Qr [©m; B]+Qr[ i, %); (p,0)] +Qr [m; 5])
X(Qr[ )i o] +Qr [Mm; B] +Qr [Vns (p,0)])
Lo.t (6.1.10)

Qe [55 wg] + Qr [ m'5]+Qr[ m; §,
Qr [(X)m Y(p, o) +Qr[ ; (3, 03)} +Qr[ n; (P4,04)]
Om; | +Qr [(, V%) (p,0)] + Qe [Vm; 8))

(995,%) 5 o +Qr [Fm; g] +Qr [Vn; (p,0)])
Lo.t. (6.1.11)

= Qr[(X)m;Wﬁ]—FQr[(Y) ﬁ]+Qr[ ﬁ4]

Qr [Mi5 W(p,0)] + Qr [Om; (p3,03)] + Qv [Om; (o1, 04)]
X
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+ o+ o+ o+

_l’_

=
S
|

+ + + + + + + +

+ + + o+
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Qr[(X ]+Qr[ m; ,64]+Qr[ m; ,63]
Qr [Mm; ¥, 0)] +Qr [ ;(4mﬂ+Q4“ : (p3,03)]
trx (Qc [Mn; 0] +Qr [Fm; 8] + Qr [(V5, Ni); (p,0)]
(X)m;ﬁ]) —l—trx( Qr[(X)i; a] +Qr [(X)j; a]
B

(X)m; } +Qr [(X)n; (p, J)D + Lo.t. (6.1.14)

= Qr[Mi; v8] + Qr [Ym; 64] + Qo [©)m; g]

Qr [Mm; Wip,0)] +Qr [V5; (pa,00)] +Qr [n; (p3,3)

trx (Qu [MIm; ] +Qr [(D1, %) (o, )]+Qr[ ¥
(Qr [(%95,%%5); o] +Qu [Fm; 8] + Qr [VIn; (p,0)])

Lo.t. (6.1.15)

[(Y Wﬁ]JrQr[ m; B4]+Qr[ m;ﬁ3]
Qe [Mm; Y(p,0)] +Qr [V5: (s 00)] +Qr [Vn; (p3,03)]
trx (Qr [(X)m'ﬁ]JrQr [(X' 4 (o, )} +QY[X)m;§D
x (Qr (D1 9%); o] + Qe [Vm; ] + Qr [Fn; (p,0)])
Lot (6.1.16)

= Q[¥m W]+Qr[X> Bs] + Qe [V 4]

Qr [(X } +Qr [(X m; (p4,04 ] +Qr [ m; (Pa,Ua)}
(@l (P oal vy

trx (Qr [ m; a] +Qr |( [ ] +Qr [(X) ; (s U)])
Lot. (6.1.17)

Remark: The terms which we denote by l.o.t. are cubic with respect to
(X%, W and the connection coefficients n,n,w,w, x, X and linear with regard
to each of them separetely. They are mamTfestly of lower order by compari-
son to all other terms both in regard to their asymptotic behavior along the
outgoing null hypersurfaces and to the order of differentiabilty relative to W.
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The null decomposition of J? is given by:
E(WY) = Q[Dpsa] +Qr [Vps; ]
0% = Qr[Mpg;a] +Qr[M; 8]+ Qr [Vps; (p,0)]
A% = Qe[ ] +Qr [Mpss (p,0)]
K(J%) = Qr[Mp; ]+ Qe [Fpy; (p,0)]
1% = Qu[®py; 6] +Qr[Vp: (p.0)] (6.1.18)
172 = Qr[Mpy; 8] +Qr [N; (p,0)]
K(J) = Qu[Y%; 8]+ Qe [Ypys (p,0)]
AT = Qe[ ]+ Qe [V (p,0)]
O(%) = Qr[¥ps;a] + Qe [Op; g] +Qr [Fpys (p,0)]
2(%) = Qr[Mp; o] + Qo [Fpy; B

(6.1.19)

+ Qg (1,D)(®g)]
+Qr [(p,0); (K, A)(Mg)| +Qr [8; 2(Vg)]
Qrla; 0(Mg)] +|  Qu[g; (1,1)(Wg)]
+Qr [(p,0); (K, A)(Mg)| + Qr [8; 2(Vg)]
Qr [o; 2(Mg)] +Qr[8; (K, 4,0)(Vg)]
+Qr (0N 0); (1,1) (V)| + Qr |85 (K, A, 0)(Vg)]

H Qrfa; B(Mg)]

Qrlo; 2(Xg)] | +Qr[8; (K,A,0)(Mg)]

(6.1.20)
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+Qr (0N 0); (1,1)(NMg)| + Qr [85 (K, 4,0)(Vg)]
[ 2(Mg)] (6.1.21)

K(J*) = Qrlo; 0|+ @r[; (1,0(Mg)]
+Qr [(p,0) 5 (K, 8)(g)] +Qr 85 2(Mg)|
AU = Qra; 0|+ Qr[8; (1,0)(Ng)]
+Qr [(p,0) 5 (K, A)(g)] +Qr 85 2(Vg)| (6.1.22)

o) = Qrfa; K(Mg)] +Qrla; AMg)| +|  Qrla; (V)]

+Qr [B5 (1L,D(Mg)] +Qr[(p.0); 6P|+ Qi[5 2(Ng)]
=2(J%) = Qr [a; (I,l)((X)q)} +Qr [5 (K, A, ©)(9 )] +Qr [(p’ o) ; E((X)q)}

The above expressions for the currents J2(X, W) and J*(X, W) depend on
the null components of (X)p and X)g. They are:

Xy = divEm —

—x - M- %trx(tr(x)i + (5 — %trx(x)n — (D31log Q)%)n

@Y+ D,%%) + 2 +n-¢) - Fm  (6.1.24)

N | =

¥y = gy~ 20, +D,0%G) + 20+ Om (6129

X5 — %trx(tr(X)i + X5y — ltrx(x)g — (D41og ©)%)n

_X 5
.1 1 1
Wp =7 Vi- o (0, m + Py m) — 2 (D 1og ) m— - (D3 log ) Vm
1 x). ) 3 3 1.
—%;2 - Xm (6.1.26)

The null components of X)g are, introducing the same notation used in
6.1.4, to denote the various null components,
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A(X)g) = i (Dg(X)n — 2(D3log )X — 4y . (X)m)
1 . 2
-3 (D4(X)J —27- (X)m) + g(X)p4
1 1
K((X)q)ab = 5 (Wa(X) - Wb(X)ma) + 5 (Ca(X)mb - Cb(X)ma)
1/, . . .
- 5 (Xac(X)lcb - Xbc(X)lca)
=Xy - lp @ log o, L o, 1 ()
':'( Q) = ¥ ma__W n——-n n——(D410gQ) m
a 2 2" @ 2-a 2
+ %trx(x)ma + )ZQC(X)mc (6.1.27)
1
(M), = ;P,%m W j - —(D4 log ) F)m,, + —try ™)
1 1 1 1 3
e (X) X — = ; (X)
+ 2Xac m. + tI‘X m, + 2Xac QQ Ieg + 9 ﬁa

.1 ,
O(Mg)y, = 2 <D4(X)1ab - §5abtr(ll>4(x)l)> - (VQ(X)mb + Wb(X)ma—(SabWC(X)mc)
) (ﬂa(X)mb—{—ﬂb(X) W0 abl, (X ) (Ca mb+§b(X)ma—5ach(X)mc)

+ tIlX(X)iab + )A(abtr( )1 + Xab( )1’1 + )A(ab(X)j

and the underlined quantities are obtained with the standard substitutions,

A(WMg) = i(D4<X>g—2(D4logﬂ)<X>g—4n -‘X@)—i(D3<X>j—2n-<x>m)+§<x>p3
K(WMq)y, = % (v, my - ¥, m, ) —% (¢Imy—¢,M)m,) —% (e Micr =, ica)
WMy, = %D?,(X)ma - %Wa(x)g— %na(x)_— % (D3 log 2)Mm, + %trx(x’ma X,
(), = 39,%m, = 37, = 3 (Dylog ) Fmy + iy P
boox, >mc+itrx< hm, 4 m, L0 Vi + 2, (6129
CIGRIE ( - ; Suptr(IDy (X>i)> ~ (V. my + v,%m, - 6, ¥, m,)
- ( mb+77b(X)_ —5ab77c( _) (Ca mb+Cb(X)ma—5ach(X)mc)
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6.1.1 Estimates for the T, S, K deformation tensors

In Chapter 4 we have proved the following results concerning the O norms,
see Theorems 4.2.1, 4.2.2, 4.2.3,

O + Oy < ¢(Ty + I, + Ay)

0[1] + Q[H <cZo+Zi + Ap+ Ay)

0[2] + Q[Q} <ce(Zo+Zi + Ao+ Ay + Ag)
O3+ O3 <c(Zop+Ti + Ap + Ay + Ay)

They justify, together with Theorem 3.7.4, assumptions 6.0.1, provided we
choose ¢(Zy + Z, + Ao + A1 + As) < €.

Based on these assumptions we state now a sequence of propositions con-
cerning the components of deformation tensors associated to T', S, K.

Proposition 6.1.1 Under the assumptions 6.0.1, the following estimates
hold, for any S C K with p € [2,4],

|T‘17%T_(T)i|p,5 < ceg

|7’1_§T,(T)j|p75 < cep

17277 (D, Om)|,.5 < ceo (6.1.29)
|7“27%(T)n|p,5 < ceg

2
[r "Dy < ceo

|7’27%T,Y7(T)i|p75 < ceg

172 YDy < ceo

P Y (Dm, Dm)|,.s < ceo (6.1.30)
|7“37%Y7(T)n|p,5 < ce

2
r*=rr Y Mal,s < ce

|’I“1_1’_2’TED3(T)i|p,5 < ce

|r171%TED3(T)j|p75 < cey

P25 Py (Dm, Dm)|,.s < cen (6.1.31)
P3P, Dnlys < ceg

|r175TED3(T)g|p,S < ceg
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|T2772’77D4(T)i|p,5 < ceo

|T2_%77D4(T)j|p,5 < céo

PP, (Dm, Dm),. s < ceo (6.1.32)
P, Vil < ceo

||T3_5D4(T)H|p,5 < ceo

Corollary 6.1.1 Under the previous assumptions the following inequalities
hold

(T
T

)i|oo,S < cep
|TT*( )j|oo,S < ceg
r2((Mm, Mm)| s < ceg
72T 5 < ceo (6.1.33)
|T7_7(T)Q|oo,5 < ceg
2
r° oD, 5 < ceo

_2
P72, D)5 < ceo

|r7—

Proposition 6.1.2 Assuming the results of Theorems 4.2.1, 4.2.2 the fol-
lowing estimates hold, for any S C IC, for p € [2,4],

mlp,s < c7-€o (6.1.34)

(6.1.35)
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1*— _
| lggr]Z)3 1p,s < ceo
1__
| lggr]DS J|p,S < ceg
r* p1p3 Jml, 5 < ceg (6.1.36)

' Py mly s < ceo

2
|7"_;TE]D3(S)H|:D,S < ceo

2-2 1 .
P gy Vilys < ceo

2-2 N
I lggr]D4 ilp,s < ceo
|7' p]p4 m|p,S <ecT € (6.1.37)

|T ?D4 m|p,5 < ce
r* v,y < o€
and, for p € [2,00],
2,_
[Pyl s < ceo
P51, n|, ¢ < cey (6.1.38)
2
Proof: We examine only the estimate of |r1_5(5)i|p,s to explain the loga-
rithmic factor present in its estimate, the other estimates follow immediately

from those relative to the connection coefficients. From the explicit expres-
sion of (S)i see 3.4.8,

1 1
gy = uXap + ux,, + 5ab( (utryx + utry) + (uw + uw) — 5)

one realizes that the part more delicate to control is % [(gtrx +utry) — %]
Using inequality 4.3.77,

% [g(trx + utry) — Q_l] = (20)7! [(Q

+ <Q (u Z %) (e + t@)]

(1 ; v (trx —trx) — 1)

< (20)7! [Q(gll;u)(trx —try) — 1} + 060%

The first term in the right hand side can be rewritten as

e e B ] e e e

o ()|
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and the two terms in the right hand side are estimated in the same way. Let
us consider the first one,

() = () (- aaw)

and we are left to control ‘% — r‘. From the results of Chapter 4, see

Lemma 4.1.8, we obtain ‘% — r‘ < ceplogr so that, finally,

(6.1.39)

N —

(utrx + utry) — —} < ceg

d. f . 1-2 (S)s
and, from it, |r » i|p,s < cep.

1
logr

Corollary 6.1.2 Under the previous assumptions the following inequalities

hold, for any S C K,
(s

S

|$ )i|oo,S < ce
|@; )j|oo,S < ceo
|25 m| 5 < cT_€
|T(S)m|oo,s < ceq (6.1.40)
|r2(s)n|oo,s <ecT_g
I7-n|o ¢ < ceo

Proposition 6.1.3 Assuming the results of Theorems 4.2.1, 4.2.2 the fol-
lowing estimates hold, for any S C K and p € [2,4],

_2‘ _ (6.1.41)
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|T3:§W -)m|”5 S erle (6.1.42)
e Y ml, 5 < ce

|7'3_% I_()n|p s < cTZe

|7“_p7_y7(f()n|ps < ¢ep

|’r__logr]p3 il,,s < ceg

|7’7 logrD J|pS < cep

|T pmg m|p5 < cr_¢€ (6.1.43)
I b7 P, E)m|, ¢ < ce

o2yl s < ereg

Ir lf_ﬁg‘r% ilps < ceg

I - _1§grlp4 ilp,s < ceo

[r? pID4 ‘m|, s < cr_eg (6.1.44)
|T pm4 m|p s < cep

|7” ”D4 n|p,5 < erle

and, for p € [2,00],
r 2__12)3 |, s <er e
r 2, ®nl, s < ceq (6.1.45)

Proof: Again, the more delicate Ky-deformation tensor’

estimate are, see 3.4.9,

components to

. N . 1 1 u—+u
(Ko)i p = u?Xap + UQXab + Eéab <§(g2trx +u’try) + (WPw + v’w) — Q )

u+u

1
(Ko)j = §(u2trx + ultry) + (v¥w + v’w) —

Looking at the expression of (Ko)j, the part more delicate to control is
: [(ftrx + ultry) — &(u —I—g)] Proceeding as in the case of (i, we es-
timate it, using inequality 4.3.77, and Lemma 4.1.8

1 1 1 1 1
E(ftrx + u2trx) - ﬁ(u +u) = 5 —(u? — u?)try + U 2(try + tryx) — ﬁ(u + u)

“Recall that we can use indifferently, here, Ko or K.
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1 1
= 5“2(“){ + trx) + (uw+u) E(g — u)try — 2} + O(ep)

— O(r) [L;“) ~ 2] + e [14 0(2r7%)] = & [O(1) + O(log7)]

All the remaining estimates follow easily from the corresponding estimates
of the connection coefficients.

Corollary 6.1.3 Under the previous assumptions the following inequalities
hold, for any S C IC,

|$(K)i|oo’s S Cep

1
|10gr7
r2Fm|s s < cr2e (6.1.46)

(K)j|oo,5' < ceg

B)m| o s < ceg
|r2([{)n|oo,5 <cr?e
I7_Fn| s < creg

Proposition 6.1.4 From the results of Proposition 6.1.1 and from the ex-
plicit expressions of Mpy, Tp, and Tp, we obtain, for p € [2,4], the fol-
lowing estimates, for any S C K,

1-2
|7 pTE(T)P3|p,S < ceo

|7"2_§7—_(T)p4|p,5 S () (6147)
P 2 7D, lp,s < ceo

Proposition 6.1.5 From the results of Proposition 6.1.1 and from the ex-
plicit expressions of Y Dpy, Y p, and YV p, we obtain, for p € [2,4], the
following estimates, for any S C IC,

_2
P2 YDyl < ceo
|7«3*;T_y7(T>p4|p,5 < ceg (6.1.48)

_2
|’)”3 pT*W(T)ﬁah’J:S S C€o

In addition to the estimates of Propositions 6.1.4, 6.1.5 we shall also need,
for the T' deformation tensors, the following proposition:
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Proposition 6.1.6 From the results of Proposition 6.1.1 and of Proposi-
tions 4.3.10 and 4.4.2 the following estimates hold

|——72 (T)P3||L2(cm<:) < ceg (6.1.49)
|——72 TW(T)pSHLQ(CﬁlC) < ceg

| —72 2S(T)p3||L2(C’ﬁKJ) < cep

Proof: From the explicit expression of (T)p3, see 6.1.24, it follows imme-

diately that its more delicate term is D3log (2, then one refers to Proposi-
tions 4.3.10 and 4.4.2.

Proposition 6.1.7 From the results of Proposition 6.1.2 and from the ez-
plicit expressions of (S)p3, (S)p4 and (S)[), we obtain, for p € [2,4], the fol-
lowing estimates, for any S C K,

-2 7= (9)
log r
-2 7= (9)
plogr Pa

_2
|’)”2 p(S)ﬁa|p:S S C€o

|7 P3lp,s < C€o

|r s < ceo (6.1.50)

The various components of (g and of (%)g satisfy the following estimates:

Proposition 6.1.8 From the results of Proposition 6.1.1 and from the ez-
plicit expressions of Dq we obtain, for p € [2,4], the following estimates,
for any S C K,

|r2 %T,A((T)q) ».s < e

27K (Mg)p,s < ceo

|T3755((T)q)|p75 S CEU 6 1 51
2-2 (T) ( st )

|r ;TJ( 9)|p,s < ceo

e O(Mg)p,s < ceo

P YK ((T)g) .5 < ceo
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and
|7« pTQA( Qlp,s < ceo
o K("g)lps < ceo
|T2_§T 2Nl < ceo (6.1.52)
|7« pT I( )|ps<060

|7’ PT G)( )|p5<660

[P~ YE(Da)l,s < ceo

Corollary 6.1.4 Using the Sobolev Lemma 4.1.3, the sup norms for K ((Tgq)
and K(Tq) are bounded

|r3K( )|005 < cegg
2K (Mg |05 < ceo (6.1.53)

Remark: Recall that the norms associated to the T' vector field with the
slowest asymptotic behaviour in r are

1-2 . . 1-2
|T pT*(T)l|p75v |T *(T)J|p75 ) |T pT*(T)n p,S

_2 . _2 . _2
|7"1 ”TED3(T)1|:D,S |r ' ”TQ]D (T)J|p,5a |7“1 p72m3(T)n|p,

_2
pTE(T)P3|p,Sa |7’ pT A( )|pS |7’ pT 9( )|pS

Ir!
Examining all these terms we observe that the slow decay of these quantities
originates from the behaviour of D3logQ or D2logQ on the last slice, see
subsection 3.5.5.

Proposition 6.1.9 From the results of Proposition 6.1.2 and from the ex-
plicit expressions of S)q we obtain, for p € [2,4], the following estimates,
for any S C K,

|r2 _kgrA((S) )p.s < ceo

3_2
|r pmé,«K( )|pS<C€0

IT3_5”( 9)lp,s < ceo

2 (6.1.54)
Ir? plog’rf((s) )lp,s < ceo
Ir2“1§g‘,®(< q)lp,s < ceo

72

| longK( ) )|p75 S (&)
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and

M

—_
|
3

|
=

=

((S)Q)|p,5 < cep
(%g)Ip,s < ceo

((S)C])|p,5 < cep
_2
» =—1()q)|p,s < ceg

L2 (%)
Ir g7 O(g)p,s < ceo

logr—=

3-2
"7 g VE(9g) |5 < ceo

5}
e
=

)
v
T Wl Wiw
i
(]
(o]
] =

&
I(x

(6.1.55)

EEE
[}

6.1.2 Estimates for the rotation deformation tensors

We recall the result proven in Chapter 4, section 4.6:

Corollary 4.7.1 In K, the following inequalities hold:
15 (0, (), Om),.s < ceq
25 y((0)4, 05, Om)|, 5 < ce
P25, (%, ©)5, Om)|, ¢ < ceo
Dy, ), Om), 5 < ceo

The first line for any p € [2,00] and the other ones for p € [2,4].
Moreover

(O O Oy — 0 |

? =

The following propositions provide the estimates for the various components
of (Op and (V). They are a consequence of the estimates for the connection
coefficients proven in Theorems 4.2.1, 4.2.2 and of Corollary 4.7.1.

Proposition 6.1.10 Assuming the results of Theorems 4.2.1, 4.2.2 and of
Corollary 4.7.1, the following estimates hold, for any p € [2,4], for any
SCK,

_2

! p7Dpylp,s < ceq
22

r° 2 (Opy, Op)|,, s < ceg

Proposition 6.1.11 Assuming the results of Theorems 4.2.1, 4.2.2 and of
Corollary 4.7.1, the following estimates hold

(6.1.56)

120 P3|l L2 (cwynviuw) < ceo

||20(O)]6||L2(Q(Q)QV(U&)) < ¢

1 N
||\/—T_+7"£O(O)p4||L2(C(u)ﬂV(U,u)) < 6o
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Proof: It is enough to observe that the more delicate term for £o(© )py is
WQ ) Z, and for LoO)p is Y7 )H ,;, and then use Proposition 4.7.2. The last
inequality is easier to obtain and we do not report it here.

Proposition 6.1.12 Under the same assumptions as in Proposition 6.1.11
the following estimates hold

supyc |r” pA( 9)lp.s < ceo
supge [r* ¥ K ((9)g) |, < ceq

supc 1275 1() )|,,S < ceo (6.1.57)
supyc [r>~70((©)g)],.5 < ceo
2(g) =0
and i
Supy |T171_J7'7A((0)q)|p’s < cep
2
supy |T2_5K((O)q) |p,5 < ceg
2
sup [ PE(Vg)|p,s < ceo (6.1.58)
_2
supy |1 Zl( )|p s < ceg
sup |r' 77 O((Qg)],. 5 < ceo
for p € [2,4].

Proposition 6.1.13 Under the same assumptions as in Proposition 6.1.11
the following estimates hold, the first with 6 > € > 0,

LBV |2y (uary < CU\/%EO
1£0(I({99), I(V9)|| 2(cu)nv ) < ceo
||20A((O)q)||L2 (@)V (') < C€0

||2OK((O)Q)||L2 )NV (uw)) < C€0

1200(9)lr2(cwrym tuary) < ceo (6.1.59)

Proof: For the first inequality it is enough to observe that the more delicate
term for LoE({%)q) is 1Y, Z and then use Proposition 4.7.2. An analogous
argument holds for the remaining inequalities.

Remark: Some of the most delicate error terms appear in connection to
the highest derivatives of the rotation deformation tensors ()z. Indeed, as
discussed in detail in section 4.6, unlike all other deformation tensors, the
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second derivatives of (O, and (97,3 involve the third derivatives of the
connection coefficients. This is the reason why it is crucial to show that
the Dy, norms depend only on the second derivatives '0 of the curvature
tensor and not on the third derivatives as it may first have appeared from
the structure equations. In the appendix to this chapter we recall precisely
where the third derivatives of the connection coefficients appear.

6.2 The error terms &;

In Chapter 3, subsection 3.3.4, we have introduced above ¥ a narrow region

5, called “initial layer region” endowed with a different foliation, the initial
layer foliation which fits appropriately with the initial hypersurface ¥y. The
hypersurface 2:50 is the upper boundary of ’Cfso- Moreover the Oscillation
Lemma shows that we can define an hypersurface f]go, see Corollary 77,
associated to the double null canonical foliation at a distance cey from Ego.
All the estimates done in this Chapter are relative to the double null canoni-
cal foliation and the “initial hypersurface” is, in this case, ) 5, e call simply
Yo in the sequel.

To complete the proof of Theorem M8 we have then to estimate Qig Ak In
0
terms of Qs nx. This is an immediate consequence of Theorem MO and the

Oscillation Lemma.

Remark: It is easy to realize that the @ factors appearing in the various

estimates of the deformation tensors relative to the S and K vector fields
appearing in Proposition 6.1.2, Corollary 6.1.2, Proposition 6.1.3, Corollary
6.1.3, Proposition 6.1.7 and Proposition 6.1.9 will not play any role in the
subsequent estimates and, therefore, will be hereafter disregarded.

6.2.1 Estimate of [;, DivQ(LrW )5 (KP, K7, K?)

This requires to estimate the following four integrals:

BlE/
Yt
BgE/

Vi

10See Proposition 4.7.2

S D(T,W)saa , By = T2 D(T, W)344
Viw,w

u,u)

274 D(T,W)334 , By = /V 70 D(T, W )333
(u,u)

u,u)
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From equations 6.1.3, to estimate B; we have to control the integrals:
N S a(LrW) - O(T, W)
Wiy TEBULTW) - E(T, W) (6.2.1)
to estimate By we have to control the integrals:
Py TET2P(LTW)A(T, W)
Wy TET2 O (L2 W) K (T, W)
Ny TET2B(LTW) - I(T, W) (6.2.2)
to estimate B3 we have to control the integrals:
gy TET P(LTW)A(T, W)
Py TiT 0 (LrW)E(T, W) (6.2.3)
Fy TET BULTW) - L(T, W)
to estimate B, we have to control the integrals:
vy TCULTW) - O(T, W)
Wy T BILTW) - E(T, W) (6.2.4)

We estimate in details the integrals appearing in Bj, those relative to the
other groups Bjy, B3, By have lower weights in 7, and, therefore, are easier
to treat.

Estimate of the B; integrals

From the decomposition J(X; W) = JY(X; W)+ J2(X; W) + J3(X; W), see
eq. 6.1.6, it follows

o, w) =M (T, W)+ (T,w)+ ¥ (T, W)

(T, W) =20 (1T, W)+ 2D (T, W) + 26 (T, W)

and we write the two B; integrals as sums of three terms:

3
/ B alLrW) - T, W) =Y / S (L W) - 00T, W)
Vi =1 Viw,w)

u,u)

/V( Tiﬁ(tTW)-E(T,W):Z/ 5 B(LrW) - 2D(T, W)

u,u) i=1 7 Vww
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Proposition 6.2.1 Under the assumptions 6.0.1 and 6.0.2 the following
inequalities hold

‘/ Sa(LrW) - O(T, W)‘ < ceoQx
Viw,w)

‘ /V o B(LrW) - E(T, W)‘ < ey Ok
(uw,u)

Proof: We discuss in detail the first integral, the estimate of the second
one is similar. Using the coarea formulas

u
/ F = du’ / F
V(uag) uo C’(u’)ﬁV(u,g)

/ F = _dg'/ F (6.2.5)
V(u,u) U Cu)NV (u,u)

and Schwartz inequality we write

‘ / 5 Ly W) - O(T, W)‘
Viw,w)

< c/ du’ </ g'6|a(2TW)|2>
g C(u5[ug,ul)

L 3 u . 2
<t {Z/u o (L(UI;[QO@DEGB(Z)(T’ W)|2> } (6:20

1
2

[SIE

( [ ue. W>|2)
C(u';3[ug,u])

1

where we used the definition of R given in Chapter 3 and the inequality
6.0.2. The various terms in the right hand side associated to the currents
JY, J%, J? are estimated separately ''. The result is obtained proving the
following

“The integrals depending on J' are estimated differently than those depending on
J?,J3. The reason is that O (T, W) and 2V (T, W), see 6.1.8,..,6.1.17, are quadratic
expressions depending linearly on the various components of the deformation tensor Mz
and on the zero and first derivatives of the null Riemann components. Therefore, in this
case, the components of the deformation tensor are estimated with their sup norms. On
the other side the terms @3 (T, W), 223 (T, W) associated to the J2, J* currents, see
6.1.18,..,6.1.23, are quadratic expressions depending linearly on the deformation tensor
(M% on its first derivatives and on the non derived null Riemann components. Therefore,
in this case, the first derivative of the deformation tensor are estimated in the |- |, s norms,
with p € [2,4], and the Riemann components with their sup norms.
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Lemma 6.2.1 Under the assumptions 6.0.1 and 6.0.2 the following inequal-
ities hold

N

L]
u'0 e T W 2) < cepQ?2
</C(u’;[uo,u}) OTEWIE) o M3

1
5 l 1
10T, W)|?] < ceQ? 6.2.7
</C(U’;[MO,QDQ OFETWI ) < ceo Mu' 2 (6.2.7)
16)0(3) 2 : ; 1
o®) (1T, W < 2
</C(u';[yo,ung o )|> S O

Proof: All the various terms composing the first integral of 6.2.7 are esti-
mated in the same way 2. We discuss the first term

161(T) s |2 2
u [ ml | V(W)
/C(u’;[yo,u})

Using Corollary 6.1.1 for m,

16 (1), |2 2
u” | m|* | Va(W)|
/C(u’;[yo,y})

IA

2
1 2(T) / 6 2
c— | sup |r*Y"/m 7, | Va(W
T (V(w)l | S 1 V(W)

2
| |
w7 ( sup ITQ(T’@) Qc < g5 -
w \V(u,u) u

VAN

To control the second integral of 6.2.7, recalling
D1, W) = Qr[Mpy; o] + Qr [Dp; 8] + Qr [Py (p,0)]
we have to estimate the integrals

5Dy |2 (W) |2
/C(u’;[yo,u}) " ’

5| D2 W) |2 (6.2.8)
/C(u’;[yo,u}) *

Lo a O Pl ) ()P
C(u'3lug,ul)

2in fact only the term depending on p produces the factor u'_%, all the other ones
behave better, as O(u'~?).
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The first one is the more delicate, as (T)p3 has the slowest asymptotic decay,
see 6.1.47,

1
R |
7_6|(T)p |2|a(W)|2> < (/
(L(U’;[go,g]) - ’ u? \ Jo(w;

1 7 u 1
< = 2| (W / — |72 Dp, 12
= W2 (S%PTHO‘( )|> ( ug 7_+|Tf P3lp=2,s

2

ITE(T)p3IQT$|a(W)I2>

Ug ag]

[NIES

1wy e ) 51
Z|T— P3lp=2,5 SCEOQK;W (6.2.9)

where we have used Proposition 6.1.6 to estimate (")p; and the estimate for
a(W) in 3.7.1, proved in subsection 5.1.6. The estimates of the remaining
integrals in 6.2.8 are easier and we do not report them here.

To control the third integral of 6.2.7, recalling, see 6.1.23, that
oM, w) = Qrla; K(Mg)] +Qr|a; AMg)] +ar[8; (1,1)(Mg)]
+Qr [(p,0); ©(Pg)]

we have to estimate the integrals:

[ (M), AP Pla(m)?

C(u';[ug,ul)

/ 8 1(1(Dq), L(Dqg)) P 18(W)? (6.2.10)
C(u';[ug,u])

[ e Pl(p, o) ()P

C(u';[ug,ul)

Again the worst asymptotic behaviour is due to (T)p3 which is present in the
explicit expression of A((")g), see 6.1.28. We write

2 ~
and observe that, for p € [2, 00], supy |r2_57_A((T)q) lp,s < ceg. Then, easily,

( Lo T$|(K<<T>q>,A(<T>q>>|2|a(w>|2) 2

7
2

< ci <sup |T+oz(W)|> <sup |r2_1_277,(K((T)q),A((T)qmp:Z 5)
U,2 K K 7

1
< cel Q3 (6.2.11)
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The remaining part fc fug.ul) T +| Dps|?|c(W)|? has already been estimated,
see 6.2.9. The estlmates of the second and third integrals are the same as
the first one and will be omitted.

The estimate of the second integral of Proposition 6.2.1 proceeds in a
similar way. We have, for the part associated to J',

‘ Tﬁﬁﬂﬁﬁ%ﬂww
(u u)

<o [ aw ks (/ g"*u'?w(zTW)F) (/ WS EOT, W>|>
w | \Jowiueu) O '3[ )

1

1 5
< Qi/ du' — / uBEW (T, W 6.2.12
<cop o ( [y CEV@ P (6.2.12)

1
where the first factor in the integrand is bounded by Qj, according to 6.0.2
and the definition of R. For the integrals associated to J?, J3 we proceed in
a different way, using the second coarea formula in 6.2.5.

M
M

u % 3 2
< c/_dgl (/ QIB|B(2TW)|2> ( / g’6|E(i) (T, W)|2>
Y C(u';[uo,u]) ; C(u';[wo,u])

where, again, the first factor in the integrand has been bounded by Q,%C. The
various terms in the right hand side of 6.2.12 and 6.2.13, associated to the
currents J!, J2, J3, are estimated separately. The result is formulated in the
next lemma,

Lemma 6.2.2 Under the assumptions 6.0.1 and 6.0.2 the following inequal-

ities hold
( Lo P EO@w) )
C(u';[ug,u)

1
(/ u°|EPN(T, W) ) <ceQi—  (6.2.14)
C(w';[ug,ul) |u’| 2

M

M
-
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M

Lo
uSIEB) (T, W > < cepQ2
</Q<w;[uo, D =Wl PR

with 1 <y < 2.
Proof: All the various terms appearing in the decomposition of 20, see eq.

6.1.13, produce the same |u/| ! dependance. Let us consider, among them,
the following one

/ ' (Dmf?| g3 (W) P
Cu'3lug,u])

We proceed as in Lemma 6.2.1, using the Corollary 6.1.1 for (")m and 6.0.2,

Lo OmPln P < (swl?OmP) [
C(u';[ug,ul) K C(u';[ug,ul)

1 2T 12 2 1
< CW (Sl]ép|’r’ ( )m| > o < CGOQKJW (6.2.15)

To estimate the second integral of 6.2.14, we recall, see 6.1.18,
EO(T,W) = Qr s o] + Qe [Vpas 8]

we are led to examine the integrals
A L AT
C(u/3[uo,u])
Lo O Plaom)? (6:2.16)
C(u3[uo,u)
The first integral is estimated as follows, with the help of Proposition 6.1.4,
Lo WPl < (sup| FaP) [ e T
C(u';[uo,u]) Q(U’ [uo,u]) U
1
< CQ}CE <sup|r PT [§|p 25) / du —5 < ceOQK; e (6.2.17)

The Second integral in 6. 2 16 is estimates exactly as the prev10us one substi-

tuting |T+a( )| with |T+ﬁ( )| and |r*~ P (T)pl,.s with [~ r_ Dpylp,s-
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To estimate the third integral of 6.2.14, as, see 6.1.23,
=A@, W) = Qr [as (1,D)(NMg)| +Qr [8; (K, A4,0)(Vg)]
+Qr [(p,0); 2(Fg)]

we have to control the following integrals:

Loy 2 (0 LD) Plaw)
m K(Mg), A(Mg),0(Mg)) PIBW)*  (6.2.18)

T E(M)Pl(p, o) (W)?

e
J

C(u';[uo,ul)

For the first integral we observe that the |- |, ¢ norms with which we bound
I(Mgq) and I(Mg) are the same as those used to control (p, or (M, see
6.1.51, 6.1.52. Therefore we proceed as in 6.2.17.

Similarily the second integral can be bounded in the same way as the integral
fV(u v 78| Tp,|2|B(W) |2, see 6.2.16.

The third integral is controlled using the estimate of Z({(")q) in Proposi-
tion 6.1.8. We obtain, for any v < %,

Lo )P0 )P

C(u/5[uo,ul)

< [sup|r? ,0W2>/ T T (T)CI2
(swp o)) [ gl =()

1 3_2,_ 1
< cﬂl27 <Sllép|7“ p':( )|p 25) QKZ/ du < CG()QIC o

Estimate of the B, integrals

The integrals in the Bs group, see eq. 6.2.2, while similar to those we have
analysed in the previous subsections, have a lower 7, weight and, therefore,
are a little simpler. We shortly indicate how they are estimated. However
we shall only analyze the integrals related to J?, J3, which we have shown
in the previous discussion to be more delicate. Their estimates are collected
in the following propositions,
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Proposition 6.2.2 Under the assumptions 6.0.1 and 6.0.2 the following
inequalities hold

v 7'+T P(['TW)A(Q) (T, W) < cepQx
(u,u)

/ T2 (LeW)K (T, W) < cegQxc (6.2.19)
Y

u,u)

/V T+7' B(ETW) 1 )(T, W) < cepQx
(

u,u)

Proposition 6.2.3 Under the assumptions 6.0.1 and 6.0.2 the following
inequalities hold

/ T+7' 2p(LrW)ABH (T, W) < ceyQxc
Vi

u,u)

/ 420 (LrW)K® (T, W) < cegQx (6.2.20)
Y

u,u)

/ P2 BLrW) - IO(T, W) < ceoQc
Vi

u,u)

Proof of Proposition 6.2.2 The first and the second integrals of 6.2.19
have the same structure, see 6.1.18, therefore we estimate only the first one.
This decomposes in, see 6.1.18,

[ i) pp)

Viw,w)

/V T2 p(Lr W) Dpy(p, o) (W) (6.2.21)
(

w,u)

We estimate the first one as follows

A2 (LW (T W(W)\Sc [ el W)l W)
(

‘ (uu) uu)u2

i 1
z Zoredu el g 2 2
< c(suplril) <sup / mﬂprWM) L5 (i Dtas)
K K JC(u'5[uo,u]) up u'2 \Juo

1
s 5 du' [ [ du'\?
< c(sup|r2 ZTJT)]”|§=2,S>2 (sup|7+5|> Ql/ fg (/ u%) < ceyQx (6.2.22)
K u uo

Uy U 2

The estimate of the second integral in 6.2.21 is done exactly in the same
way and we do not report here.
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o T2 BLrW)(Dpg) BW).

The most sensitive term in the third integral of 6.2.19 is '3 of [,
We obtain -
[ e Oy
Viw,w)

. |
gc/dg'/ 173 B(Lr W) —
C(w'5[uo,ul) T42
d u 2 3
4 (/ du'|r! ;TZ(T)p3|1272,S>2
uo

3 615(7 2
< 2 W
S C<Sllép|7+5( )|> (S%P/C( ' fuo) T |B(LTW))| ) /u’%
W |> (oK /—d% (/u du'>E < cep O (6.2.23)

1
S0<Sup|7“ w2<T>p3|§2,s) (supvm )
K K U 2

Proof of Proposition 6.2.3: The first and the second integral of 6.2.20 are
similar as p and ¢ behave in the same way and A®) (T, W) and K®) (T, W)
have the same structure, see 6.1.22. Therefore it is enough to estimate the

first one. This amounts to control the three integrals

7
|72 Dy |72 B(W)]

/ T2 p(LrW)O(Mg)a(W)
i

u,u)
[ rireew) (K (. A(T0) ()W) (6:2:24)
(u,u)
[ A eEwz(asw)
(u,u)
The first integral is estimated in the following way
[ e ezmeaa)
Viu,u)
1 7
<o [ et p(lw) =l e(glria(w)
Yo C(w;5[uosu]) T_T_'z_
1
2 z Lore du! udu 2
<c(suplri-ir2e )(s z>92/;(/—>
<e(suirt P2 ;s) " (swirdal) of [ ([0
(6.2.25)

< cepQx

The norm estimates of K((T)q), A((T)q) are at least as good as that of (Dp,,
see 6.1.51. Therefore the second integral in 6.2.24 is estimated as the second

13The other integral appearing in its decomposition, see 6.1.18, is easier to treat
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integral of 6.2.21, in the previous proposition. The estimate of the third
integral proceeds as the previous one.

The estimate of the third integral of Proposition 6.2.3 does not differ from
the previous ones and we do not report it here.

Estimate of the B3, B; integrals

We recall the expressions of Bj integrals:

S T2 (LT W)A(T, W)

fv(u&) T_%_Tfa(Z',T VE(T, W)

Py TATEB(LTW) - L(T, W)

and those of the B4 ones:

The estimates of the various terms in which these integrals decompose are
similar but easier than those for the integrals of groups By and Bj, respec-
tively. They are obtained with the obvious substitutions of the underlined
quantities with the non underlined ones and viceversa.

The greater simplicity is due to the fact that, now, 7, although smaller
than 71, plays an analogous role on the C null hypersurfaces. Moreover
the factor D3 log Q2 with the slowest decay is now substituted by the better
behaving factor Dylog 2. Therefore we just collect the final results in the
next proposition.

Proposition 6.2.4 Under the assumptions 6.0.1 and 6.0.2 the following
inequalities hold

/ 25t p(LeW)A(T, W) < cegQxc
Vi

u,u)

T+T J(ETW) (T, W) < cegQx

-

Viw,w)

/ 274 B(LrW) - L(T, W) < ceoQx

| alw) e W) < cx
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/V TS B(LTW) - E(T, W) < ceoQxc
(

u,u)

6.2.2 Estimate of [, 1Q(LrW ) s (P KV K.
Proposition 6.2.5 Under the assumptions 6.0.1 and 6.0.2 the following

nequalities hold

/ QLW ) aps(FI P KTRP)| < cenQxc (6.2.26)
v

u,u)
Proof We write the explicit expression of the integrand
Or 0 QLrW )as s KK’ =
(K) rof {Q(ETW)aﬁMTi +2Q(LrW )apazTiT? + Q(zTW)am?,Tf}

where, see 3.4.9,

R)WaﬂQ(ZTW)aﬁMTi =

St {22 W) PFn 4oL W) + o (L)) En + 62w P

— 8a(LyW) - B(LrW) - Bom — 8p(LrW)B(LrW) - Klm
+ 8a(LrW)*B(LrW) - Fm + 8(|8(LrW)|?)tr(E
w

+ 8p(Lr W)Ly W) - BN — 8o(ZrW)* ([,TW)-(I_()i}

(6.2.27)

K)WaﬂQ(ZTW)aﬁmTiTZ =

1 \ % A \ 2)e
T B W) PFn + 4B (LW ) P+ 4l p(Lr W) + o (L)) X5

— Ap(LyW)B(LrW) - ( m+4a( W)*B(L
+ 4p(LeW)B(LrW) - Fm + 4o (LrW)* B

+ 2(|p(LrW) 2 + o (LeW)[2)tr B — 2(B(LrW)RB(LrW)) - B }

K) ﬂ_aﬂQ(ZTW)aﬂ?)?)TLl =

16 7{ (p(LrW)[? + o (LrW)|?) B + 2|a(LrW) 2 Fn + 4]8(LrW) 2B
+ 8(a(LrW) - Q(ETW)) (F)m — 8P(2TW)§(Z,TW) L
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— 8o (LrW)* B(LrW) - (K)m + 8(|§(ZTW)|2)tr(K)i (6.2.29)
+ 8p(LrW)a(LrW) - Fi 1 8 (LW ) e LeW) - BN }

All factors have the same structure. They are cubic terms, quadratic in
the null components of £7W and linear in the deformation tensor of K.
Therefore they are all estimated in the same way. Let us discuss explicitely
the integral relative to the term ler(K)g|a(ﬁTW)|2 and the one relative to
the term le_(K)n|p(ﬁTW)|2, see 6.2.27. For the first integral we obtain, using
Corollary 6.1.3,

[

(u,u)

A = u R 1 B
7oL W) M| < c/ du! /C( gy TPl
uo U3 Ug U

_ R u
<c (sup |T—_(K)g|> (Sup/ T_?_|04(£TW)|2> du'i,
T K JC(u';[ug,u]) ug ru

The estimate of the second integral proceeds exactly as before:

[

(uw,u) U’;[QO,QD

-
<c|sup |T—2(R)n| sup/ 274 p(LrW)|? /u du'i
-k k Jewsiua) T w U’

< cepQxk

_ R U 1
Ol @rw <c [l g [
uo

6.2.3 Estimate of [;, |DivQ(LoW ) gys(KPK1TY)]

We have to control the following integrals, see 6.1.1, 6.1.2, 6.1.3,

/

DO, W)as / 74 D(0, W)344

u,u) V(u,&)
/ TiTED(O, W)3aa / T_%_TED(O, Wsss  (6.2.30)
Viw,w) Viww)

Jo

The most sensitive terms are clearly the first two integrals containing the
weight ler. We estimate explicitely the first integral in the first line of 6.2.30,

TED(O,W)334 , /V TED(O,W)333
(uw,u)

u,u)
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whose explicit expression is

1 N
/V DO W) = - rta(LoW) - ©(0,W)
(

u,u) 2 Viw,w

- /V HB(LoW) -Z(0,W)  (6.2.31)
(

u,u)

Proposition 6.2.6 Under the assumptions 6.0.1 and 6.0.2 the following
nequalities hold

‘ A a(LoW) - 0(0, W)‘ < O
Viw,u)

‘ T+,6 [,oW) E(O,W)‘ < cepQx
Viw,u)

where 6(07 W) = E?:l @(Jl(O’ W))7 E(Oa W) = Z?:l E(‘]Z(Oa W))

Proof: Proceeding as in Subsection 6.2.1 we write

‘ A a(LoW) - 6(0, W)‘
(u u)

1
< (Sup/ g'4|a(ﬁoW)|2> / du’ (/ g'4|®(O,W)|2>
K C(u’§[207@]) uo C(u’§[207@])

1 ru . 2
< chC/ du' > (/C( . Dg'4|®(’)(O,W)|2> (6.2.32)
uo : u'5[ug,u

<(sw [ wteeowp) [far([ o)
K C(“'?[@o 7@]) uo C(“'?[@o 7@])

1
1 fru . 2
< cQ,‘é/ du’ " (/ g’4|El(O,W)|2> (6.2.33)
u ; C(u'5[ug,ul)

The result is obtained proving the next lemma.
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Lemma 6.2.3 Under the assumptions 6.0.1 and 6.0.2 the following inequal-
ities hold

M

11
( ’4|® (¢ W)|2> <060Q?c|u,|2
o 1
2 1
(/ u*10?(0, W)|2> < ceo QF 13 (6.2.34)
C(u a[_oau |U,|2
J1e® 2 : ;3 1
o®,w < ceg Q2
</c w10 )|> RV
(/ =) W)|2>% < ceyQf —
C(u;[ug,ul) ’ o ’C|UI|2
1
2 1
/ EDO, W] < ceQi—r  (6.2.35)
C(u';[ug,u)) |'u,’|2

L1
/ WEG (O, W)2) < Qi —
C(u';[ug,u)) |'u,’|2

Proof: We start estimating the integral in the first line, connected to the
J' of the current. From Corollary 4.7.1 and 6.1.14, we have

21

eMO,w)P? < c(s%plr((o)i,(o)j,(o)m)o 5 [(17al +lasP + 78
1

HBE + o100 ) + 5 (18 + () + )| + (o)

Therefore

1
3
(/ w110M(0, W)|2> <o (Sup ‘r((o)i, ©), (O)Q)D .
C(u/3[ug,ul]) K

07u p

[o]
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1
2

(sup/c( [ ])Q(ﬁoW)(K,K,T,ea)> + sup Ir3(ﬁ,6)|]
uw';[uo,u

K KNo

1 . (O). 1 A |
< ¢z (Sllép|7“((o)1, (O)J,(O)m)|> QZ < CEOQ%W (6.2.36)

where we used the results of Proposition 5.1.3. The fourth integral of
Lemma 6.2.3 is estimated recalling that ', see 6.1.13,

2
EOW < e (suplr(©4, @, O] )
K
1
{I%zl2 + Joul® + |Bal? + 70—2(|oz|2 + |ﬁ|2)} + (Lo.t)

We obtain

1
2
( / u'4|51(0,w>|2) < (sup (5,5, ) ) -
C(u';3[ug,ul) K

1 [ /
|U'| C(u'y]

The estimates of these terms proceed as in the previous case, using the
results of Proposition 5.1.3.

We estimate the J? part only for the © integral in the second line of 6.2.34,
as the estimate for the corresponding = integral in the second line of 6.2.35,
is done in the same way. Recalling the decomposition, see 6.1.18,

1
1 2
Dg"l <|Y7Oé|2 + |as|* + B4l + ﬁ(|0‘|2 + |ﬁ|2)>]

Ug,U

0@(0,W) = Qr[Pps; o] + Qr [ Op; 8] +Qr [Vpy; (p,0)]

we write

1
( / u*0@ (0, W)|2> < (6.2.37)
C(u';[ug,ul)

2

c (/ u (| DpsPla(W) P + [ DpPIB0) + [ pal*|(p, 0)(W)|2)>
C(u'5[ug,u])

To estimate these integrals we have to control the |- |, s norms of (O)p, (O)p
and (O)p4. Using the estimates of Proposition 6.1.10, for any p € [2,4], we

'41n the following estimates we sistematically neglect the (L.o.t) terms.
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obtain

M

1
2
§C<51’ép|7—+a )(/ du/ u3 /2|T p (O)p3|127=2,5>
1
< e(sup ! H Oy as ) (suplrfam))) o ([ )
c| sup|r sup |77 « — U —=
= Kp p3 p= 2 S ]Cp —+ |U,| u =3 2,3

(6.2.38)

The other integrals in 6.2.37 are estimated in the same way and we do not
discuss them here

The part associated to the J> current in the third line of 6.2.34 is estimated
starting from the decomposition, see 6.1.23,

0O, w) = Qrla; K(V9]+Qr[a; AV)] +Qr [8: (1,0( V)]
+Qr [(p,0); ©( V)]

obtaining the inequality

1
( / u'4|e<3>(o,w>|2> < ( Lo K@ law)P
C(u';[ug,ul) C(u';[ug,ul)

A V) Pla(W)P| + (1, )(Dg) P |s(W )|2+|®((O)Q)I2l(p,0)(W)l2))

[SIE

To estimate these integrals we use the norm estimates of Proposition 6.1.12
for K((9g), A((Qq), (I,1)(\Vg), ©((%g), for p € [2,4], we recall here

92
sup 75 (1(Vg), I( V)5 < eco . suplr® 7OVl < e
sup|r P A( )|p5<660 , Sup|7’ PK( )|p5<660
K K
The estlmates of all the integrals can be done in the same way, but the factor

|u'|~ 3 is due to the part depending on p, while the other ones produce the
better factor |u’| 2. We just report this term,

([ 10C0EE
C(u'3[ug,ul)
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1
2

<c (s;éplr?’P(W)I) ( 5 du E'T%;@( q)l;- 25>

1
_2 v 1)\2
< (suplr* O g)|p-as) (sup|r3p(w>|)( du’—,4> <@l
K K U u

6.2.4 Estimate of [, 1Q(LoW ) apys (K8 K1T0)]

2

Proposition 6.2.7 Under the assumptions 6.0.1 and 6.0.2 the following
nequalities hold

/ QLW )ass (R RITO)| < ceyQxc (6.2.39)
v

u,u)

Proof: We write explicitely the various terms of the integrand

B B Q(LOW )aprs KIT? = (F)gof {Q(EOW)aﬁMTJZF + Q(LOW ) apazT?
+ Q(LOW ) ap3at? + Q(Z'OW)aﬁ?BTE}

(%) V7B Q(LOW )apua? =

2 {20l LoW) P+ 4(o(LoW) +1o(LoW)P) En + (L)
8(a(LoW) - B(LoW)) - Fm — 8p(LoW)B(LoW) - FIm

+80(LoW)'B(LoW) - Flm +8(|B(LoW)|?)tr i

+ 8p(LoW)a(LoW) - B — 85 (LoW ) a(LoW) - K >} (6.2.40)

I_()WaﬂQ(Z'OW)a,BALST_% =
fﬁu {41B(LoW) 2 Fn + 4|B(LoW) [2Fn + 4(|o(LoW)[? + o (LoW)[) K
— 4p(LoW)B(LoW) - Mm + do(LoW)B(Lo ) "m

+ 4p(LoW)B(LoW) - Bm + 4o (LoW)*

B(Lo
+ 2(|p(LoW) 2 + o (LoW)P)tr P — 2(8(LoW )B(ﬁoW))-(f()i} (6.2.41)

K)TraﬂQ(Z,oW)aggﬂg =
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o7 {AIBLoW) P Fn + 418(LoW) P n + 4(|p(LoW) P + o (LoW)[*)
— dp(LoW)B(LoW) - Fm + do(LoW W) - ©m
+4p(LoW)B

( ' )'B(Lo '
(LoW) - TIm + 40(LoW)*B(LoW) - F)Im
+ 2(|p(LoW)|? + o (LoW) P)tri — 2(B(LoW)SB(LoW)) - (R)i} (6.2.42)

BV nBQ(LoW )apsa? =

116 _{ (p(LoW)|? + o(LoW) 1)) Fn + 2|a(Lo
+ 8((LoW) - B(LoW)) - Flm — 8p(LoW)B(LoW) - F)m

— 80 (LoW)B(LoW) - Flm + 8(|8(LoW)|)tr P

+ 8p(LoW)a(LoW) - B+ 80(LoW ) a(LoW) - Fi} (6.2.43)

W) Fn 4 4|8(Low) 2B

All the integrals appearing in the decomposition of 6.2.39 can be treated
in the same way. We discuss explicitely the integral associated to the term
L2 |a(LoW) 2 F)n, see 6.2.40.

| rHaltow)Pal < [

(w,u) w

<c (sup|7_r_1(K)g|> (sup/ mHe(LoW)| > (/ du' —) < cenQx
K K JCW5[ugul)

6.2.5 Estimate of [;; 1Q(LoW ) aps (M KTK?)]

u N _
o / L a(Zow) 2| =By
o ey T r

Proposition 6.2.8 Under the assumptions 6.0.1 and 6.0.2 the following
inequalities hold °

/ QLW )agys (N1 KTE®)| < ceoQc (6.2.44)
v

w,u)
Proof: We write explicitely the various terms of
T)WaﬁQ(zoW)a/375K7K5 =

(T) B {Q(ﬁoW)amﬂi +2Q(LoW ) apasiT2 + Q(Z'foW)aman} :

1590k can be replaced by Q; + Q..
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T)WaﬁQ(Z'OW)aﬁélélTi =

116T+ {2|04(£ W)+ 4(|p(LoW) | + |0 (LoW)[2) P + |B(LoW ) 2T
— 8(a(LoW) - B(LoW)) - Dm — 8p(LoW)B(LoW) - T'm

+ 80 (LoW)B(LoW) - Dm + 8(|8(LoW)[*)trDi

+ 8p(LoW)a(LoW) - Di — 8a(LoW ) a(LoW) - (T >} (6.2.45)
T)WaBQ(z()W)aﬁzﬁgTiTz =

1167+T {4Iﬁ(£oW)l2 n + 4|8(LoW)[*Tn + 4(|p(LoW)* + o (LoW)|*) ™
— 4p(LoW)B(LoW) - Pm + 4o (LoW)B(LoW) - Pm

+ 4p(LoW)B(LoW) - Thm + 40 (LoW)*B(LoW) - Pm

+ 2(p(LoW)I* + o (LoW))iri = 2(8(LoW)@B(LoW)) - i} (6.2:46)

Db QLW )apzstt =

To {4 LW + o (LoW)P) P n +2la(Lo
(_(LOW)-ﬁ(ﬁoW»-( ‘m — 8p(LoW)B(LoW) - Pm
—8o—(£oW> BLoW) - Tm +8(1B(LoW)|)tr™Ti

+ 8p(LoW)a(LoW) - Ti + 85 (LoW )'a(LoW) - U} (6.2.47)

W) T+ 4|(Low )P

We use the estimates of Proposition 6.1.1 for the deformation tensor (f)w,
observe that all the integrals composing fv |Q([,0W)a575(( )8 KK

are estimated in same way and that the estlmates are exactly of the same
type as those for fV(u » |Q(£OW)aﬂ75(( ) @B K7T9), therefore we do not

report them here.

6.3 The error terms &,

The remarks at the beginning of section 6.2 applies also to the estimates of
E>(u,u) and we do not repeat them here.
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&s(u,u) collects the error terms associated to the integrals of Q; and Q,,

) = [ DR s (KK + [ DinQUEoL W )ns (KKK
+ /V(uu)|DiUQ(Z:sZ:TW)575(I_(5_f(7]—(5)|+ V(uu)|Q(2?)W)a,876((f()7faﬁf(7T5)|
+ % VM)IQ(E?)W)am((T)Waﬂf(vké)l+g V(u,i)|Q(Z‘,OﬁTW)a676((I_()ﬂ_aﬁl—{yl—{g)|
+ g V(w)|Q(252TW)a,375((f()waﬂf(”]—(%|

Decomposing these integrals as we have done before leads to a very large
number of terms. Nevertheless it is easy to see, with the experience accu-
mulated in the previous sections, how to estimate all of them.

Remark: As far as asymptotic behaviour is concerned most terms can be
treated as the corresponding ones in the previous section. The main new
complication arising here is that of the presence of higher order derivatives.
In particularit is for the reason of controlling the second order derivatives
of (O that we had to work hard to ensure that they can be estimated in
terms of only two derivatives of the curvature, rather than three derivatives
which seem needed at first analysis. To stress this fact we shall concentrate
here mainly on the terms involving the highest derivatives.

We start controlling the integrals

. 2 =g =
| IDRQUESW ) (KPR
(

u,u)

~92 ) B o
/V QLW ) agrs((F)mP BT
(

wu)
~2 0B Sy D
[ IREW)aps (D RR)]
(

u,u)

They are needed to prove the boundedness of

| QW) (KK Teea) [ QWK K T,es)
c ¢
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6.3.1 Estimate of [, _ [DivQ(LoW)ss(KPK7T7)

By a straightforward calculation '6

X ~2
DivQ(LoW)gys = (LoW)Ls T(0,0;W ) + (LoW) J21 T(0, 0;W) s,
+ ([’OW)ﬁ ) J(0,0,W) uyv + (‘COW)ﬂuyVJ(OaO;W) nov

where 17

J(O,O;W):JO(O,O;W)Jr% (Jl(o,o;W)+J2(0,0;W)+J3(0,0;W)) (6.3.1)

and
JUO,0;W) = LoJ(O; W)
JHO,0;W) = JHO; LoW)
J(0,0;W) = J*(O; LoW) (6.3.2)
J30,0;W) = J2(0; LoW)
Recalling the equation, see 6.1.1,
. 52 _ 1
DivQ(LoW)(K,K,T) = gfi( (O, 0;W)agq + D(0,0; W)344)
1
+ ZT+T ( (O O W)344 +D(O O W)334)

1
+ 3 72(D(0,0;W)334 + D(0,0; W)333)

where, see 6.1.3,

D(O,0;W)aas = Aa(LoW)-0(0,0;W) — 8B(LLW) - E(0,0; W)

D(0,0: W)z = Sp(LoyW)A(O,0; W) + 8o (Lo W)K(0,0; W)
+8B(£20W) 1(0,0; W)

D(0,0;W)zss = 8p(LoW)A(O,0; W) — 8o (LoW)K (0, 0; W) (6.3.3)
—SB(EOW) I1(0,0; W)

D(0,0;W)sss = 4a(LoW) - 0(0,0;W) + 88(Lo W) - E(0,0; W)

6see [Ch-K]1], Propositions 7.1.1, 7.1.2.
17See also [Ch-KI], equation (8.1.2d).
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The terms ©(0,0; W), ... .. , 2(0,0; W) '® have the following structure:
1
X(0,0:W) = X°(0,0;W) + 3 (Xl(o, O; W) + X2(0,0; W) + X3(0, 0; W))

and the upper indices 0,1,2,3 refer to the various parts of the current
J(O,0; W), see 6.3.2. Therefore

XY0,0;W) = X0, LoW) (6.3.4)
and
X°(0,0;W) = % [LoX (O;W) + LoX*(O;W) + LoX*(O; W)] + Lo,
(6.3.5)

We have to control the integrals

Jo
Ji

The more sensitive terms are the first two containing the highest weight in
T4+. We look at the estimate of the first one. the second one is potentially
more dangerous '°

TD(0,0; W )aus , /V TD(0,0; W )443
(u,u)

u,u)

T_%_TED(0,0;W);),M ) /V TED(0,0;W)333 (6.3.6)
(u,n)

u,u)

1 N
/ TID(0,0;W)sas = 3 Tj‘;a([,?)W) -0(0,0; W)
i Vi, u)

u,u)

~92 _

- [ rteEew)-=0,0:w)
Viw,u)

the other terms are simpler and can be treated similarly. The two integrals

on the right hand side are estimated proving the next proposition, analogous

to Proposition 6.2.6,

Proposition 6.3.1 Under the assumptions 6.0.1 and 6.0.2 the following
inequalities hold

‘/V Tj‘_oz(ﬁQOW)-@(O,O;W)‘ < ceoOx
(u,u)

\ [ rteow) 0.0 W)\ < cey O

(uw,u)

'8They are the null components of J(O, O; W).
19Both terms have the same weight, but D(O, O; W)aas3 has lower signature, see 3.1.23.
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Proof: We start looking at the first integral; equation 6.3.4 implies that the
terms in the integrand associated to J'(O,0; W), J2(0,0; W), J3(0,0; W)
are estimated exactly as the corresponding term of Proposition 6.2.6, sub-
stituting W with LoW and observmg that, in the estlmates analogous to

those of Lemma 6.2.3, Q1 and Q1 are replaced by Q2 and Q2

We have still to control

/ (Lo W) - 0%(0,0;W) .
v

u,u)

For this integral we have to estimate
0%0,0; W) = % [2061(0; W) + LoO*(O; W) + LoO3(0; W)] +l.o.t.

The more delicate parts, for the regularity, are those associated to Lo©? (O; W)
and Lo©3(O; W); therefore we start considering

/V rta(LoW) - Lo® (0;W) (6.3.7)
(

u,u)

Recalling the expression of ©2(0; W), see 6.1.18,
O%(0;W) = Qr [©hpy; o] + Qr [©@p; 8] + Qr [©hpy; (p,0)]
it follows that £Lo©%(O; W) has the following expression
Lo®X(O;W) = Qr [Lopy; a(W)] + Qr [Lo©@p; BW)] +Qr [£0Pps; (p,0)]
+Qr [Opy; Loa(W)] +Qr [©p; LoBW)] +Qr [Opys Lo(p,0)] (6.3.8)

Recalling the remark after Proposition 6.1.13 and the discussion in the ap-
pendix to this Chapter, the dependence on the third derivatives of the con-
nection coefficients appears in Z',O(O)p3 and Z',O(O);b 20 Therefore we concen-
trate our attention to

Qr Loy s a(W)] +Qr [LoVp; BW)]
and check that the corresponding integrals in 6.3.7
~92 N
| rtaowiar [£op; pw)
(

w,u)
~92 N
/V L LoW)Qr [LoPDpy s a(W))] (6.3.9)
(w,u)

verify,

20From the discussion in the appendix to this Chapter, see subsection 6.4.1, it follows
that Eo(o)p4 does not depend on the third derivatives of connection coefficients.
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Lemma 6.3.1 Under the assumptions 6.0.1 and 6.0.2 the following inequal-
ities hold,

/
J,

We postpone the proof of this lemma, to subsection 6.3.2.

%
rialLoW)Qr Lo @p; BW)] < cQ, <s%p /. o) |£o<0>zb|2>
Llu;luo(u),u

u,u)
1
2

K

u,u)

~ 92 . N
Ti&(ﬁOW) Qr [ﬁo(o)pa; a(W)] < cQy <sup /C( : ) |£O(O)p3|2>
w;[uo(w),u

With the help of this lemma and Proposition 6.1.11, we obtain

/V ra(LoW)Qr [Lo@p; BW)] < cnOx
(

u,u)

/V ra(LoW)Qr [Lo@ps: a(W)] < cnQc  (6:3.10)
(

u,u)
which proves Proposition 6.3.1 for these particular terms. The contribution
to the integral 6.3.7 due to Qr [Zﬁo(o)p4 5 (p, O')] is easier to treat and we do
not discuss it, here.

The contributions to the integral 6.3.7 due to the terms present in the second
line of 6.3.8, are

. rhedZomQe [V opm)]

u,u)

/V( rLa(LoW)Qr [Opy; Loo(W)] (6.3.11)

u,u)
La(LoW)Qr [©p, : L W
[ oW Qs [V Lop. )W)
(w,u)
and turn out to be easier to control. A short discussion on their estimates
is given at the end of this section.

The estimate for the integral
/ Tj‘;a(Zf)W) - Lo©®%(0; W) (6.3.12)
Viw,w)

is done precisely as for the integral 6.3.7. Again it follows, see 6.1.23, that
the contributions to ©3(0; W) = ©(J3(0; W)) which depend on the second
derivatives of the connection coefficients are

Qr[a; K(9g)] , Qrlas A(Qg)] , Qe [85 (1,1)(Vg)]
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and, therefore, the more delicate integrals to control are

/V( Tia(Z:?)W)QF {ﬁoﬁ((o)q) ; oz(W)]

u,u)

/V( a(LoW)Qr [LoA(P); a(W)]

u,u)

/V( Tia(Z:?)W)QF [ﬁol((o)q) ; a(W)]

u,u)

These are estimated exactly as those in 6.3.9 2! and we do not report it here.

The previous estimates have shown that the more delicate terms to estimate
are those depending on the third order derivatives of the connection coeffi-
cients. So far we have discussed the estimates for the terms which depend
on Y1, Y73Q and Y2y. Next we examine the terms which depend on Y’w.
Therefore we consider explicitely only those parts of the integrals 6.3.6 which
depend on it ?2. The factor Y72g appears in the expression

2(%g), = 5P Vm, — 3 (D31069) Vm, + Sy @m, + 5, m

through 1;(%)m. The terms of J3(O; W) which depend on E((9)q) are, see
6.1.19, 6.1.21,

EN0sW) = Qr (o, >a<0>>]+---

AN O;W) = Qr (85 2(Vg)| +- -
K*(O0;W) = Qu[8; 2(Vg)| + -+ (6.3.13)
P(O;W) = Qr [o; (V)] +---

These J3(O; W) components are present in, see 6.1.3,

(Ov W)443 - 85(2 ) Ig(Ov W) +
D(O, W )34 = 8p(LoW)A* (O, W) — 80 (LoW)K* (0, W) +
D(O,W)333 = 8B(LoW) - EX(O, W) + - - - (6.3.14)

21gee the discussion in the appendix to this Chapter, subsection 6.4.1, about the de-
pendance on the connection coefficients of K((Pq), A({Vq), I({Vq).
22The term Y7 w does not appear in the integrals examinated up to now.
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In the error term fv(u&) Din(ZéW)M(;KﬁRWT‘S we have to consider the
terms D(O,0; W)aaz, D(O,0;W)334, D(O,0;W)333. The contributions
to these terms coming from LoJ3(O; W) 23 are:

D(0,0;W)uss = 8B(LoW)-I(0,0;W) +

D(0,0;W)s34 = 8p(L W) (0,0, W) — SU(EOW)K(O,O;W) +

D(O,0;W)333 = 8

oo

0
SW)-2(0,0;W) +

(J N

(

and from I(0, 0; W), A(
parts containing LoZ((?)

Vb
0,0;W), K(O,0;W), Z(0,0; W) we select the
a),

E(0,0:W) = Qr[(p, o) (W) ; LoZ(Vg)] +- -
A(0,0;W) = Qr [B(W) 5 LoZ(Vg)] +
K(0,0;W) = Qr [B(W); LoZ(Vg)| +---
1(0,0;W) = Qr [a(W); LoE( V)| +

(1]

In conclusion the terms which depend on W?’g are
~9 N
D(0,0;W)ass = 8(LoW) - Qr [a(W); LoZ(Vg)] + -+
~92 N
D(0,0;W)ssa = 8p(LoW) - Qr [BIW) 5 £oZ(Vg)]| + -+
~2 N
D(0,0;W)sss = 8B(LoW) - Qr [(p, o) (W) 5 LoZ(Vg)] + -+

They appear in the following integrals

/V(u,z)

/V 7272(D(0, 0: W)334 = / 272 p(LoW) - Qe [BW) 5 LoE(g)] + ..
(ww) Viw,w)

Je

The neglected terms or have either been already estimated in Proposi-
tion 6.3.1 or are easier to control. The integrals in the right hand side
are estimated in the following proposition

[in)

S
S
+

D00 Wha = [ ABELW) - Qr[alW); Lo
(

u,u)

74 (D(0, 0;W )33 = /V HB(LoW) - Qr [(0, ) (W); LoE(Dg)] + ..
(u,u)

u,u)

23210J3(O; W) appears in the current J°(0,0; W) = EOJ:”(O; W)+ ---, see 6.3.1.
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Proposition 6.3.2 Under the assumptions 6.0.1 and 6.0.2 the following
nequalities hold

[ 8w - arlatW); Lo2( )] < s
(

u,u)

/V T_?_TEp(ZZZOW)Qr [,B(W) ; 202((O)q)] <ceQx  (6.3.16)
(

u,u)

[ A8Eew)- @r[(0.0)(W)s Lo=(©)] < ceox
(

w,u)
Proof:The proof is based on the following lemma, whose proof is postponed
to the next subsection,

Lemma 6.3.2 Under the assumptions 6.0.1 and 6.0.2 the following inequal-
ities hold, with € > 0,

/V P B(LOW) - Qr[a(W); LoE(Vg)] <
(

u,u)
L~ o) 2
Qx sup [ rmmlLo2(©)|
K JC(wi[uo(w)ul) T

[ rrEow)Qr [8W); LoZ(V)] <
(

u,u)

M

[a—y
RS
Q
I
S
=2
o
N——
(NI

cQx (sup / T1-2¢ (
K JC(u;luo(u),u]) T

/ Tiﬁ(ZQOW) - Qr [(p,a)(W); ZOE((O)q)] <
Vi

w,u)
cOx (sup/ 1 IﬁoE((O)q)l2>
K Jesuou)) T2

Proposition 6.3.2 is an immediate consequence of Proposition 6.1.13 and
Lemma 6.3.2.

M

6.3.2 Proof of Lemma 6.3.1 and Lemma 6.3.2

To prove Lemma 6.3.1 we estimate the first integral of 6.3.9,

/V< Tia(z?)w)Qr[ﬁo(O’ﬁ;ﬁ(m]S/V il LoW)ILo OB IBOW)]

u,u) (w,u)

<(

(M

TiW|a(Z?)W)I2>2 ( /V Tia|zo<0>p|2|ﬁ(vv)|2> (6.3.17)
(uw,u)

u,u)
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with v 4+ o = 4. The first factor satisfies the inequality

/ (Lo W) < ¢ (6.3.18)
v

u,u)

with 2y < 3 which implies 20 > 5. In fact, from the results of Chapter 5,
see 77,

Osservazione 6.3.1 C’e’ un riferimento mancante, correggere.

Ji

u

"2
la(LoW)l = [

uo

u 1 2
S/ du' ——— ( sup / (L W)|2>
wolw W \ v Jewingay T 0

<c (Sup/ Q(22OW)(K7K7T7 64)> < cQs
K JC(u')

du' / 2 LE W)
w  Jowiwya) T °

u,u)

The second factor satisfies

N

/ Lo OB < (suplrEBW))° / 729 7 Oy

(uw,u) (u,u)

< cQx /V T2 2,02 (6.3.19)
(

u,u)

We decompose the integral in the following way, writing 7 — 20 = 1+ 7 with
7€ (0,1),

—(7=20) | 2 _(0)42 “ / I—(147) | (0)412
FNE O < [T | 14| 26O
/v( - w o Jestuew).ul)

u,u) ug( Clu

u 1 .
< c/ dy' ——— (/ |EO(O)15|2>
up(w) W\ Je(w;uow)u))

<c (Sup/ |Z',O(O);b|2> < ce (6.3.20)
K JC(w;[uo(u’),ul)

where we have used, in the last inequality, the second estimate of Proposi-
tion 6.1.11. Inequalities 6.3.20 and 6.3.18, toghether, prove the first estimate
of the lemma. The estimate of the second line of 6.3.9 proceeds in the same
way, but relying on the first inequality of Proposition 6.1.11.
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To prove Lemma 6.3.2 we prove only the first inequality of the lemma, the
others are proved in the same way. The proof is similar, but easier, to that
of Lemma 6.3.1,

/V Tiﬁ(EQOW) - Qr [a(W) : ZOE((O)Q)]
(

u,u)
1

~92 2 u o
< <sup / u'4lﬁ(ﬁoW)|2> I (/ u'4|a<W)|2||coa<<0>q>|2>
V(u,u) / C(us[uo,ul) g C(u'5[uo,u])

L 7 v 1 . %
<cok (o) L ([ obostOor)
c swplrzaWl) | - oty wE FOECT )]

2

%
u o1 1 s —o
<cQr [ i (/C(u.[uo ez EoE( >q>|2> (6.3.21)

)
with € > 0, where in the last line we used Proposition 6.1.13.

We shall now provide a sketch of the estimate of the second integral of 6.3.11
24 We use the estimates 6.1.56, valid for any p € [2,4],

1— 2-2
sup [t 7 Vpglps S eeo  supr®F (Opy, PP < eeo

and obtain

o u N

Lo O PiLoatn)P <c [Cdut [ [ @pyPiLoa(w)P

Cu'3lug,u]) g S(u'u')

<o [“adu' S O W E Eoa(W)

>cC ., uu 22|7“ PT_ P3|p:4,5|7“ » Loa( )|p:4,S
Uy —

2 ru
1-2 o w1 1-2 4 2
<ec (Sllép |r pr ( )p3|p475> du'u 27 |r p[,ooz(W)|p:47S

Uy -

1
< ce Q—7 < ce2 Qi (6.3.22)

Exactly the same argument can be used for the other integrals in 6.3.11 and
for those associated to the current J3(O; W).

2" Compare the way this integral is estimated with the estimate of the second integral
of eq. 6.2.34 in Lemma 6.2.3, see inequality 6.2.38.
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6.3.3 Estimate of f;, _ |Q(LoW )ags(On*?K7T?)]

Proposition 6.3.3 Under the assumptions 6.0.1 and 6.0.2 the following
inequalities hold

/V QLW agys(FIm KIT)| < cegQ (6.3.23)
(

u,u)

Proof: These estimates are exactly of the same type as those obtained for
fV( ) 1Q(LoW ) aprs (K8 KYT?)| with the obvious substitution in the first

1 1 L 1
and in the second factor of Q7 or Q7 with Q5 or Q3.

6.3.4 Estimate of [, |Q(LoW)ass(Va*? KVKY),

Proposition 6.3.4 Under the assumptions 6.0.1 and 6.0.2 the following
inequalities hold

/ QLW )ass(MrPKTK)| < cegQx (6.3.24)
v

w,u)

Proof: These estimates are exactly of the same type as those obtained for
fv(u o 1Q(LoW ) aprs (K8 KYT?)| with the obvious substitution in the first

1 1 1 1
and in the second factor of Q7 or Q7 with Q5 or QJ.

This completes the control of the error terms associated to the integrals

QWK K Teen) . [ QUGW)(E, K T.es)
c ¢

6.3.5 Estimate of fV(u " |DZ.’UQ(E()ETW)575K’3K7K6|

We recall the equation, see [Ch-KIl], Propositions 7.1.1, 7.1.2,

DivQ(LoLrW)gys = (LoLrW) 4 J(T,0; W)y + (Lo Lo W) £V T(T, 0; W) sy
+*(LoLrW) J's" J(T, O;W)* 1y + *(LoLrW) 4 T(T, O; W)* 50

where

1
J(T,05W) = (T, 0;W) + 5 (J1 (T,0; W) + JX(T,0; W) + J3(T, 0; W))
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and

JNT,0; W) = LoJ(T; W)
JUT,0;W) = JNO; LyW) i€ {1,2,3}.

As in the case of fv(u o Din(ﬁQOW)m(;(I_(ﬁl_(VT‘S) we see that the terms

associated to this current JX(T, 0; W) = JY(O; LW) are the same as those
of

/ DivQ(LoW ) gy (KPK1T?)
Viww

with LoW substituted by LoLrW and J'(O; W) replaced by J'(O; LW ).
Considering the equation, see 6.1.3,

DYNT, 0;W)gay = 4a(LoOLTW) - O1(O, LyW) — 8B(LoLrW) - EYO, Ly W) |

it follows that we have to control the integrals

/ S a(LolrW) - 00, LrW)
Viu,u)

/ Tﬁﬁ(ﬁoﬁTW) .20, 2TW) (6.3.25)
Vi

u,u)

It is immediate to realize that the main difference with respect to Proposi-
tion 6.2.6 is that the Riemann components present in the terms ©' (O, 2TW)
and Z1(0, Z',TW), see 6.1.13, 6.1.14, appear as first derivatives along the tan-
gential and the null directions of the null components of LW . We conclude
that terms like P; P, W, D,D,W, D, P, W, D,ID,W are present *>. In par-
ticular we have to control the following integrals

—
S
~//
T
B
vﬁ@
=
|
2
o
S
=
o
~———

%Observe that the terms in ©'(0, LrW), Z'(0, L+W) involve, in particular 1)) e
and I, 1D, which do not appear in the Bianchi equations. These terms have been treated
in Chapter 5 by expressing them in terms of DTQ(ETW) or DTQ(ETW)-i- [easier terms].
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The terms associated to J2(T,0; W) and J3(T,0; W) are treated as the
corresponding terms of fv(“) DivQ(LoW)gs(KPKYT?) with the obvious
modifications. -

Finally to control the terms associated to the current JO(T,0; W) = LoJ(T; W)
we have to look, carefully, at the following integrals,

/V S LoLrW) (Lo Dps)o(W)
(

u,u)

| malLoLiW)(ZoMpBW)
(

u,u)
Sa(LoLrW)(Lo™D W
L, TreLoLrW)(Lo™ py)(p, o) (W)
(u,u)
their estimates are summarized in the following proposition:

Proposition 6.3.5 Under the assumptions 6.0.1 and 6.0.2 the following
inequalities hold

A~ ~ 1
/V Sl LolrW)(LoTps)a(W) < cenQl
(

u,u)

/V Sl LoLrW) (Lo DHBW) < cep Q2 (6.3.26)
(

u,u)

S . 1
| rhalLoLeW) (Lo py)(p )W) < o]
(u,n)
Proof: The first term is the more delicate one. It has to be treated as
the term fv(u&) 78 a(LrW)(Dpg)a(W), see 6.2.9, using, in this case, the
following bound of Proposition 6.1.6,

2

vl
(Sup/ 7|T‘TEY7(T)[)3 |1272,S(uaﬂ,)dﬂl> < cep .

ek Jug T4 (u, ')

The second and third integrals in 6.3.26 are treated in the same way, but,
in this case, it is enough to use only the estimates of Proposition 6.1.5 26,

6.3.6 Estimate of [, 1Q(LoLrW ) agys(FIn b 1K)

Proposition 6.3.6 Under the assumptions 6.0.1 and 6.0.2 the following
inequalities hold

/ 1Q(LOLTW ) aprs (K KTK?)| < cepQx (6.3.27)
i

u,u)

26This is due to the better asymptotic behaviour of (T)p4 , (T)[) with respect to (T)pS,
see the remark after Proposition 6.1.5.
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Proof: The estimate of this term proceeds exactly as the estimate of

fV(u,u) |Q(ZTW)aﬁ75((K)7ro‘ﬂR'7R'5)|. The final result is the same with the

1 1 1 1
obvious substitutions of the factors Q7 or Q7 with Q5 or Q7.

6.3.7 Estimate of [, |DivQ(LsLrW) gy s(KPKTK?))|
We recall the equation?’, see [Ch-KI], Propositions 7.1.1, 7.1.2,
DivQ(LsLrW)gys = (LsLoW)J's" T(T, ;W) + (LsLrW) ' T(T, S; W) s

+ (LsLrW)g s J(T, 8 W)y + “(LsLxW)4 . T(T, S5 W)* sy

where

1
J(T.$W) = IS W) + 5 (JH(T, S5 W) + (T, 8 W) + J(T. 5 W)
and

JNT,S; W) = LsJ(T; W) , JHT,S; W) = JH(S; LrW)
JHT,S; W) = J*(S; LrW) , J¥(T,S;W) = J*(S; LrW)

Proceeding as in the subsection 6.3.5 we have to analyze the integrals

Jo
Ji

We examine the first of these integrals as the other ones are controlled in
the same way and are, in fact, even easier. we recall, see 6.1.3, the equation

T?»D(Ta S; W)444 ) /V TiTED(T, S; W)344
(u,u)

u,u)

TJQFTfD(T, S;W)s34 / TED(T, S; W)3a33
Viu,u)

u,u)

D(T,S;W)aus = 4a(LsLyW) - O(T, S; W) — 83(LsLrW) - E(T, S; W) (6.3.28)

where 28

1
O, SW) = T, W)+ (NI, S;W) + (T, 5; W) + OX(T, ;W)

and the indices 0,1, 2, 3 refer to the various parts of the current J(T', S; W).
Therefore, for i € {1,2,3},
0N T, S; W) = O4S, Ly W)

*"The estimate of this term is similar to that of fv( ) |DivQ(LoLrW)gs(KPKYK?)|.

28The corresponding expressions hold for (T, S; W).
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We consider first the terms with ¢ = 1,2,3 and in particular the first term
of 6.3.28,

/ S a(LsLrW) - O/(T, ;W) .
v

u,u)

Proceeding as in the case of fv(u o T_?_CK(ZTW) -OYT, W), see 6.2.6, we have

/ S LsLrW) - 01(S, LeW)
v

u,u)

<ec / du' (/ g'6|a(tszTW)|2> ( / g’6|®i(8,ﬁTW)|2>
up C(u'3[ugul]) C(u';[ug.ul)

The first integral factor is estimated by, see 3.5.1,

sup (/ g'6|a(2gﬁTW)|2>
K Cu'5[ug,ul)

/ du' ( / /104 (S, Z‘,TW)|2>
up C(u'5[ug,ul)

we compare it with the integral

1
u . 2
/ du! (/ u®|©"(T, W)|2>
ug C(u'5[ug,u])

which has been estimated in subsection 6.2.1 2. Proceeding in the same
way we obtain

vl
M

1
2

1
< cQ} (6.3.29)

To estimate

M

A A 1
[ rhallsLrW)- ©1T.S:W) < caQF (Q1 + Q) < e
(

u,u)

Operating in an analogous way for the second term we derive

(NI

/V Tgﬁ(ESETW) CENS, T W) < CEOQQ% (Q1 + Q2)? < cenQk
(

u,u)

2%The main difference is that the deformation tensors or their derivatives refer now to
the S vector field instead of 7" and that the Riemann null components or their derivatives
are relative to ETW instead of W. As the estimates for the deformation tensor relative
to S : (D& are worst, relatively to those for the deformation tensor V)%, by a factor r or
7— and, at the same time, the estimates for the null Riemann components of LoW are
better than those relative to the null components of W by a factor r, we easily conclude
that the the term fV(u o Sa(LsLrW) - ©'(T,S; W) is under control.
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In the case of the currents J2?(T, S; W) and J3(T, S; W), we have to proceed
somewhat differently than in the corresponding proof of subsection 6.2.1.
This is due to the fact that we have to deal with the null components of
LW which cannot be estimated in the sup norm. We shall sketch here
the estimates for ©(2) (S, T; W), those for ©®)(S,T; W) are obtained in the
same way. From

oS, TW) = Qr|Fpys a(LrW)] +Qr [ BLrW)]
+ Q[ (p, o) (LrW)]

the following integrals have to be estimated

[ aCsEaw)(OpyalLrw)
(

u,u)

/V S LsLrW) (P BLrW) (6.3.30)
(

u,u)

| ralsLrw)(©p) (o) Lo V)
(

u,u)

To estimate the first integral of 6.3.30 we write

/V 7S (L LrW) Spy a(LrW)
(

u,u)

it .
< / o ( / T$|a(£SLTW)|2>
' \J o ug u)

- o 3 du'
< (sup/ Q(LsLrW)(K,K,K, e4)> /—,
ICJC(u5[ug,ul) U
1
[ razwt)
. «

1
173
1 / w . 2
<cQj / di, / dg'|r1_72’7_(5)p3|12,:475 / 0 a(LeW)[* (6.3.31)
wou S(u'u')

M
M

</C( ) |T—(S)p3|273|a(ﬁTW)|2>
U3, Y

u 1
_dﬂl / |7_57__(S)p |4>
/uo (S(w’) i ’

P

M

[SIE

0

Using Proposition 6.1.7, see 6.1.50, and the estimate, proved in Chapter 5,

4
</5(u’ W) TE'O[(ETW)'Ll) = </C(w) rla(LeW)[* + 'YL W)
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1
N 3 1
+ T8|D4a(£TW)I2>2 < cQF (6.3.32)
we have

/ Sl LsLrW)(Spy)a(LrW)

Viw,u)
%
1_2 du' u 1
Sc(sup|r T p3|p 45) Qg Q,C/ " </go dﬂl?)
<e (sup |T‘1_%7-7(S)p3|p:4,5) Qx < ceoQx (6.3.33)

completing the estimate. The remaining integrals in 6.3.30 are estimated
in the same way. We are left with the estimate of the part associated to
JUT,S; W) = LsJ(T;W). From

1/ N .
(T, S;W) = 5 (Lg@l(T; W) + LgOX(T; W) + Ls©3(T; W))
we have to control the integrals

/ TS a(LsLrW)LsO (T; W)
Vi

u,u)

/ S a(LsLyW)LsO(T; W) (6.3.34)
v

u,u)

/ TS a(LsLrW)LsO (T; W)
Vi

u,u)

We write, using the estimates proven in Chapter 6,

/ S (L LrW)Ls®'(T; W)
i

u,u)

3 _ 3
/ du! ( / T$|a(zszTW)|2> ( / 75| L5 © (T W)|2>
"5l ) C(u';ug,u])

1
2

<cQ; /du (/C ) T_$|Es®i(T;W)|2> (6.3.35)
(u! Ug,U

Recall that ©(T; W) consists of a sum of terms which are products between
a deformation tensor, or its first derivatives, and a null Riemann compo-
nents, or its first derivatives, see eqs. 6.1.8...6.1.23. Let us consider first

o) = Qr[(T)m;Wa}+Qr[ n; 044]+Qr[ js 043]

+ Q[ 78] + Qe [Dm; pa] + Qr [Pm; g5
+ ..
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The Lie derivative Lg can operate on both factors. When it operates on the
null Riemann components it adds a derivative *°. Therefore in 25@(J 1Y the
null Riemann components can appear derived twice, but multiplied by non
derived deformation tensors. In this case the estimates are done taking the
sup norms for the deformation tensors and the L?(C) or L?(C) norms for
the twice derived Riemann components.

In the case of

O(7%) = Qr [Fpy; ] +Qr [Mps 8] + Qr [ Fpy; (p,0)]

when Lg operate on the Riemann components we estimate the integrals tak-
ing the LP(S) norms both for the first derivatives of the Riemann compo-
nents and for the (T)p3, (T)p3, (T);b terms which depend on the first derivatives
of the deformation tensors. A similar procedure applies in the case of ©(J3).
Therefore the estimate of this error term, when Lg operates on the Riemann
components, does not produce complications as the asymptotic behaviours
are not changed and the derivatives involved are only the zero and first
derivatives for the deformation tensors and at most the first derivatives for
the Riemann components.

We consider now the case where Lg operates on the deformation tensors.
This is simple for the ©(J') part as, in this case, the only effect is that the
deformation tensor is substituted by its first derivatives which depend on
the first derivatives of the connection coefficients we already know how to
control.

When Lg operates on the deformation tensor parts of ©(J2) and ©(J3) the
situation is more delicate. In this case the Riemann tensor components are
not derived and can be estimated with the sup norms, but Lg operating on
(T)p3, (T)p3, (T)zﬁ produce terms which depend on the second derivatives of
the Ricci null coefficients and this requires a careful control of their norms.
The same happens if Lg operates on the (I)g factors of 0(J3).

Let us consider, as an example, the integral of 6.3.35, for ¢ = 2. This
amounts to control the terms

[ ( / T$|2S<T>p3|2|a(W)|2>
Cu'5lug,ul)

du' / 76|25<T>p|2|5(W)|2>2 (6.3.36)
/ ( C(u';[ug,ul) "

30Without changing the asymptotic behaviour of the component.

1
2
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:
[ ( / T$|£S<T>p4|2|<p,a><vv)|2>
C(u'5[ug,ul)

To estimate the first term we write

3
/du' (/ T«?lﬁs(T)p3|2|a(W)|2> (6.3.37)
C(“’;[@(),QD
1
: 1 Liapamy, 2\’
<c|sup|ria(W)] du' — [TZLs" ps|
7= \JC(W;[ugul) T+
1
< ceo Qi

with the last inequality using Proposition 6.1.6. The estimates of the re-
maining two integrals is easier due to the better asymptotic behaviour of
(T)zﬁ and (T)p4 compared to (T)p3. In this case it is enough to use Proposi-
tion 6.1.5. In fact we have, for the last integral,

M

[ ( [ T.?|25<T>p4|2|(p(vv),a(W))F) (6.3.38)
u';[wgy,u

1
1 1 . >
< c(sup | (o), o)) [ ' — ( [ T—2|T+TcS<T>p4|2>
- u'5[ug,u]) T4
1

1 1 1\?2 1
< ceoQ,%/dU'T— /du’T—2 < cepQf
- +

6.3.8 Estimate of [, |Q(Ls LW ) aprs((FK)m? KTEY)]

The estimate of this integral is done exactly in the same way as the estimate
of fv(u o QLW ) apys () m*P KV K?)| with the obvious substitutions of Q;
with Q_z.

6.4 Appendix to Chapter 6

6.4.1 The third order derivatives of the connection coefhi-
cients

From the evolution equations, in Section 4.6, of W F, W[, () Z, and from
the explicit expressions of the rotation deformation tensors, see 4.6.10, 4.6.11,
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it follows that () m, depends on Y7 and Y, ()i, depends on Yy and (9)j
depends on Ylog Q. From the expression, see 6.1.24,

©)p, = div@m — %lpgtmj L @p+n—0¢)-©Om— g ©)
—%trx(tr(o)i + (9))

it follows that (©)p; depends on the second derivatives of the connection
coefficients, Y27 and WQQ through div(@m 3! which at their turn depend
on the first derivatives of the Riemann tensor 2. Therefore it follows imme-
diately that ﬁo(o)pg, will depend on W?’n, W?)ﬂ and through it on the second
derivatives of the Riemann tensor. From

©)p — y (5 %12)4(0@ - %(m log ©){?'m + %(O)j(n +1)

1

4 2

we see that (O)p depends, through the term WC(O)i, on WQX 33 This implies

that Lo(@)p will depend on the third derivative Y°x and through it on the
second derivatives of the Riemann tensor. From

1 . . o), 1 . o 1

we see that (O)p4 does not depend on second order derivatives of connection
coefficients.

An analogous argument holds for the derivatives of the various components
of (O)q. From the explicit expressions 6.1.27 and 6.1.28, in the case X = O,
we obtain:

a) A(9)g) = —%D4(O)j + %(O)p4 does not depend on second derivatives
of connection coefficients.

3 As YZ depends also on YH, it follows that through the dependance on div(®’m we
have also a dependance on Y72X and finally Eo(o)p3 depend on Y73 (n,m,X)-

321n fact through 12)3(O)j there is also a dependence on Yw. This is, nevertheless, not
harmful as, when we consider the tangential derivatives of (O)pS, Y73n and Y73ﬂ will depend
on the second derivatives of the Riemann tensor, while Y72g still depends only on the first
derivative as follows from Proposition 4.4.1.

33 Apparently, through the term ]Z)4(O)g, it seems that (9’ depends also on Y’w. This
is not true as 104(0)& is proportional to %(Q(”ZQ) which, see Proposition 4.6.2, is pro-
portional to ¥,V F, W H,; and L), (¢ +n) and therefore depends on Y7 ¥n and Y, all
first derivatives of the connection coefficients.
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b) K((O)q)ab = —% ()“(ac(o)icb — f(bc(o)ica) does not depend on second
derivatives of connection coefficients.
o 1(Yg), = %D4(O)ma - %Wa(o)j - %(D4 log 2)“m, + itrx(o)ma
1. 1 . 3
+§Xac(o)mc — EQC(O)IC(L + E(O)ﬁa

depends, through (©)p, on the second derivatives of Ricci coefficient Y72x.

. 1 . 5ye . .. .
d) 6((O)Q)ab =2 <]D4(O)1ab a §6abtr(lp4(0)l)> T tI.X(O)lab + Xabtr(o)l + Xab(o).]
does not depend on the second derivatives of the connection coefficients 4.
e) A((O)q) = —Q-(O)m—% (Dg(o)j —27- (O)m) +§(O)p3 depends, through
(O)p3, on Wzn and WQQ 35,

1

(‘D) = 3 (Wa(o)mb — Wb(o)ma) — % (Ca(o)mb — Cb(o)ma)

(Xac(o)icb - Xbc(o)ica) depends, through Wa(o)m, on WQU and WQQ .

f)

=

DN =

h) 2(9g), = 3P, @m, — §(D31log 2)©m, + $trx(Pm, + ¢ (©m,
depends, through ]D3(O)m, on WQQ.

i) 1), = =3V, 5 + 1trxPm, + $XaPm, — 10 Vic, + 3P,
depends, through (@), on Y72x.

. 1 .
1) @((O)q)ab =2 <D3(O)1ab - §5abt7"(]p3(0)1)> - (Wa(o)mb + Wb(o)ma - 5ach(O)mc)

-2 (na(o)mb + nb(o)ma - 5ab"70(0)mc) + (Ca(o)mb + Cb(o)ma - 5ab<c(o)mc)

(0) (0) (0);

+ try i + Xabtr 1+ Xab j

depends, through ¥(@m, on Y7 and WQQ.

34 The term 12)4(O)i can be expressed, using the structure equations, in terms of first
derivatives of connection coefficients.
35The term Dg(o)j gives a dependence on Yw which, as discussed before, is harmless.



Chapter 7

The initial hypersurface and
the last slice

7.1 Initial hypersurface foliations

7.1.1 Some general properties of a foliation of ¥,

Let the function w(p) define a foliation on Xy. Its leaves are

So(v) = {p € Xo|lw(p) = v}

We define on ¥p\K a moving orthonormal frame {N,es}! adapted to this
foliation, where A € {1,2} and N* = |a_1w|9” Ojw, is the unit vector field,
defined on X, normal to each Sy(r). The metric on ¥y can be written, in

adapted coordinates {w, ¢*}, as

g(-,-) = a®dw® + yapd¢®dg’ (7.1.1)
and, in these coordinates, N = é% , a”?=|0w|?.

The second fundamental form associated to the leaves of this foliation is

0;; = ISV, N, = V;N; — N;V 3 N;

where ITIL = (0% — N'N,), is the projection over T'Sy and V the covariant
derivative relative to Xj. A simple computation shows that, in adapted

coordinates,
1
oab = 2_aw')’ab .
a

'During this chapter we use, differently from the rest of the book, the capital letters

A,B,C,... for an orthonormal basis tangent to S, ea = e’}la%zb. We use the small ones

a,b,c, ..., as coordinate indices.

351
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Moreover the adapted moving frame satisfies the following equations, where
Vi= WeA’
VNN = (a7'V  a)ea
VAN =0apep
Viea=Yxzea+ (a 'V, a)N (7.1.2)
Vpea =Vges — OapN

7.1.2 The structure equations on Y,

We start writing the Gauss and the Codazzi-Mainardi equations 2

(3)Rabcd = (Z)Rabcd - gacgbd + oadgbc
(3)Rwabc = —a (Wboca - Wcoab) (713)

Contracting the Gauss equation, with respect to the indices b, d, we obtain?
the

Contracted Gauss equation
GRye = DRye + R, . — (t10)04c + 040, (7.1.4)

where ®)R,,. is the Ricci tensor of £y and (P)R,. the one associated to So(v).
The explicit computation of ®R"  gives

DR e = =07V, V.0 = ¥ g0ac — Oaat”. (7.1.5)
which, substituted in 7.1.4, gives
ORue = PRye — a7V, V.0 — Vi 0ac — tr00,, (7.1.6)
Contracting 7.1.5 with respect to the indices a, ¢, we obtain

ORy 5 = —a'ha — Vytr — |0 (7.1.7)

2Here the index w denotes the corresponding coordinate w and a,b are associated to
$*, #°. In arbitrary coordinates equations 7.1.3 become

Ry sp ILTETIPITY = PRy — (6:x050 — 01651
(B)RsrquSHZang =- (Wiejk - Wjeki)

3In arbitrary coordinates it has the form

ORI = PRy, 4+ ORigpe N*NY — (tr60)8is, + 0:0°%
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Moreover contracting 7.1.4 with respect to the indices a, ¢, we obtain
®R - 28R v = PR — (tr6)? + 0] (7.1.8)

where ®)R is the scalar curvature of ¥y and (®)R the one of Sy. Finally
contracting the Codazzi-Mainardi equation, with respect to the a, ¢ indices,
we obtain the

Contracted Codazzi-Mainardi equation:
OR g, = —Vytrd + Y0 (7.1.9)

Decomposing 0 in its traceless and trace parts, 6 = 6 + %’ytr@, and using
equations 7.1.6, 7.1.7 and 7.1.8 we obtain the following evolution equations
for trf and 9,

FEvolution equations:
Vbac + 110 Ooe = a7V, V.0 — [PRac + 27 70e(PRy 5 — OR)|

V itré + %tr@Z = —a 'pa—|0)? - (3)R1\7N (7.1.10)

where Y, V. =Y,V — %’yacﬁ .

—

Definition 7.1.1 We denote 3R the traceless part of the Ricci tensor G)R,
with respect to the metric of Xo, g;j,

GR = ®R — %gij@)R (7.1.11)

where ®)R is the scalar curvature of Sy. The various components of the
traceless part of the Ricci tensor, in the frame adapted to the foliation, are
defined as *

— — —

Sap=CRup, PA=0CR, 5, Q=0CRyy (7.1.12)

It follows easily that the traceless part of S, S'AB = Sap— %(MBtrS, satisfies
Gon— BR, 4 L5 () 3)

AB = AB t 5 AB ( Ry — R) (7.1.13)

which allows us to rewrite the evolution equation for é, 7.1.10, in the fol-
lowing way

Wﬁéac +tr6 0, = —a_lyﬁca . (7.1.14)

“In arbitrary coordinates we have S;; = ILII}(®R;, , P, =IIL®R,; , @ = ®Ry .
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The second Bianchi identities and the definition °

Byj = (curl ®)R);; (7.1.15)

imply that the components of G)R, S, P, Q, satify the following equations,
see [Ch-KI], Chapter 5, assuming the adapted frame with ¢ = 1 and Fermi
trasported .

1 3 N
CIXI“IP:BNN—I-@/\S'
1 R
WNP+tr9P:EWQR+*BN+Y7Q—20-P

L (1 ) 1 A 1

div = <EY7R - $N> ~YQ (0 P)— jubP

s 1 1 . 3 A

VS + 5troS ="B + §W®P + 59@ (7.1.16)
where Y, X is the projection of Vxy X on T'Sy, B is the S-tangent symmetric
two tensor B ,5 = Bap and *B , = €,¢,°B ., -
7.1.3 The construction of the background foliation of 3,
We start with the following
Theorem 7.1.1 Assume that, given € > 0, the initial data are such that

Ji (30,9, k) < €2 is bounded. There exists a global geodesic foliation on LK
with lapse function a = 1, such that the following inequalities © hold,

inf rtrd < ce, sup rir < ce, inf r’K < ce, sup r’K < ce

To\K So\K To\K Yo\
2
sup T7|0| < ce, sup r?(trf — trf) < ce (7.1.17)
s 1+ [logr| SO\
Also
r_2 4 9. 2 4
P2 2 Slp,s + |12 2 WS lp,s0 < c2
7_2 9_ 2
P57 Plysy + P5 VP, < ce (7.1.18)
7_2 — 9_2
|7a2 p(Q - Q)|p,50 + |7"2 ”WQ|p,SO <ce

5((2111‘1 GR);; = E]-lSVI ((3)Ris - %gis (S)R).

GWNBA =0. _
"We denote, here, K the Gauss curvature of So(v), to distinguish it from the compact
set K.
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The proof of Theorem 7.1.1 follows by a simple adaptation of the proof of
Proposition 5.0.1 in [Ch-Kl], Chapter 5. Observe that one can also prove
additional estimates for the derivatives of trf and 6 as well of S , P and
(Q — @), up to second order, see also 7.1.18.

Remark: We can choose K such that 0K coincides with a leave of the
background foliation.

The results of Theorem 7.1.1 and assumption Jx(3g,g,k) < €2 allow to
control on Yy both the connection coefficients and the various components
of the four dimensional Riemann tensor. To achieve this result we use the
following relationships, for the four dimensional Riemann tensor,

ORyg =0 + kg + 2 Ik, 5l
A

(X' + x)ace + (W + )¢y

1 1
(3)ReAN = _5(514_;_@24) -3

1 1 1
O Reses = 7(0lap +dap) = 50anp + (¢ +x)ac + X)on +Chlp
1 1
0= Z( 243—quB)+§€ABU,+VﬁkBA—VBkNA (7.1.19)
1
0= 2084 =B+ Vikay — Vakyg

the first three relations coming from the Gauss equation,

B)RH

vpo

= R™, IS — k. Ky + K Ky (7.1.20)

where IT# = (¢ — T}'Ty,) is the projection on TSy, and the remaining two
from the Codazzi-Mainardi equation,

(4)RT07/\C = —Vik¢, + Viky, (7.1.21)

For the connection coefficients the relations involved are

1
Ch = g9(Daes es) = kyy
X'ap = 9(Daes,ep) = —kap +0ap
X5 =9(Daes,ep) = —kap — Oap
w' —l—g' = kNN (7.1.22)

2w’ = —Dyloga , 2w’ = —D3loga
20 =a

[Added the formulas previously
in the note explaining how to
get the estimates for the four
dimensional Riemann tensor on
oo once we know S,P,Q and
the global smallness conditions]
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7.1.4 The construction of the canonical foliation of X,

We start giving the motivation for the introduction of the canonical foliation
on Yo\K. Let us consider the evolution equation for trf on X, see 7.1.10,

1 .
V gtrf + §tr02 =—a 'pa— |07 -ORy s (7.1.23)

Expressing the spacetime curvature tensor Rqp,4 relative 8 to the null pair
{es =To+ N , e3 =Ty — N} and using the Gauss equation, see 7.1.20,

O Ryg=p+kg+ > |k, 5l (7.1.24)
A
Using this equation we rewrite the evolution equation 7.1.23 as
1 .
V i trf + 5(t1r9)2 = —(Aloga +p) + [—|y710ga|2 —10)? + g(k)] (7.1.25)

where g(k) = k12\71\7 +3. |keAN|2. Observe that the right hand side of 7.1.25
depends through p on the second derivatives of the metric ¢ which implies
that we can estimate, at most, two angular derivatives of trf. To do better we
have to modify the (Aloga+ p) term. This leads to the following definition,

Definition 3.3.1: We say that a foliation is canonical on X\K if it is
defined by a function ) (p) solution of the following problem, “The initial
slice problem”,

Vug)l =a™', wo)lox = o
Aloga=—(p—p), loga=0 (7.1.26)

The leaves of the canonical foliation are denoted
S0y (¥) = {p € Zolug (p) = v}

Moreover the initial leave Sy(vy) =0K of the background foliation is also the
initial leave, Sg)(vo), of the canonical foliation.

7.1.5 Proof of Theorem M3:

Let us recall, now, the statement of Theorem M3:

8T, is the vector field defined on ¥ orthonormal to Xo.
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Theorem 3.3.1 (Theorem M3) Consider an initial data set which sat-
isfies the exterior global smallness condition Jx (3o, g,k) < €2, with € suf-
ficiently small. There exists a canonical foliation on Lo\K, such that the
following estimates hold

0[3}(20\.[() S ce , Q[:ﬂ(ZU\K) S ce (7127)

Proof of Theorem M3, part I: The proof consists of a local existence
argument followed by a continuation argument. The local existence part is
of the same type, but easier than the local part of the proof of the “last slice
problem” as presented in[Ch-KI], Chapter 6. The global extension argument
is far simpler than the corresponding global argument given in Chapter 14
of [Ch-KI]. Both the local existence and the extension argument are based
on Theorem 7.1.1

7.2 The initial hypersurface connection estimates

In this section we continue the proof Theorem M3. We assume that the
initial hypersurface ¥¢\K is endowed with a canonical foliation and prove
that we can estimate the Xo\K norms of the connection coefficients and their
derivatives up to third order, in terms of the initial data norm Jx (X, g, k).
We shall in fact prove slightly stronger estimates expressed in the following
definitions of the connection coefficients * norms O'(X\K) and Q' ($o\K).

T2 1
O] (B0\K) = 057 (S0\K) + sup [r*72 (trx” — =)| + sup (2 — 3)|
To\K r o\ 2
00 00 3 2
O (B0\K) = O'g (R0\K) + sup [r72 (try’ + —)|
So\K r

Ol[l}(zo\K) = OII(EU\K) + S1[12p4} O'é”S(EO\K) (Dgg')] + OI[%T(EU\K)
= pe )

O (Bo\K) = |04 (Zo\K) + 81[12p4} Olg’S(EO\K)(Dﬁ;w')] + O'5(Z0\K)
- JASIPH

[Some corrections in the defini-
tions of the norms; recall that
here both the norm for w and w
are given as in the initial layer
region all the evolution equa-
tions start from Xg.]

(7.2.1)

Op(E0K) = | O'2(S0K) + sup (O (E0\K)(Dh) +OF (oK) (D)) |

PE[2,4]
!
+01)(Z0\K)
9Observe that here all the connection coefficients x’, X,'“ are primed as they are the

restrictions on ¥o of the connection coefficients relative to the initial layer foliation, see
subsection 3.3.4.
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O’[Q}(EO\K) = QIQ(EO\K) + 21[121)4} (O’f’S(ZO\K)(Dilw/) + O/p7 (2 \K)(DIZ /)):|
p )

] (Zo\K)
O'131(Zo\K) = O' (EO\K) + Oy (Z0\K)

where, for ¢ < 2,

0P (S\K)(X) = sup O (S\K) (X)(v) (7.2.2)
So\K

The O’;”S(EO\K)(X)(V) norms, present in 7.2.1 10 are listed below,

O BN 0) = [TV sy

0P SN () ) = [F DV 500

O (So\K) (trx') () = [r 3D Y rx! = E) 0 0)
O (S0 (trx)(v) = |r<%+q‘%’v"’<trx’ - @imw
O (SAK) (1) () = [ FH D0 |50

OSSN I)®) = 113D 00 (7:2:3)
O (LK) (W) (v) = [r(3H97%) W@’ms@w

O (S0\K) (Dhe)v) = IrFH DY Dl 50

O (So\K)(DFw) () = |r' ¥ 27 "DEw |, 5, 0)

O (SN W) () = Ir T 5 )

0% (B0K) (D)) = [+ Dl

O (S\K) (D)) = [ DV DR 5009

Finally we introduce the O'3(X0\K) and the O'3(3\K) norms on the initial
slice. They are defined in the following way:

O'3(Z0\K) = O4(S0\K) (try') + O4(Z0\K) () (7.2.4)
O'5(B0\K) = O4(SO\K) (trx) + O4(S\K) ()

00bserve that all these norms are different from those defined on the whole K, see
3.5.22,....., 3.5.28, for a factor 3.
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where

Oy(trx) = sup (r2()Ir* Y ey mo))

vevo ]

1
Oyw) = sup (rEW)IrPY || man))

VE[Vo,Vx]

Oyirx) = sup (r2)IPY X l2ma)  (7.2:5)

ve[vo,]

1
Oyw) = sup (rE@)|IrPYV |l )

vE[vo,v]
Proof of Theorem M3, part II:

We sketch below the proof of the theorem.

1) We recall the evolution equation satisfied by tré), the Codazzi-Mainardi
equation for 0, 7.1.9, and the elliptic equation satisfied by a, relative to the
canonical foliation:

1 ~
Vgte + o (t00)” = —p+ IV logal? - 16 + g (k)]
.1
WCQC() = §Y7btr0 + B, (7.2.6)

Aloga=—(p—p) , loga=0

Observe that the quantities S, P, (Q — Q), see 7.1.12, which decompose the
Ricci tensor relative to Yo\K, are expressed relative to the canonical foliation.

2) Using equations 7.2.6 we proceed precisely as in the proof of Theo-
g
rem 7.1.1 and deduce the following results
724 9 2 . 9 2 .
|7 pS|p,5(o) + [r2 pWS|p,S(o) +[r2 PVNSL,,,S(O) <ce
72 9 2 9. 2
[r2 2 Plp,se, +1m2 »VPlpse + 177 »VgPlpse, < ce (7.2.7)
72 — 9 2 9 2
|’)"2 p(Q - Q) P,S(O) + |’)"2 pWQ p,S(O) + |’)"2 pQN|P,S(0) S ce
4 & 42 &
Ir* WV Sz sor) + 7" Vg Slirzsor) < ce
4 4
1YV Pll 2 sy + 1P VR P2 (i) < ce
2
||T4VNQN||L2(EO\K) + ||7“477QN||L2(20\K) + [|rty Qllr2zor) < ce

Remark: In the process of proving this result we prove also the same results
for 0, trf and their derivatives up to second order as in Theorem 7.1.1, see
7.1.17 and [Ch-Kl], Chapter 5. In fact, we will do better in what follows.
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3) Using the curvature estimates established above we use the equations

7.2.6 to obtain the estimates 7.1.27. We sketch the main ideas of the proof
below.
a) The first important observation is that the curvature term, p, in the third
equation of 7.2.6 is constant on the S(j) surfaces, therefore we can eliminate
it taking tangential derivatives. This leads to a coupled system between the
evolution equation for Ytrf and the Codazzi equation for 6. This system
is similar but simpler than the system for Ytry and Yx studied in Chapter
4 subsection 4.3.1, and can be treated as in that case. Therefore we derive
the following estimates

524 .24
[r2 70lps4 <ce, 12 P VO|ps, <ce (7.2.8)

5.2 — 9.2 — 2
[r2 7 (trd — tr0)|p,5,, < ce, |r" #(trd — ;)|p75(0) <ce,
7_2
2P Wtrllp s, < ce
b) It is easy to see that one can also obtain the estimates up to two more
derivatives for these quantities obtaining, for p € [2,4],
9_2_ o 9_2 94
LD % tr9|p,5(0) <ce, |r2 Py 0|p,5(0) <ce
r3 |l VP e8| 2 s < ce (7.2.9)
and the estimate, for the scalar function a, for ¢ = 0,1, 2,
3 2
GO Y log aly,s,, < e (7.2.10)
due to the elliptic character of the equation satisfied by loga.

4) The final step consists in using these results to estimate the various
connection coefficients x’, x’, (', ' and w'. We consider the future directed
unit vector normal to g, Ty, and the null frame, adapted to the canopnical
foliation, we denote {e}, e}, ¢y} where ¢}, = Ty + N, ¢4 = Ty — N. The
connection coefficients we consider here are those computed with respect to
this null frame ''. The following expressions hold, see also 7.1.22,

20 =a

¢y = %g(DA/eﬁl,eg) —g(De'ATo,N) = k(ey, V)

Xap = 9(Dhey, e) = —kap +0ap (7.2.11)
Xyp = 9(Dhes,ep) = —kap — Oap

2w = —D, loga , 2w = —D,; loga

" Observe that, as discussed in Chapters 3 and 4, this frame is the restriction to £y of
the null frame relative to the initial layer foliation.
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In view of the estimates for k, implicit in the assumption, Jx (3o, g, k) < €2,

we obtain the following result

O'5)(Z0\K) < e, O'5(S0\K) < ce (7.2.12)

7.2.1 Proof of Lemma 3.7.1
We recall the statement of the lemma:

Lemma 3.7.1: Assuming Jx (20,9, k) sufficiently small, the following in-
equality holds

Osonk < ¢k (20,9,k) .

The proof of this Lemma is straightforward. We sketch here only the main
steps. Looking at the definitions 3.5.9, 3.5.10, 3.5.12, it follows that we have
to estimate on Xy the L? norms of the various components of the Riemann
tensors R, ﬁOR, Z',TR, Z’ER, LsLrR. In 7.1.19 these Riemann components
are written in terms of the Ricci tensor of ¥y and of quadratic expressions
in k. Using the previous Theorem M3, see 7.2.7, and the conditions on k
imposed by the smallness of Jx, we can easily estimate these quantities. The
main simplification is that, on ¥y, all these Riemann components have the
same asymptotic behaviour as r — oo. More precisely we have O(r_%) for

the terms'? associated to R, 20R, ZgR and stronger for LR and LsLrR.

7.3 The last slice foliation

7.3.1 Construction of the canonical foliation of C,
The construction of the canonical foliation on C, is based on the proof of
Theorem M6 whose statement we recall:

Theorem M6: Assume given on C, a radial foliation, not necessarily
canonical, whose connection coefficients and null curvature components sat-
isfy 13 the inequalities

RI(Q*) = R[Z],(Q*) +E[2]I(Q*) S 66
O'(C,) = Op'(C,) + Oy (C,) < e (7.3.1)

12With the only exception of @, see 7.1.12, where we have to subtract its average Q.
13These are the “appropriate smallness assumptions” of the first statement of the the-
orem, see Theorem 3.3.2.
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where Rm'(g*) ,E[Q]'(Q*), O (C.), O (C,) are the norms introduced in
Chapter 3 section 3.5, restricted to C,, relative to the radial foliation. Then
there exists a canonical foliation, on C, relative to which we have

R(C.) =Ry (C.) + Ry (C,)
O(C.) = O(C.) + Op(C)

!/
< cgp
!/
< cgp

(7.3.2)

In addition it can be shown that these two foliations remain close to each
other in o sense which can be made precise.
Proof: We divide the proof into four parts.

a) We prove that the canonical foliation exists locally on C, close to
Si(A1).

b) Given a canonical foliation on C,, such that R(C,) is sufficiently
small, we show that the following inequality holds

0(C,) < c(To+R(C.)) (7.3.3)

This is the content of Theorem M4 whose proof is given in section 7.4.

¢) We compare the norms R(C,) and the norms R'(C,) and establish
the following inequality which we write, schematically, as

R(C.) < RI(C,) +¢(O(C,) + O'(C)R'(C.) (7.3.4)

see the proof in the appendix.

d) Combining b) and c) and using assumptions 7.3.1 we deduce

0(C) < o(Ti+RI(C)+e(0(C) + O'(CIR'C.))

< ¢ (10 +R'(C,) + O(C,)eh + 0(632)) (7.3.5)

Therefore, if € is sufficiently small we obtain the result of the theorem for
O(C,) and using again inequality 7.3.5 in 7.3.4 we derive also the estimate
for R(C,).

The proof of the local existence result, a), is sketched in the appendix to
this chapter, see subsection 7.7.2, and proved in detail elsewhere, see [Ni].
The continuation argument, b), to extend the foliation to the whole C,, is
based on the a priori estimates 7.3.3, proved in the next section.

Next corollary specifies in which sense the two foliations on C', are near.
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Corollary 7.3.1 Under the assumptions of Theorem M6, let S’ be a leave
on C, of the radial background foliation *, let u(p) = u.(p) the function,
defined on C',, whose level surfaces are the leaves of the canonical foliation

of C,, then

sup |u(p) — u(p’)| < ce (7.3.6)
(p.p')eS’

Proof: It is an immediate consequence of the proof of Theorem M6 and
we do not report it here.

7.4 The last slice connection estimates

In this section we give the proof of Theorem M4. We shall in fact prove
slightly stronger estimates which are encompassed in the following defini-
tions of the connection coefficients norms O* and O* on C,.

7.4.1 O norms on the last slice

The norms we introduce here are slightly different from the corresponding
ones defined in IC, in fact they are a little stronger. It is possible to prove
their boundedness due to the fact that the ', is endowed with a canonical

foliation. Their expressions are [Some corrections in the defini-
tions of the norms; in partic-

oo oo o 2 1 ular those for try — % and for

@ 0 = 0% —i—Sélp |r“(try — ;)| + Sélp |r (2 — §)| trx + 2 where an extra factor
- 9 - T_% is wrongly added.]

OH =0T+ sup lr7_(trx + ;)|

* * *D,S *
O[l} = [(’)1 + sup O*F (Dgg)] +0 [%T

pE[2,4]

0= 01+ 0 741

Oy = |03+ sup (017 (D) + 0 (DRw) | + 0y
pel?,

Ol =05+ 0f) , Oy =03+ 0Oy

where, for ¢ < 2,

O0*P%(X) = sup 0P (X) (A, v) (7.4.2)

%

1411 the Oscillation Lemma this result is needed only for a small distance from C, N 3.
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The O*g”s norms, present in 7.4.1 !5 are listed below,

0TS (R) = [r DIV R s

07 (%) = [P R PIR s

05 (trx) = [r®HD) 22 P4 (trx — ) s

075 (trx) = [rH D W by — T s

07 () = [r DR g

0P ) = D iy s (7:4:3)
0" (w) = [P P, 6

07 (Dgw) = 0 3 739Dy, ¢

0P (D2w) = [+ 3 391Dy, 5

Finally we introduce the O3 norm on the final slice,
O3 = O3(trx) + O3(w) (7.4.4)

where

1
O3(trx) = suwp (P2 )PV el v a1 )
AE[No,A1]

* 1
Oj@) = swp (rOIIPVulle. o)  (745)
/\E[/\(),/\l]

Using these norms the improved version of Theorem M4 is the following:

Theorem M4: Given a canonical foliation on C,, relative to which
R+ Ry <A
Moreover assume
0[2] (Q* N 20) + 03(20) + Q[3](Eo) < I() .
If A, Ty are sufficiently small, then the following estimate holds

QFQ} + OE},} <c(Zo+A) .

150bserve that all these norms are different from those defined on the whole K, see
1

3.5.22,....., 3.5.28, for a factor 72. Moreover we do not need, on C,, norms relative to w.
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The proof of this theorem is divided in Proposition 7.4.1 and Proposi-
tion 7.4.2.

Proposition 7.4.1 Assume that, relative to a canonical foliation on the
last slice, C', we have

Ry + Ry < Ag
RY+RY <A (7.4.6)

Moreover assume that
O1y(C. NEp) + Oy (€. NXo) < T (7.4.7)
If Ay, Ay and Iy are sufficiently small, the following inequality holds
O+ Oy < e(Zo + Ag + A1) (7.4.8)

Proposition 7.4.2 Assume that, relative to a canonical foliation on the
last slice, C',, we have

Ry +Rg < Ag

R +RY <A

Ry +Ry < Ay (7.4.9)

Moreover assume 6

Oiy(C. NXo) + Oy (C. NEp) < T (7.4.10)

then if Ao, A1, Ao and Iy are sufficiently small the following inequalities
hold

Q)[kg] + OFZ] <c (I() + Ay + Al)

O; < C(IU+A0+A1 +A2) (7.4.11)
Proof of Proposition 7.4.1: The proposition is proved by a bootstrap

argument similar to the one of Theorem 4.2.1.
i) We prove that, assuming

O < Ty, O'F < T (7.4.12)

'6Observe that the assumptions 7.4.10 follow from the “global initial data conditions”
3.6.3, see Theorem 3.3.1.
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with I'y sufficiently small '7, the following inequalities hold

05+ Oy < c(Zp+ Ap)

07 + 07 < c(Zp + Ao) (7.4.13)
Also,

2
sup sup |r pT trX + =)lp.s | < c(Zp+ Ay)
PE[2,4] r

- 2
sup <sup Ir® 75 (Try — —)|p g) < e(Zy + Ao) (7.4.14)
PE[2,4]

sup sup|7" - Q——)|p,g+(’)*p’ (w )) < c(Zy + Ap)
pE[2,4]

up (o*{” (W) + O (Dyw)) < (o + Ao+ Ay)
pe(2,4

ii) From the estimates 7.4.13, 7.4.14, using the Sobolev inequality of Lemma 4.1.3,
it is possible to control Q*‘[’(ﬁ and (’)*[%‘]3, obtaining

O (C.) + O (C.) < e(Zo + Ao) (7.4.15)
iii) To complete the bootstrap argument we consider the portion of C,,

Ci([M1, X2)) = {p € Cifulp) € [A1, M)}

where the following inequality holds 8
O (C([M1, A2))) + O"g) (C.c([A1, A2))) < To

Using the result in ii), assuming Zy + Ay sufficiently small, it follows that in
this portion of C, a better inequality holds, namely

Lo

2

so that the region can be made larger. To avoid a contradiction one has to
conclude that it coincides with the whole C,.

Repeating step i) again, we have also proved that inequalities 7.4.13 and
7.4.14 hold on the whole C,, and, therefore, the inequality,

O 51(Ca([A1, A2))) + O (C([A1, A2))) <

O+ O0fy < e(Zo+ Ao+ Ay)

completing the proposition.

'"T'y must be such that T'§ < (Ao +Zo) < To.
18That the interval [A1, A2) is not empty is guaranteed from the assumptions 7.4.7.
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Corollary 7.4.1 The previous result implies the following inequality, see
also Corollary 4.3.1,

sup [r7_(trx + trx)| < c(Zo + L. + Ao) (7.4.16)
! X

~x

7.4.2 Implementation of Proposition 7.4.1

Part i): Under the bootstrap assumption 7.4.12 we prove the first estimate
of 7.4.13.

We start controlling the norms Og’S(Q*)(n) for ¢ =0,1, p € [2,4], using the
Hodge system

divn =5 %% 0 - (p-7)

1
cyrly = §X ANX+o (7.4.17)

Observe that this Hodge system is derived from the Hodge system 4.3.34,
with the help of the relation y = i defining the canonical foliation, see 3.3.9.
We use the estimate of x and x contained in the bootstrap assumption 7.4.12
and the assumptions on p — p and o contained in the first line of 7.4.6. All
this implies the inequality:

O*OP,S(,’,’) + O*IP,S(,),’) < C(AO + Fg) < C(I() + AO) (7418)

We estimate next the norms (’)’f)p’s(trx) and (’)’5‘”’5()2). For them we use the
evolution equations for try and x, along C,, see 3.1.45,

%(Qtrx) + §QtrX(QtrX) = 20%(|n|* - SXX +p) (7.4.19)
d . 1 . 1 .. ~ ~
2 (W) + 520X (DXap) = — 50, (Qrx) + O (Y& — n®n)ap

Using the bootstrap assumption 7.4.12 for x and for y, the estimate for
p and the previous result for n and Y7, we estimate the right hand side
of the equations 7.4.19. Applying the evolution Lemma 4.1.5 we obtain
immediately '°

1—-2 1-2 1 9
[r P texlp,s. < I trxlpc.nz, + oC (To (Zo + Ao) + 1)

2-2 3. 2-2 5. 2
[P 72 p,s. < 1P 2Ky + ¢ (To (Zo + Ao) +T)

!9The estimate for ¥ is better on C, than on the whole I due to the fact that, on C_,
the estimates for n are stronger.
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and, using the assumption 7.4.10 for the connection coefficients on ¥y, we
obtain

|r171%trx|p75* <c ((Io + Ap) + Lo (Zo + Ag) + F%) < ¢(Zo + Ao)
1
|T2772’7'72)A(|p,5* <c ((I() + Ao) + T (IU + AU) + Fg) <ec (I() + AU) (7420)

To control the norms relative to 7, try —try and try —trx , we need first
to estimate (D3logQ — D3log ) and YD3log (. This is achieved in the
following way:

The function log €2 satisfies, on the last slice, see 3.3.12, the elliptic equation

1

Plog = [divn+ (5 X~ T ~ (- 7)

Differentiating this equation with respect to D3 we infer that D3 log 2 sat-
isfies the following elliptic equation, see Lemma, 7.7.4,

A(QD3logQ) = divF, + Gy — Gy (7.4.21)

~ ~ 3 1
where Fy =QB+F , F = (597] X+ ZerX>

1 o 1 _ 1 N ==
Gi=H+ 70D3(x - %) — 5(Qtrx)(p —p) + 7(Ar) (X - x =X X) -

Remark: The term in Fl
1 1 1 2
“Ontey = O 4+ - Qn (try — =
1 ntrx = o0 + 2 77<1X T)
contains a linear term; observe, nevertheless, that div(Qntry) = Qtrxdivn

plus quadratic terms which can be estimated by I'2. Thus using again the
relation y = 1,

dhv (@) = @) (52 =T D) = (0= 7)) + OT) < e(Bo +T3)

Therefore applying Proposition 4.1.3 to 7.4.21 we obtain, for p € [2,4],

3 -
17572 (D log @ — Py log Q)5 < e(Ag +T2)
3
P25 72 YD, log Qs < c(Ag + T2) (7.4.22)
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To estimate O*g’s(trx), see 7.4.3, we have to control try—try. It is a simple
calculation to show that its evolution equation is, see also Proposition 4.3.14,
denoting W = trx—trx , W = try —try,

d = 1 ~ 1~ — l=—7 —
d_W + §QtrXW = —§E(Qtr><) - 5E(Qtrx) +F-F (7.4.23)
» X

where F' = 202(|n|?> — 3xx). To use this evolution equation we need an

estimate on C, of E We observe that V. = Qtry — Qtry satisfies the
following evolution equation, see 4.3.113 and Proposition 4.3.15 2°,

d 1 —
SV Q. = V2 - V24 2(2Dslog OV - [2%? ~ D7IRP]
. I

+2(Qiry) (2D log 2 — OD; Tog 2)

~2(Qtry) (D3 log 2 — D3 Tog Q)

Applying to it the evolution Lemma 4.1.5 and Gronwall’s lemma, using the
estimate for x in the bootstrap assumption 7.4.12 and the estimate, see
7.4.22,

3 [
572 (D3 log @ — OD3 log Q) .5, < ¢ (Zo + Ag)

and, finally, using the assumptions for the connection coefficients on 3¢ 2!,
see 7.4.7, we obtain the following estimate for W,

|r1_1_2’T,%

Wlps. < c((Zo+80) + T (To + Ag) + TF) < e(To+ Ag) (7.4.24)

Therefore the right hand side of 7.4.23 can be bounded in the |- |, g norm
as

1

1~ l=———
\5mmr><> + S W(y) - (F-F)| <

D,Sx r2r

c(To) (Zo + Ao) -

(MY

Applying the evolution Lemma 4.1.5 and Gronwall’s lemma to the evolution
equation 7.4.23 for W =try—try, using assumptions 7.4.7 relative to X, we
conclude that

_2 1 —
[r? 272 (trx =T |y o + €(To) (Zo + Ao)

20Tp Proposition 4.3.15 the estimate of w depends also on Z., due to the factor w — @.
Here the dependance on Z. is absente as, on C , w — w is estimated differently, see the
proof of Proposition 7.4.4.

21O (B0\K) (Z0) < Zo , OF3(Z0) < To

22 % -
|r" 22 (trx —trx)|p,s. <
<

* )
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which, together with the inequalities 7.4.20, completes the proof of the first
inequality of 7.4.13 for the non underlined connection coefficients. Inequality
7.4.24 allows also to conclude that

_2 3 —
[r' ™7 72 (brx =) lp.c. o + e(To) (Zo + Ao)

-2 3 S
|r" P72 (trx —try)|p,s. <
<

We shall now estimate the angular derivatives Ytry, Yx and ¥7. The last
term has been already estimated, see 7.4.18. To estimate Ytry we take
the tangential derivative of the first equation of 7.4.19. The estimate then
proceeds in the same way as the one for try. Observe that, as the foliation
on the last slice is canonical, the dependance on the Riemann components
disappear, as Yp = 0. We obtain the result, for p € [2,4],

1
P37 2P 2ty |5, < e(Zo + Ao) (7.4.27)

To estimate Yx we can proceed in the same way, differentiating tangentially
the evolution equation of x along C,, see 7.4.19. Observe that the right hand
side of this evolution equation for ¥x does not contain curvature terms. We
obtain the estimate

1
P8 72Pr2Yg |, 5. < (o 4+ Ao) (7.4.28)

Remark: It is interesting to remark that the estimate of ¥y could also be
obtained from the Hodge system,

.1
divx = SVtrx —C-x =8,
see 4.3.13, applying to it Proposition 4.1.3. To achieve this result, however,

we need a better estimate for . This is done below.

To estimate { we consider its evolution equation along the incoming null
hypersurfaces, see 3.1.45,

D3 +2x-¢—D3YlogQ=-p

Due to the “better” estimate for YD3 log €2, see 7.4.22, it follows immediately
that, on C,, ( satisfies the inequality

1
[r272Pr2¢), 6. < e(To + Do) (7.4.29)

This estimate for ( and the analogous one for its tangential derivative, ob-
tained exactly in the same way, together with the estimates for n and Vn,
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see 7.4.18, allows also to conclude that n and Yn satisfy on C, the same
estimate as n and Yn,

Or3(C,) () + OV (C,) (1) < c(Dg +T3) < e(To + Ag)  (7.4.30)
To control Ytry we derive the evolution equation for try, along the incoming

“cones”, and using again the bootstrap assumption 7.4.12 for x and Yx and
the estimate 7.4.47 for Yw, we obtain

3-2 3
|r° T2 Ytry

2 1
v, < |,r3—57-3 WtrX|P,Q*ﬁEO +c (FU(IU + AU) + F%) (7.4.31)
c ((Io + Ag) + To(Zo + Ag) + F%) <c(Zp + Ap)

AN

To complete the proof of the inequalities in 7.4.13 we are left with estimating,
on C,, X and Yx. These estimates are obtained applying Proposition 4.1.3
to the Hodge system

divy = SVtrx +¢-x =8,

obtaining

[(M[eH

1—

SRS

lr" 272 Xlp,5. < c((Zo+ Ao) +To(Zo + Ap)) < c(Zo + Ap)

3
7272 WX|PaS* < C((IU + AU) + Fo(I() + AU)) < C(I() + Ao) (7.4.32)

2—

3
| ol

|r

To complete the proof of part i) we have still to prove the inequalities 7.4.14.
We obtain the estimates for try and try, p € [2,4],

22
[P (X — Dlp.s. < e(To) ((Zo + Ao) +TF)
[r P (brx + = )lp,s. < (L) ((Io + Ag) + Fo) (7.4.33)

starting again from the evolution equations for try and try along C, and
using the estimate 7.2.8 for (@ — %) at XgNC,, proved in Theorem M3.

The remaining estimates of 7.4.14 are obtained in the following way. We
control Alog €2 from the estimates, we already have, of divn and divn. From
it we control log 2, recalling that on C,, log Q = 0, and its first and second
tangential derivatives. This result is collected in the following proposition,
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Proposition 7.4.3 Under the bootstrap assumptions 7.4.12 and the as-
sumptions 7.4.6 for the Riemann components, we have, for any p > 2,

1 1
P3Pz Y log Q5. < clr P72 Alog Q5. < ¢(To)(To + Ao)

1 1

[ 212 W log Qp,s. < c|r® /P72 log Q5. < ¢(T0)(Zo + Ao) (7.4.34)
1 1

17272 Jog 2Qp.5, < cr® /P72 Alog Qlp,s. < ¢(To)(Zo + Ao)

To complete part i) we have still to control Og’S(Dgg) (C,). Thisis discussed
in the next subsection together with the proof of Proposition 7.4.2.

Proof of Corollary 7.4.1: The estimate of (try-+try) is a easy consequence
of the previous estimates 7.4.25, 7.4.26 and 7.4.33, the final result is

sup |r7—(trx + trx)| < ¢(Zo + A) .

~x

7.4.3 Implementation of Proposition 7.4.2

The proof of Proposition 7.4.2 is similar to that one of Proposition 7.4.1.
We use, in fact, for the norms associated to yx,x the evolution equations
obtained by differentiating the previous ones. B

The estimates for the second tangential derivatives Y7217 are obtained differ-
entiating the Hodge system 7.4.17 and those for Wzﬂ differentiating twice the
evolution equation for ¢ and taking into account the estimate for W2D3 log Q2.
The control of the norms O (]Z)gg), OF(D;w) and O3(w) is obtained, via
elliptic estimates, in Propositions 7.4.4, 7.4.5. These propositions allow
to control also the norm O% ’S(Dgg) completing, therefore, the proof of
Proposition 7.4.1.

We omit the details concerning the estimates for the second angular deriva-
tives of try, X, trx, X,n,n and we sketch below the estimate for the third
derivatives of try and w.

Estimate for Oj(try) :

The estimate of ||T3Y73trx||L2(Q*ﬂV(u&*)) procceds in a way similar to the
estimate of Y{J in Proposition 4.5.1 where [ = divl/ + Q~ltryxp, but is
simpler due to the canonical foliation of C,. We start with the evolution
equation for Y73trx obtained deriving three times tangentially the evolution
equation, along C,, for try,

1
%(trx) + §Qtrx(trx) =) (7.4.35)
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where
Xy = —Q(Ds log Vtrx + 22Yn|* + 2 (25 - XX) (7.4.36)
satisfies, using the results of Proposition 7.4.1

X = 06 + 0(r 277 7) (7.4.37)

The evolution equation for Ytry can be written as

%(Wtrx) + Qtrx(Vtry) + (Dslog Q) (Virx) = —x(Vtry) + X1 (7.4.38)
where
X = —%(Wtrx)trx — (VD3 log Q)try + 47 - Y + Vlog (D3 log Q)| (7.4.39)
and
X = 0( i 2) + 0(r %) (7.4.40)

Iterating the procedure we obtain for Y73trx the evolution equation

(Y1) + 200 (Firx) + (D log Q) (V1rx) = ~(Virn) + 4 (74.41)

where X3 is a term, up to fourth order in the connection coefficients up to
second tangential derivatives and linear in the Riemann components up to
first derivatives. Its asymptotic behaviour is

_1 _
P75 Xs|ps = O(r 07" %) + O(r=>7?) (7.4.42)

Therefore applying the evolution Lemma 4.1.5 and the Gronwall Lemma we

obtain

4-2o3 4-23 " 1,42

[r P YVotrxlp=2,s(u,u,) < clr TP Votrx|p=2,0.n5, + )du [r P Xslp=2,s
uol\u,

2 Ip+ A
< ot pW?’trX|p:2,Q*ﬁ20 —1—6(07)l (7.4.43)
7 () u

From this expression we obtain, with ¢ > 0,

17 V2 texl| 2. v (u, ) (7.4.44)

1 1
i 2 u 1 2

<ec </ |7"3Y73trX|127:2,Q sz) +c(Zp + A) (/ —— )
uo(u,) ) u )?u

0(@*) T(uaﬂ*
1
< clup(u,) — ul* |3V texly=.0.nm, ) +o(To + A)

*

1
= L (u, w,)ut
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The estimate of the first term is connected to the estimate of Y73tr9 on
3. In fact, on g, try = trf — k]g,ﬁ and the second fundamental form is
controlled from the assumption on Jx. Therefore we are left with estimating
|7‘3Y73tr0|p:27g*020. Observing that C, N Xy is, by construction, a leave of
the canonical foliation on Xy we can integrate the evolution equation for tr@,
7.1.25, after deriving it tangentially three times,

V5 (Vo) + gtrO(W?’trO) = —20-Y°0+ P (7.4.45)

wher P3 depends on the second fundamental form up to third derivatives
and to terms with less tangential derivative. Taking into account that, due
to the strong asymptotic flatness, lim, |7“% YV3tr| = 0, and the estimate
7.2.9, we conclude that

u 2
|2 py73tr9|p:2,0m20 <c(Zo+A)
This implies

Iy + A
|T3W3tr9|p=2,C*ﬂZg < C% (7.4.46)
T2 (U’Oaﬂ*)

which, substituted in 7.4.44, completes the estimate of r |3V try| lL2(C. V()

Estimate for Oj(w) : This estimate is a corollary of the elliptic estimates
proved in the next subsection.

The elliptic estimates on the last slice

Osservazione 7.4.1 Si osservi che come detto nella nota 23 su C, il risul-
tato per QD3slogQ é migliore di quello che si ottiene in K anche se in K
st usa la foliazione canonica. Questo mon e vero per le derivate tangen-
ziali prime e seconde che hanno la stessa stima in K se si usa la foliazione
canonica. St veda il corollario 4.4.1. Questa osservazione ¢é importante
perché é connessa al fatto che QD35 log Q é diverso da zero anche nel caso di
Schwarzschild . Piu‘ precisamente la ragione é la sequente: su C,, logQ = 0
mentre questo non é vero all’interno di K(\o,v«). Pertanto la stima su C,
¢ come se fosse una stima di log Q) —logQ ¢ quindi migliore perché ¢ log Q)
che si “ricorda” di p.
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Proposition 7.4.4 Under the same assumptions > as in Proposition 7.4.1

there exists a generic constant ¢ such that 23, for p € [2,4], on C,,

1—2
|r T

ITZ%TE Y(QD3 log ) |p,s(u, w.) < co(Zo + Ao) (7.4.47)
2 3
|fr3_57'_2 WQ(QD:; IOg Q)|p,5’(u,ﬂ*) < CO(IO + A0 + Al)

njw

OD3log Q| s(u, u,) < c(Zo+ Ao)

1w |

Proposition 7.4.5 Under the same assumptions as in Proposition 7.4.2
there exists a generic constant ¢ such that

5
P75 72 (D) log Qs (u,1,) < e(Ty + Ao)
2 5
P2 P2 Y(QD3) 2 log Q) |5 (u, 1) < ¢(Zo + Ap + Ay)
7
|7"1_72’T_2 (2D3)* log Qp 5. (u,w,) < c(To+ Ao+ A1) (7.4.48)

The proofs of these propositions are in the appendix to this chapter.

7.5 The last slice rotation deformation estimates

We prove in this section Theorem M5 which we recall here,

Theorem M5: Assume that, relative to a canonical foliation on C,, we
have

Opy(C. N Xp) + O3(30\K) + Op31(Z0\K) < cZy -

If A, Ty are sufficiently small, the following estimate holds

D(C,) <c(Zy+A) .

The proof of this theorem is divided in two propositions.

22We stress here that the proof of this proposition does not require the completion of
Proposition 7.4.1.

23Observe that this result for QD3 log Q on C, is stronger than the one which holds on
K, see Propositions 4.3.4.
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Proposition 7.5.1 Under the same assumptions of Proposition 7.4.2, as-
suming also, that

Dyy)(C, NEp) < e(Zp+ A) (7.5.1)
1
(/ |~ Hlp_sc 020> " <o+ A)
uo(u) =

then the following estimates hold, for p € [2,4],

r Y00, 5. <c(Zo+A4) , YO, <c(Zo+A) (7.5.2)
. _2 .
rOH gylps. < c(Zo+A) , [P 7 VOHyl,s. <c(Zo+ A)

and
||TY72H||L2(Q*QV(u,@*)) =<c(Zo+4A) (7.5.3)
Proposition 7.5.2 Assume that, relative to a canonical foliation on L\K,

R + Ry < A
and Oy (C N3o) + Op3)(Z0\K) + Op3(Z0\K) < cZo

then, if A and Ty are sufficiently small,

Dyy)(C, NEp) < e(Zp+ A) (7.5.4)
1
(/ dul|7'2_% 2H|12):2 C 020> ’ S C(IO + A)
uo(u') ’_*

Proof of Proposition 7.5.1: We first recall the construction of the rota-
tion vector fields on C',. We start with the vector fields defined in Si(A1) =
C, N Yy where we have already defined the rotation group, see [Ch-KI],
Chapter 3, and the proof of next proposition. This is achieved in a similar
way as we did for the extension discussed in Chapter 4, subsection 4.6.1.
Let g € S«(\) be an arbitrary point of C,. As S,()) is diffeomorphic, via
P to Si(A1), with A = X — XAy, there exists a point p € S,(A1) such that
q = ¢,(p). We define the element O, of the rotation group operating on
q € C, in the following way?*:

(Os59) = QA(OU))

24 At the differential level the extension is defined through: VO, = QA*(i)O.
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where (O,;¢q) is a point of S,(A) and (O;p) is the point of S.(A;) obtained
applying O 25 to the point p. This extension of the action of the rotation
group to the whole C, satisfies

O, = ¢,0.¢, .
This implies that the generators, @0, satisfy
[N, (i)O*] -0
From the previous definitions we easily check that
[D0,,90,] = €70, , 4,5,k € {1,2,3}

In conclusion the generators ()0, defined on the whole C,, tangent to S, (\)
at each point, satisfy

Wo,,Do,] = eijk(k)o*
N, D0,] =0 (7.5.5)
9("0.,e3) = g("0.,e4) = 0
Moreover as N = QN = Qegs, it follows
[(i)O*’ es] = (P e, (7.5.6)
where OF = —(00, (V,log Q) , W0, = g(VO, e.).

Proposition 7.5.3 the quantities V0,, and (YO,)q satisfy the following
evolution equations
)
du
d .. X : X : :
%(W(l)o*)ab o) [X()C(W(Z)O*)GC — %, (V90,0 + D0.e(x 410 — X,.0)

+ (i)O*cRSabc - (i)O*cXCbCa + Kab((i)o*c"?c) + (i)O*c(WaX)cb] (7-5'8)

O = Qx,, 0., (7.5.7)

Proof: From [N, ?0,] = 0 we infer that

OD;0, = 10, (V,log Q)N + QD iy, €3 (7.5.9)

?The rotation group operating on S.(\1) = C, N Yo is the one obtained extending on
Yo the rotation group defined, asymptotically, at spatial infinity.
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and, choosing a moving frame satisfying ID;e; = 0, we obtain 7.5.7.
To obtain an evolution equation for Wa(l)O*b = (W(’)O*)ab we start from
equation 7.5.9, which we rewrite as

D3(l)0* = (i)O*ccheb + (i)O*cheii

Using the commutation relations proved in the appendix to Chapter 4, see
Proposition 4.8.1, we obtain

d . . . . .
%(W(”O*)ab = Q [be(W(’)O*)ac — X, (V0.) 0 + D0, (x 10 — X,0m0)
+ D0, Bape = D0.cx yGo + X0 (M0wene) + 01o(V X))

Using the evolution equations 7.5.7 and 7.5.8, we obtain immediately the
estimates 7.5.2 for (WO,. To estimate WZ, and WH,, we recall their last
slice expressions, see 4.6.11,

. 1 i . 1
7, = 1 (9090, e3) + 9(D30., €0)) = 7,

. 1 . ) 1.
OHa = 5 (97,701, ) + (7,704, 0)) = 5 ey

An elementary calculation shows that on C,, WZ, = 0. To prove the re-
maining estimates of 7.5.2 and 7.5.3 we need the evolution equation of (VH
and of its tangential derivatives along C,, up to second order. These evolu-
tion equations can be obtained as in Chapter 4, subsection 4.8.4, with the
obvious modifications. The final result is

Oy = 0 (1, O+, VHen) + 20T O, (F, log D)0,

du
+9(%,,V, 0. + 1,.¥,70.)

(9 Han) + 50UV, ) = 9%, (V) + %,y [ e — (VH ]
+de [(WH)adc - (WH)dac] + ﬂ1 (7510)

From these evolution equations the estimates in the last line of 7.5.2 follow
immediately.

To prove inequality 7.5.3, which involves up to third derivatives for the con-
nection coefficients, we need the evolution equation for the second tangential
derivative of (JH along the incoming null hypersurface. Proceeding as in
Chapter 4, with the obvious modifications we obtain an evolution equation
of the form

%(WQH) + Qtrx (V2 H) = ((V°H) + (Lo V’x) + Ho (7.5.11)
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where H, collects all the quadratic error terms which do not depend on
third order derivatives of the connection coefficients. From this equation it
is immediate to prove that

2—-2 9 / 2—-29
[r* PV Hlp=a,5(v,u,) <c||r PV H|p=2,c .nso + . (Zo+A)

r(u,u,)u

where the second factor comes from the integration along C, and Proposi-
tion 7.4.2. Substituting this estimate in the integral in 7.5.4 we obtain the
expected result, once we prove the inequality

v 12-202 7712 2
/ a1 BV H 0 g < 0(To + A) (7.5.12)
u

o(ux*

Proof of Proposition 7.5.2:
To control the left hand side of 7.5.12 let us observe that

" 2-29 9_2_o
/(f)du% PY Hlpoo o nm, = luo(w) —ullr™ PV H[j_o ¢ ns,
uo(uw

_2
< erg(M)r* P YPHEy ¢ s, (7.5.13)

1

where 7o(\1) = [£[S.(A1)[] is the radius of of S.(A1) = S(g)(vs) = C,.N%p,
see definition 3.3.1 and definition 3.3.8. To control |r2_%W2H|p:2,g*mgo we

2 .
have, therefore, to control |r2_5W2H|p:2,5(0)(V) on Xy. WH,, on &) has the
following expression

. 1 . .
Ha =5 (9(7,70,e) + (7,70, ) (7.5.14)

where (V0 = (i)OEO are the generators of the rotation group defined on 3y
and g = gy, is the metric restricted to ¥y. To define the rotation group on
Yo, we use exactly the same procedure used in [Ch-KI], Chapter 3, where the
function u(p), defining the foliation, is u(p) = u(g)(p), see definition 3.3.1.
The strategy consists in using the “global initial data conditions, to define
the rotation group at the spacelike infinity of ¥y and extend it to the whole
Yo using the diffeomorphism generated by the vector field N = 2. The

t ou
final result is that the )O’s satisfy the following relations 2:

26The relation between N = &% and N = ég—u on Y is of the same type as the relation
between NV and ez on C,.

[Observe that the relation be-
tweenN:%andN:i
on Xy is of the same type as
relation between N and e3 on

c,.]

9
du
th
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[ 0, 0] = e”k * 0o
[N, 0] = (7.5.15)
g(%o, N) 0

On Xy, in the coordinates {u, 8, ¢}, the metric is written as
9(,) = a’du® + yapdd®dg’

and {¢} = {0, ¢}. The adapted moving frame Fermi propagated along ¥,
is denoted {N,e4}, with A € {1,2} and N = aau

From the commutation relation [NV ( ] = 0 and the properties of the
adapted moving frame we obtain (V N(i)O) 4 = 04590 which can be rewrit-
ten as

D00, = a0y (7.5.16)
du

To obtain the evolution equation for V4@0p = (V(i)O)AB, we derive tan-
gentially the equation (V N(i)O) 4 = 045905 and use the commutation re-
lations [V 5, ¥], which have the following expression, see the appendix to
Chapter 4,

(Vi YIV)a = —0ac(YV)en — (@ 'V 40)040Ve + 0apla™ ' Va)Ve
+Ha™'Y4a) (Y VB + Nehe[V), ViV,
where V' is a vector field tangent to S(g). Choosing V' = WO we obtain

J . R . . , .
—(v490)p = a [QBC(VA(Z)O)C —0ac(Ve0) 5 + P0¢ (QCB(G_IWAG)

du
—bca(a 'V a)) + POc(V 40) pe +0an(a 'Vea)P0c
+N7e3 [V, V] 90| (7.5.17)
and from it, immediately, the evolution equation for VH on %,

d
du()HAB —G(OBC()HCA_OAC( )HCB) + Hop (7.5.18)

where

. : . . 1,.
Ho =a [— (eBc(Vc(z)O)A + OAC’(VC(l)OB)) + 5(2)00 ((WAQ)BC’ (7.5.19)

1

+H(V0)ac) +0ap(a”' Voa)P0)e + 9 ((3)RBC]\7A + (3)RACNB) (i)OC]
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From the results of section 7.2, the estimates for (YO and YO obtained
using the evolution equations 7.5.16, 7.5.17 and the properties of the rotation
group at the spacelike infinity of ¥y it is immediate to infer that Hy =
O(r%) Differentiating twice tangentially this evolution equation and using
the commutation relations of ¥, Y] we obtain, the following evolution
equation for (Wi(i)H ),

d . . . . . .
%(WQ(”H)AB + atrd(Y*VH) a5 = a (HBC(WQ(Z)H)CA - 9AC(Y72(Z)H)CB) +Haap
where Ho depends on the second derivatives of the Riemann components

Applying the evolution Lemma 4.1.5 and Gronwall Lemma to |r°~ 7 Y7 H|p=o S0y
we obtain

2,_
I

VAN

H|P 2,5(0) (u*)

_2 o0
c <|7’2 ”WZ(Z)H|p:2,S(o) +/ pH2|p 2,S(o)>

g2
C/ |'f'2 pH2|p:2,S(0) (7520)

Sk

VAN

recalling that lim, |r2_T2’Y7iH|p 2,5(u) = 0. The integral on the right
hand side can be estimated, usmg the explicit expression of Ho and the
estimates of section 7.2, as ro(A)~ (Ig + A), which substituted in 7.5.13,
gives

/ dU'ITQ_%WQHIf):z ¢ nny < Ty + A)? (7.5.21)
uo(u') =

completing the proof of Proposition 7.5.2.

7.6 The extension argument

In this section we present the proof of Theorem M9 which we recall below

Theorem MS9: Consider the spacetime K(Xo,vy) together with its double
null (canonical) foliation given by the functions u and w such that

1) The norms Q,O, R are sufficiently small
O0<¢, 0<¢, R<¢ -
2) The initial conditions on g are such that

OXo[vs,vs +9]) < €
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where So[vi, vi + 0] = {p € Xo|u(g)(p) € [V, i + 0]}

Then we can extend the spacetime K(Xg,vi) and the double null foliation
{u,u} to a larger spacetime K(X\g,vi + 9), with & sufficiently small, such
that the extended norms, denoted O', R’ satisfy

O <cey, RN <cep -

Proof:

1) By an adapted version of the classical local existence theorem, starting
with initial data in the annulus Ay = {p € Yolu(oy(p) € [Vi, v + 5]} we can
construct, provided § is sufficiently small, a solution of the Einstein equations

()

in its future domain of dependance, we denote Ky,
K = KA, ve +0) .

The boundary of IC(()(S) consists of the annulus Ay C Xy and of two null

[A mistake here has been cor- hypersurfaces, one incoming given by the portion 27,

rected; in fact the correct ex-

ression is C,. (A1 — o =
=] Co(M1 = 0) = Cvs + 65 [A1 — 0, M1])

of the null hypersurface C,, = C(v. + §), where

A—0 = U|Q(V*+5)m§;0 , AL = U|Q(u*)|’120 )

and one outgoing given by the portion of the null outgoing hypersurface
initiating at Si(\1) and contained in IC(Ag, v« + d) , which we denote C*(9).
We can endow the region IC(()é) with a double null foliation {u,u}, where u
and u are incoming and outgoing solutions of the eikonal equation with, as
initial data, the function ug) restricted to Ajp.
It is trivial to see that, provided ¢ is sufficiently small, relative to this double
null foliation we have

0 <

€, R < =€ (7.6.1)

N W
N W

2) Using a non standard version of the local existence theorem (see the
discussion in the Remark 3 below) we can extend the spacetime IC((;S) U
K(A1 4 o,v4) to the future domain of dependance of C*(0) U C, (A + o),

where

C.(A1+0) = C(vs; [A1, M + o)) (7.6.2)



stake here has been cor-
; in fact the correct ex-
on is O’ and R’ satisfy
cad of O and R satisfy...]

7.6. THE EXTENSION ARGUMENT 383

provided o is sufficiently small. Moreover starting with the foliation induced
on C*(§) and on C, (A + o) we can extend the double null foliation in this
region in such a way that O' and R’ satisfy

O <2, R <2¢ (7.6.3)

3) Denote 7, the supremum of all the values of o for which this extension
can be done in such a way that O" and R’ satisfy

O < cpey , R' < coey (7.6.4)

where the constant ¢y will be specified later on. If @ = Ay — A\; the proof is
completed. Otherwise let us consider the spacetime (A + 7, v, + d) where
O" and R' satisfy 7.6.4.

By using a somewhat simplified 2® version of the apriori estimates developed
in Chapters 4,5,6, we show that, in fact, O’ and R’ are strictly less than
cp€ and thus reach a contradiction, if we choose ¢y sufficiently large.

This is accomplished in the following steps:

a) using a variant of the methods of Chapter 4 we show that inside the
region 29
A 40,0, +6) =K +o,v, + ) \{KEP UK +0,00)} (7.65)
O’ can be bounded as

O'lx <c (OI|C*(6) + OI|Q*()\1+0') + R,|A) < c(3ep +R) (7.6.6)

b) By the comparison argument of Chapter 5 we know that R’ can be

bounded by CQ% where Q is the quantity defined in Chapter 3, subsection
3.5.1, relative to the vector fields S, T, Ky and the rotation vector fields ¥)O,
defined in A(\; + o, v, + 0).
Remark 1: The vector fields S, T, Kj are defined, as before, with the help
of the extended functions u and u defined in A(\; + o, v, + ). The rotation
vector fields (WO are defined in the same way as in Chapter 4 by an extension
argument starting from C,. With the help of the diffeomorphism ¢;, along
C(u), we are extending in the future direction.

c¢) To complete the argument it remains to apply again, but in a slightly
different situation, Theorem M8. Therefore we prove that, in the region

*"Recall that u < 0, therefore \ varies inside K = KC(\o, v) in the interval [A1, Ao
28Gimplified with respect to the length of the interval in which u varies.

29Recalling definition 3.7.23, we have A(A1 4 o,v. +06) = A(A\1 4+ 0, v + ) U IC(()S)

[A mistake here has been cor-
rected; in fact the correct ex-
pression is “strictly less than
coey--.” instead of “strictly less
than 2ep...”]
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A(M + o,v, +0), Q is bounded by a constant multiple of its restriction to
C*(0) UC, (A1 + o). As, on the other side, Q3 | (5)uc. (A +0) is bounded by

1 1
Q% e (5) nto) = Q2o 5) + Qe (0 o) < 4 (7.6.7)
1
Therefore Q|2 < 4eey and R[)y < 4c’ey which implies, from 7.6.6, that
O'|x <c ((9 o) + O'lc, o) + R |A) < (3cey + 4c3e)) (7.6.8)

Therefore, choosing ¢y > 8¢, this completes the proof of the theorem.

Remark 2: The only argument which is somewhat different with respect to
those developed in Chapters 4,5,6 is the one relative to the O norms. The
estimates needed above to control the © and D norms in A are somewhat
different from those of Chapter 4. Indeed in Chapter 4 the not underlined
quantities try, x and n were estimated using the evolution equations along
C(u) moving backward in time starting from C,. Now, on the other hand
we start from C, and move forward in time for a very short interval of size
0. The smallness of the interval makes this procedure straightforward.

Remark 3: The non standard local existence theorem which we have in-
troduced above does not seem to exist in the literature. Although we do not
prove it here we sketch below a possible approach to the proof.

Using the Einstein equations written relatively to a double null foliation,
see subsection 3.1.7, we can first prove an adapted version of the Cauchy-
Kowaleski theorem assuming that the spacetimes IC(()(S) and (A1 + o, 1)
are real analitic. Once we have that, in order to get rid of the analiticity
assumption, we propose the approach outlined in [KI1-Ni] which is based on a
priori estimates similar, but far simpler than the ones described in Chapters
4,5,6.

An alternative approach would be to make use of Rendall’s solution, [Ren],
of the Characteristic Cauchy problem. More precisely we will need an adap-
tation of his approach to the H* category, see also ?? and ??. Starting with
x on C*(6) and x on C, (A + o) and assuming that they are sufficiently
differentiable, say ¥ € H*(C*(8)) and x € H*(C*(C, (A1 + o)) for k suffi-
ciently large, this H* variant of Rendall’s result should allow us to construct
a spacetime A(\| + &,v, + ), with & and § depending on the H* norms of
x and x. Due to the loss of derivatives inherent in the characteristic Cauchy
problerTl to apply this result we need a degree of smoothness for x and x in-
compatible with our setup. This loss of derivatives can be attributed to the
fact that in the characteristic Cauchy problem one treats the data x, x (or
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4 and €, see discussion in subsection ??) as arbitrary. In reality, however,
our X, X, as they are induced by the spacetimes IC(()(S) and (A1 + o, v,) sat-
isfy additional equations. In particular this means that we do not just know
X, x on C*(8), C, (A1 +0), but also their derivatives D3y, Dsx. Of course we
cannot in general prescribe both ¥, X and D3x,Pyx; in our case, however,
these quantities satisfy on C*(§), C, (A1 +0) compatibility relations induced
by the structure equations.

To avoid the loss of derivatives in the solution of the characteristic Cauchy
problem one needs to appropriately approximate our ¥, x, taking into ac-
count also the compatibility relations mentioned above, induced by the

spacetimes IC[(;S) and (A1 + o,v,), by a smooth sequence xp, Xn and as-

sociated with them the spacetimes E,, = A()\l + Opy Vs + Sn) constructed by
the variant of Rendall’s result mentioned above. Once this is done we can
apply a vastly simplified version of the apriori estimates described in chap-
ters from 3 to 7 to show that these spacetimes can be extended to values
of 5,5 independent of n and then pass to the limit. As the details of this
argument are not very relevant to this book we plan to present them in a
separate publication.

7.7 Appendix to Chapter 7

Osservazione 7.7.1 Si osservi che in questo paragone tra le due foliazioni
nella parte iniziale della regione estesa A = AU ICg, le due foliazioni sono
entrambe nella Initial layer region o almeno parte di A certamente lo . Ora
le notazioni possono trarre in inganno e far sembrare che si sta paragonando
la Null canonical foliation con la Initial layer foliation come viene fatto es-
tesamente nell’Oscillation Lemma. Qui la situazione € diversa. Entrambe
le foliazioni sono nella initial layer region estesa o nella regione sopra a 0.
La dimostrazione la possiamo considerare fatta solo sopra a y. Nella initial
layer region la vicinanza delle due foliazioni e conseguenza immediata della
piccolezza di questa. Qui si dovrebbe aprire una parentesi per dire che nel
Main Theorem, si deve assumere che K sia foliato dalla Null canonical foli-
ation sopra a X estesa e dall initial layer foliation nella Initial layer region.
Il teorema mostra che IC esteso cioé K(Xg,vs + 0) ha le stesse proprieta.
La seconda osservazione é che tale comparison si puo fare anche guardando
Uequazione di evoluzione di g(L, L") lungo una generica C(vi+v) di A come
é fatto dopo su C,,.
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7.7.1 Comparison between different foliations

We discuss here how to compare different foliations associated to different
solutions of the eikonal equation and how to prove that, under appropriate
conditions, they stay near one to each other.

Consider two double null foliations {u’,u} and {u,u} with common incom-
ing null hypersurfaces C(v). We denote by C’()), C(X) the null outgoing
hypersurfaces v’ =\, u=\.

In the application of this result to the proof of the Main Theorem, in partic-
ular Step 6, we need to assume that the {u',u} foliation is globally defined
and small, that is O’ < ¢, and that the foliation {u, u} is defined in a neigh-
bourhood A of C,,, see 3.7.23. We can assume also that O is sufficiently
small in A.

We want to establish a quantitative relationship between the two fo-
liations in A. Associated to the null hypersurfaces of these foliations we
introduce the null geodesics vector fields

0 0
I uv ! — MV
L'=—-¢"0,u R L g 6,,uaxu

y 0
L=—g" 8uﬂw (7.7.1)

and the corresponding “spacetime lapse functions” Q and ', see defini-
tion 3.1.12,

g 9, O = — (207 | ¢ udu = —(20%)7H (7.7.2)

Associated to the two double null foliations we have two different double
null integrable S-foliations whose leaves are

S'Ov) = '\ NCW) , SOv)=CNNCW) .

Starting from the geodesic vector fields we associate to these foliations two
adapted null frames 3 {¢), ¢}, e}, and {é4, é3,¢e,} in the following way:

ey =407°L | ¢y =L, el tangent to S'(\,v)
ey =40°L' , é3=1L, e, tangent to S(\,v) (7.7.3)

39The null vector fields chosen here are not normalized null pairs in the sense of defini-
tion 3.1.13. In fact we have é4, = 2QN = 2N and és = L = (ZQ)_IM and the same for
the primed ones.
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The two null frames are related in the following way

N

1
e4 = ¢y + [40202(~2g(L, L'))] & + 2 [402Q(~2g(L, L'))]” Guc,
é3 - 63 (

7.7.4)

1
2

ea =€} + [40°Q% (~2g(L, L))|? 646}
where |6|2 = 1. Moreover
1
2 A
O0qa€q
(

7.7.5)

& = by + [40207 (~2g(L, I'))] & — 2 [4020"(—2g (L, L'))]
1
e =e,— [4929’2(—2g(L,L’))] 2 6aés

These formulas follow immediately from the fact that both frames are null
frames and from the relation g(és,¢é)) = 16Q2Q0%g(L, L').

How much the foliations are , one to each other, is controlled by the term
0= [4929'2(—2g(L,L'))] (7.7.6)
To estimate g(L, L') we start from its expression
g(L, L") = ¢" 9 ud,u’ = %g‘“’aﬂ(u — )0, (u' — u) (7.7.7)

and express the right hand side of 7.7.7 using a specific choice of coordinates.
We choose {v,u,w®} as coordinates, where v is the affine parameter of the
null incoming geodesic curves along the hypersurfaces C(u). It is an easy
computation to write the explicit expression of the metric,

g(-,-) = X2du?® — (dvdu + dudv) — X, (dudw® + dwdu) + vepdw®dw®

where, analogously to what was done in subsection 3.1.6, see equation 3.1.61,
N = 8% + X and

0
5o X =20 =2y, .

The components of the inverse metric are

g =0, g8t =0, ¢"=-1, g =X, ¢g"" =0, g" =",
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Using thes coordinates we observe that, along the C'(v) null hypersurfaces,
common to both foliations, u and v satisfy

u(p) = u(v,u,w) / Y '—/ (20%) " (v, u, w)dv'
u'(p) =u'(v,u,w) = %d ’—/ (292) 7 (W', u,w)dv'  (7.7.8)

Therefore

2g(L, L") = g™ [0u(u —u")Ou(u" = u) + Ou(u — u)0y (u' — u)]

+¢"? [0y (u — u')Dg(u' — u) 4 Bg(u — u') By (u' — u)]
+7% 0, (u — u) Oy (u' — w) (7.7.9)
= —[0p(u—u)0u(u" — u) + 9y(u — vy (v — u)]

~ X0, (u —u")g(u' —u) + g(u — u) 0y, (v — u)]
+72 0, (u — u') By (u' — u)

In the chosen coordinates the right hand side of 7.7.9 becomes

Computing these terms explicitely we obtain

, Q2% (/1 [P 1 1
g(L,L) = —W /0 maﬁlogﬁ 0128 lOgQ +X /0 Wadlogﬁ— madlogﬁ
vl 1 1 1
— 'y“b/ (WGG log 2 — 50a log Q’) (ma,, log @ — >0y log Q’)}
0
= [I]+ [II]+[II1] (7.7.

Writing this expression in terms of the null frames 7.7.4, 7.7.5, we obtain
the following expressions

1] +[11] =
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1

TorTe RN /0 (2923&1 log 2 — 29,2664 log9>+ /0 S 0e 1082 + o = 640y, log O

(9’2_92) v 1 d 1 , d v 1
+W/0 QZX &ﬂogQ—leX 9qlog Q2 _X/o madlogﬁ leadlogQ

1
Q%% [ v v O 03
v /0 <292 0, log Q2 — Q/2 son e, log Q') + /0 507 soz e, log O+ moaaeg log Q'

Q2 —Q2) 1 (v iy . / 1 A ,
+W |:/0 (Wo ( )8% log 2 — me ( )ae/ log Q2 —m®2(0 ( )Ud)aég 10gQ>
c v d
and
Ql2
(171] :_(QW ab/ Qdiaed logQ/ 9,29,, (0, 108 2 + O3 (66.2)9s, log ) (7.7.12)

where 6 is the one form ossociated to the vector fields eq, d € {1,2}. Putting
together 7.7.10 and 7.7.12 we obtain

O(v,u,w) =

1
v o}
_4(912_92){/0 (29286410g9 29,23 logQ)—i—/ (29,2383 log ' + legaae/ logQ)
v
- [/ (ﬁed( 0%, log © — mo (X)0y, log @ — m@z(e (X)5)z 1og9'>

—X°© / ( (i) logQ——HdaeiilogQ'——@é(O'ci&d)aéélogQ’)}

Q2 c“ed Q2 ¢ 02
oyt / megaed log © / ot (0, 105 + ©% (654) o Q’)} (7.7.13)
and from this expression we have immediately [There is a modification and a

correction in the statement of
Lemma 7.7.1 Assume the spacetime lapse function 2 bounded, then, if (9{0} lemma. 7.7.1]

is sufficiently small, we have 3!

20| < e(Opg + Of)) (1 + Ofy) (7.7.14)

Proof: Taking the sup of © along C(r) and using that Ofo} is small and

that the connection coefficients w’ and 7', 7’ have the appropriate decay, the
result follows immediately. The next corollary is an immediate consequence
of this lemma.

31The decay is stronger on C,.
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Osservazione 7.7.2 mi sembra che la formula del Lemma dovrebbe essere

[There is a modification and a
correction in the statement of

corollary 7.7.1] Corollary 7.7.1 Assume the spacetime lapse function Q bounded, then if
Ofo] is sufficiently small we have

R <R+ cOpp(1 + O R’ (7.7.15)

Osservazione 7.7.3 mi sembra che la formula del Corollario dovrebbe es-
sere

R<R + cOpy (1 + OfQ])R'
qui le norme Oy e Of2] intervengono poiche’ in R ci sono le derivate seconde
di Riemann.

Osservazione 7.7.4 Nellemma precedente sembra che in realta basti chiedere
meno per le norme accentate, ma questo € da verificare con attenzione. Sem-
bra, infatti, che basta chiedere, per il Lemma 7.7.1, solamente che Oy sia
piccolo. Questo sarebbe soddisfacente anche sotto un altro aspetto. Infatti
st ricordi che nella prova del Teorema M6, che sostanzialmente assicura
lesistenza della foliazione canonica su C, e delle stime per i corrispondenti
coefficienti di connessione, le norme “primed” entrano solo nella prova della
esistenza locale.

Nella dimostrazione della esistenza locale della foliazione canonica non sem-

bra ci sia bisogno di controllare Ofﬂ’ ma solo Ofl}, (questo quando si deve

controllare il “mapping” per (U)WBW, altrimenti basterebbe solo Ofo])' In-

vece non sembra si debba mai controllare Y7'2x'. Ora si ricordi che su C,,
ma in generale su ogni C, se la foliazione non é canonica si ha che W'2x’
dipende da Y'?p e quindi non ammette stime LP(S').

Tuttavia si deve anche ricordare che ['esistenza della foliazione canonica si
usa per costruire tale foliazione su C,, avendolo assunta esistente su C,.
La foliazione di “background” su C,, ¢é costruita estendendo la foliazione
canonica su C', a C,,.. Proprio la vicinanza tra C,, e C, permette di con-
servare il controllo sulla norma Ofy. Rigorosamente questa estensione viene
fatta facendo evolvere tutti v coefficienti di connessione “forward”, cioé verso
il futuro, e quindi avendo la possibilita di controllare, ad esempio, W'Q)(’ Su
Q**‘
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Si ricordi anche che [esistenza della foliazione canonica viene usata due
volte, la prima wvolta per dimostrare che esiste una regione K con tutte le
proprieta’ richieste dal bootstrap. Ora in questo caso poiché la regione puo
essere piccolissima di nuovo W'QX puo essere stimato muovendosi sembre dal
basso, “forward”, e sfruttando che in questo caso la dipendenza da Riemann
e migliore. Questa considerazione tuttavia non serve se si é certi che per la
costruzione della foliazione canonica il controllo di OfZ] non serve. Questo
sara’ esaminato in dettaglio in [Ni]. Supponendo infine di non volere usare

mai OfZ] si deve osservare che l'equazione 7.3.4,

R(C.) SR'(C.) +¢(0(C.) + [0 (C.) + 0 (C]) R'(CL)

andrebbe riscritta anche se tutto funzionerebbe ancora, infatti in questo caso
le seconde derivate di Riemann non primed sono stimate dalle L*(C,) norme
delle stesse quantita primed e da L*(C,) norme per alcuni coefficienti di
connessione che nel caso canonico ammettono anche LP(S) norme.
In conclusione penso che si possa concludere che

a) Le norme Ofﬂ possono essere utilizzate.

b) Nella costruzione della foliazione canonica non c¢’e’ bisogno di queste
stime, ma solo di controllare (9{1}. (Invece per Q'[Q} tutto va bene.)

7.7.2 Proof of the local existence part of Theorem 3.3.2

We recall the equations which define the canonical foliation on the last slice,
see 3.3.12,

du* _
T = 29) 7 wde.nme = M
1 1 = 1 -
Alog Q2 = 5‘1’1‘@ + 3 (K -K+ Z(trxtrx - trxtrx))
log2Q =0 (7.7.16)

We rewrite these equations, with respect to the following null frame

1 - .
L:EM’ L*=20N , €y =ea,

where {N, N} is the normalized null pair associated to the canonical folia-
tion. The quantities which refer to the null frame {L, L*, ¢} } will be denoted
with a double prime, for instance x”,(”,p"... , and the following relations
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hold between primed and unprimed quantities

n

A=Ca=ValogQ , 0y =n,=-C"", ni=na
1
Xip = 50Xan » X =20as . o' =p (7.7.17)

the equations 7.7.16 become

du _
o= 207 wlso) = A
1 n 1 A AN 1 Aol /! 7/
Plog2Q = Zdiv" + 5 |(GXX" = GX"X") — (0" =)
log2Q =0 (7.7.18)

where we write Sy = S.(A\1) = C, N %p.
To solve this system of equations we make the following preliminary steps:

a: We observe that we can replace the given background foliation on C', by
the geodesic foliation which we define below. This can be easily done locally
near Sp. The geodesic foliation is defined by the level surfaces of the affine
parameter v,

S'(r) ={p € Cilv(p) =7 € [0,n1]} ,
where S’(0) = Sy and v is defined later on.

b: Associated to this new “background foliation” we define a null frame
adapted to it,

{L’ N” ei‘]} ?
with the €'y vector fields, Fermi transported along C,.

c: We choose (v,w) as coordinates of a point p € C, where w = (6, $) are

the angular coordinates of Sy 2. The vector fields €/, can be expressed in
the form
hly = e
0w lu(p)

We denote y(v) the restriction of the metric g on the two dimensional sur-
faces S'(1) C C,,

7(“?"‘))(" ) = g(p)|5"(7')('v ) .

32Let p be a point € C,, there exists a null geodesic \ starting at po € So such that
P =A@, po). Then (v(p),w(p)) = (¥,0(po), p(po))
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The null geodesics on C, define a family of maps {¢,} between S’'(0) and
S’(v). In our adapted coordinates they are given by

S'(0) : po = (0,w) = p =1u(po) = (v,w) € §'(v) ,
therefore the metrics {(v,-)} can be thought as a family of metrics on S'(0),
(v, w) = Yap(v; w)dwdw’ .
d: We consider the class of foliations, defined through the functions W (X, w)33,

(W)F : P\l,)\g] X SO — Q*
MWF\w) = (WA w),w) , W(A,w) =0 (7.7.19)

The leaves of the W)F foliations are the two dimensional surfaces

Swn(A) =A{p € Cul(v(p), w(p)) = (WA w),w)} (7.7.20)

and Sqyy (A1) = S’(0). Observe that the background geodesic foliation cor-
responds to Wo(A\,w) = A — Aq.

Once we have introduced this space of foliations, we define an appropriate
norm on it and construct a transformation such that its fixed point will be
the solution of the system 7.7.18. This is achieved through the following
steps:

A: Observe that the vector fields

0 N ow 2
ow®  Jw® v

(7.7.21)

are tangent to S(y)(A) for every A. Using them we define the orthonormal
frame {(We 4}, adapted to the W (), ) foliation, as

d oW o
wy, _gaf_ Y 9N _ ,
AT <8wa P 81)) = ey + (04W)L (7.7.22)

B: We construct a null frame adapted to S(y)(})

{L, (W)N’ (W)eA} )

33The function W (\,w) must have some appropriate properties to define a foliation. In
particular one has to require that W has no critical points and that, for any fixed A, the
level surfaces of W (\,w) are diffeomorphic to S2.
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The relation of this null frame with the background one, {L, N', €'y}, is given
by 34

WIN = N'+ (0W)?L + 2(85W)es
Wea = €4+ (04\W)L (7.7.23)
where (OW)? =3 (O W) = ZA(Be/AW)Q.

The connection coefficients and the relevant null curvature component rela-
tive to this Sy foliation can be expressed in terms of those relative to the
background foliation 3°:

w —

( )XAB = Xup

Wy = Ch = (W)X, , (7.7.24)

Wap = Xan + (@ W)' Xy +2 (0, W)Cy + (0, WG]
—2(0EW) (D5 W)Xy + (OaW)Xps| +2 (V' (VW )ls 1))

1 1
Wp =0 = SOW)B, + (W) (0 W)dlpe

AB

C: We introduce the nonlinear map A whose fixed point will be the solution
of the system 7.7.18 in the following way: we denote with ||G||zr(s,) the
following norm:

1
|G Lr(s50) = (/s |G|pduo> ’ (7.7.25)
0

where dyg is the measure on Sy. On the space function C°(I; L?(Sy)), with36
I =10, \2], we introduce the nonlinear map

AW w) = W w) = AW\, w)

defined through the following steps:

34These relations are the same as used in subsection 7.7.1. Here, nevertheless, we have
a more refined control over W.

35Repeated capital indices mean sum over them. We use the following notations xy 5 =
X (€a,es), Wxag = Wx(Wea, Wep) for all the connection coefficients.
Here we use A = XA — \1.
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C1: We counsider the portion of the C', null hypersurface

C.(I;W)={peC.lpeSu\;reT} (7.7.26)

Cq: Given W we consider on C, (I; W) the null frame

{La (W)Na (W)eA} )
W)Q, Wy,
component W)y — (W)y where the average is done with respect to Syy.

(W)

the associated connection coefficients V)¢, ( 'x and the curvature

Cs3: On the two dimensional surfaces Syy)(A) of C,(I; W) we solve the
elliptic equation

1 1
(W)4A log oWl = g(W)d/lv(W)ﬂ + = (_(W)A(W)A _

[\

log2W)Q =0

where, for any given A, (W)A = (W>Y7 A(W)W 4 1s the intrinsic Laplacian rela-
tive to the surface Sy)(A).

C4: We define the non linear map
A 2
AW) (A w) = / 2 (g, ) () dN (7.7.28)
0

To prove the local existence of a canonical foliation we have to show that
the trasformation A(W) = W has a fixed point W,,

AW,) =W, .
Indeed given W, we can define implicitely u, = u.(v,w) according to 37,
U (WA w),w) = A (7.7.29)
Then,

_ duy duy dW, du*g((W*)Q)Q

dA dv d\ dv
3"We remark that, as the “background foliation” is equivariant with respect to the
vector field L, the (local) foliation *")S(X) = {p € C_|A(W)(p) = A} is equivariant with
respect to the vector field AN = 2((WIQ)?L .
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which implies
du 1

dv 2((W-)2)2

as desired. The portion of C, endowed with this canonical foliation is
C.(IL;W,) ={pel.lp € Sw.)(A);rel}.

In the following we consider a simplified version of the map A(W) close to
the previous one. To obtain it we rewrite 7.7.28 in the following way:

w) *_ LY o
AW) (A, w) ——+/ ( s 4y, (1) (@) —§> X

Assuming ‘ ( Q|5(W) vy (w )) — 1| small for any function W and any

2
eI, weexpand 2 ((WQ|g i (w)) —1%in terms of log (W) and consider
w)y(N) 2

only the lowest order term of the expansion 38 in log 2(W)Q,
by A
AW\ w) = 3 +/0 (log 2(W>Q|S(W)(X)) (w)dX' (7.7.30)

= %+ /0A (tog 2)02) (W (X, w), w)dN
where the last line follows since by definition
05 (0 (@) = AW (N, w),w) -
Cs: We look for a fixed point of the map 7.7.30 in the space
£ =My_,CHI; WE(S)) (7.7.31)

with the Sobolev norms || - ||Wp so) defined by

1Gllwg(so (Z L WG|de0> < o0 (7.7.52)

where ()Y denotes the covariant derivative with respect to So.

38We consider only the first term of the expansion
207 — = =10g2Q + = Z logZQ

It will be clear during the proof that the result obtained using this “approximate” map
can be immediately extended to the exact map if the portion of the null hypersurface,
C.(I), does not differ too much from a portion of a null cone in the Minkowski spacetime.
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Definition 7.7.1 In £ we define the closed set Ks, 5, as follows:
W € Ksy 0, if, for any p € [2,4]
W(A=0,w)=0
0,1,2
supres [|OF (WA, ) = 3) o) < 0o (7.7.33)
0,1,2
suprer |13 OF (W) = 3) lls(sy) < o

We can finally state a precise form of the local existence part of Theorem
Meé

Theorem 7.7.2 Assume that

VAN

Ry ( )
Oy ( )

relative to the background foliation. There exist positive constants |I|,dg, o1
such that A has a fized point in the set Ks, o, .

)+ Ry (
)+ Opy'(

! /

Q* Q* 60
! !
Q* Q* 60

VAN

Proof: We need to show that:

i) A maps Ks, 4, subset of ﬂ;‘;ZQC’I(I; WP2(Sp)), into itself.
ii) A is a contraction on Ks 4, .

We shall omit the proof here, see [Ni.

We restrict now the comparison between different foliations discussed in
subsection 7.7.1 to the specific case where the two foliations are the back-
ground and the canonical foliation on C',,. We recall that the existence of the
canonical foliation has been proved in Theorem M6. As discussed in sub-
section 7.7.1 and required in the proof of the “Oscillation Lemma”, see also
Lemma 4.8.2, we have to control the quantity (—2g(L’, L)) in the “initial”
portion of C',. The proof we present here is different from the one discussed
in subsection 7.7.1 40, The result is expressed in the following lemma.

Osservazione 7.7.5 Nel lemma 7.7.2 sequente si dimostra la stima su C,
di g(L,L") che viene utilizzata come ipotesi nella prova dell’“Oscillation

39 Conditions 7.7.33 imply also that the following norms are bounded

0,1 0,1
sup|(0)Y7 W|Loo(50) ; sup|8A(0)Y7 W|Loo(50) .
Xerl Aer

40The proof used here can be easily adapted to prove Lemma 7.7.1.
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Lemma” nel Capitolo 4 e in particolare nella prova del comportamento “as-
intotico” di g(L, L") su 230, Lemma 4.8.2. In questa dimostrazione la stima
di g(L,L") su C, é ottenuta usando le proprietd dei coefficienti di connes-
sione rispetto alla foliazione canonica su C, e quindi come assunzione su C,
Uipotesi O(C,,) < € va sostituita da O*(C,) < €. Inoltre poiché si userad
anche del fatto che |r"*12n'| < ce) perché cio possa avvenire occorre assumere
|7"%17’|20 < € perché questo implica, applicando 'equazione di evoluzione a
n' nella “Initial layer region”, il comportamento desiderato. Inoltre questo
lemma ci interessa ed é provato solo nella regione C,(I) dove la stima di
g(L,L") & necessaria.

Lemma 7.7.2 Assume on C,(I) *!
O'(C.(I) <&, O7(C.(I)) < & (7.7.34)
Assume also that
73 |50 < € |8(L' )]sy = 0 (7.7.35)
then, on C,(I), the following inequality holds

Ir’r_g(L',L)| < ce (7.7.36)

Proof: The proof is similar, but easier to the one for the estimate of g(L', L)
on 230. The evolution equation along C, for g(L', L) is

@ (' L)—zﬂ(a '+ Qw)g(L' L)+9’(—2 (L', L))
dulg b - Q g gg Y Q g b

M=

G- (n'—n) (7.7.37)

which is obtained by a direct computation. Applying now Gronwall’s Lemma
we obtain

’

u
B2 Dle. (' w) < [ du” (1g(T' DIF ~nl) (") (7.735)

Up

1
As, due to the assumptions of the lemma, |’ — n| = O(r' 27_?2), the thesis

follows mimicking the argument used to complete the proof of Lemma 4.8.2.

1 0*(C,) has the same expression of O(C.,), with all the connection coefficients norms
substituted by those defined in 7.4.1, 7.4.3, 7.4.4.
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7.7.3 Proof of Propositions 7.4.4, 7.4.5

Proof: The proof of these propositions is a consequence of the next two
lemma.

Lemma 7.7.3 Let us consider on S *2 a solution in the sense of distribu-
tions of the equation

PAu=G

where G satisfies the condition: G = 0. Moreover let us assume that
G e W2P(S)

where an element of W=2P(S) is a bounded linear functional on the space
of the test functions C*°(S) such that the following inequality holds

|<G,p>[<C (|W2¢|LG(S) + 7 V| pags) + T72|¢|LG(S))

with q the number conjugate to p and a constant C independent from ¢.
Introducing the norm |G’|W_2,p(5) as the infimum of the possible constants
C, the solution u is an element of LP(S) and the following inequality holds

lu — | < c|Gly-20(5)
with a constant ¢ depending on ky, ' and k.
Lemma 7.7.4 Assuming the last slice endowed with the canonical folia-

tion, then QD3 logQ, (2D3)%1ogQ, (2D3)3 log Q satisfy the following ellip-
tic equations

A(OD3logQ) = divFy + Gy — Gy (7.7.39)
A((OD3)*log Q) = divFy + Gy — Gy (7.7.40)
A((2D3)*log Q) = divF3 + G3 — G (7.7.41)

where

- - 3 1
F=Q+F , F = <§Q17-X+ ZQntrx)

42Here S is a two dimensional compact surface such that k,, > 0, where k,, = ming rzK,
ka = maxg r’K and K is its Gauss curvature.
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XXX

=

Lobas . <
Gy = H + 70D (% %) -
1

Q3
H=—(t “%- -
2(2 rxp+2x a+n-pB)

(Qtrx)(p—7) + 1 (1)

DN =

F, = Qdiva + E

—~ — 1

F2 = (DgQﬁ — QL"LUQ) + Q <D3F1 + 2Y7(QD3 lOg Q) . X - X . F1 + §tTXF1>
Gy = OD3Gy + (Qtrx)(Gl — G_l)

F3 = QdivD3a + Fy

(7.7.42)

(7.7.43)

— —~ 1
F; = (D:;Qdfivg - QJZ’UDgg) +Q <D3F2 + QW[(QDg)Q log Q] . X — X -Fy + §tT‘XF2>

G3 = QDgGQ + (Qth)(GQ - G_g)

Proof: The proof of this lemma, is postponed to the end of the appendix.

Proof of Lemma 7.7.3: Let ¢ be a function € C*(S), let 9 be a solution

of A = ¢ then it is easy to prove that 1 satisfies the following bound for

any g > 0

V%l raesy + 1 VW ras) + 7 21 — Blracs) < cldlras)

therefore

|<’U,—ﬂ,¢>| = |<u—ﬂa$¢>|:|<$ua¢>|
= |<Ga¢>|:|<G7¢_E>|
< |Glw-20(s) (|772?!J|Lq(5) + 7Y pagsy + 2 — E|L‘1(S))
< dGlw-20(5)|lLa(5) (7.7.45)

so that
| <u—1,¢>| < c|Glw-20(s) B La(s)
for any ¢ € C*°(S) and, from it,

lu =0 p(s) < | Glw-20(s) -

Proof of Proposition 7.4.4
We apply Lemma 7.7.3 to equation 7.7.39 with

u = QDjslogf}

(7.7.44)
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G = d{iVFl + (G1 — G_l) = CMVQQ-’— d/ivﬁ’l + (G1 - G_l)

3 1 .
div QB + div (5977 X+ ZQntrx) + (G — Gy)

The only derivative of the Riemann component, is div{2$, all the other terms
of G are controlled from the sup norms estimates of the non derived Riemann
components and the estimates of the connection coefficients and their first
derivatives on the last slice. In particular, assuming Zy, A sufficiently small,

3 __
5572 (Gh = G1)lpos < ¢(To + Ag) , Vp > 2
3
P2 v QBlys < Ay, Vp € [2,4] (7.7.46)
and
1 ~
52 div lp.s <c(Zo+Ag) , Vp>2 (7.7.47)

The last estimate is true only on the last slice *3 due to its canonical foliation.
In fact from 7.7.42 it follows

~ 3 1
Fi = (=Qn-x+ -Qnt
1 (2 TIX+4 nrx)

2 1 ~
and, to control |’I“47p7',2 div Fy |5, recalling the estimate for x, we have to

2 1
control |77 72 QYntry|p,s. Differently from what happens in K, divn has
a better asymptotic behaviour on C,. In fact from 3.3.12 we obtain

1 1 1 1 — 1 -
—divp = =div{ + =Alog = = (K — K + —(trytry — trxtrx))
2 2 2 2 4 = =
171, 1— _
= 3 <§xx —5xx —(p— p)) (7.7.48)

and from this expression the required estimate for divn follows. Therefore

<G> < \/Swm@wh\/S(dﬁvﬁ)w\+\/g(cl —G—lw\
< [ 1081vel+ [ e Fillgl + [ 161~ Gillyl
1 2 3 1 2 1 -
< ﬁh'? pTEQ§|p,S|W¢|q,S+ﬁ|’F4 pTECVIVF1|p,5|¢|q,S
|r" P2 |r" pT2

1
431n K the analogous of the estimate 7.7.47 holds without the factor 72.
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1 3_2 % R
+ 7| 52 §||7" r72(G1 = Gh)lp,sldlys
rorpT?
1 2 3 2l .
< CﬁSgPKVQ PT20Bp,s + I IZ’TEWFllp,S>
2]
3 1 1
+ 3G = Glus| (F170las + 51Wlas) (7.7.49)

which implies

|Glw-20(5) <

|7“1 12’7'%
3_2 3 1
I (e G1)|p5] <o (Tt A)
|r™ P2
From it we obtain, for any p > 2,
— 1
|2D3log 2 — QD3 log |, s < 0017(10 + Ay) (7.7.50)

- p 2

Considering Y(QD3 log Q) and Y2(Q2Dj3 log ) and proceeding exactly in the
same way we easily conclude that, for p > 2, 4

1
|W(QD3 log Q)|p g < Cﬁ (I() + Ao) (7.7.51)
roer?
and, for p € [2,4],
1
|W2(QD3 log Q)|p,S < C()m(zo + A() + Al) (7752)
r°pT

Finally, as on the last slice log 2Q) = 0, it follows

QO 1d 1 11 dS| 11 d
~Opiegan = L4 [geo0- 1 L og20 + L L4 [ 10000
0=3Dslog 2duls| /s 27157 )/5 T 315 du /Og

1 1 d
= 5[ |S|( |S|)l g2Q+(Qtrx)log2Q+QD310g2Q]

= (Qtry)log 2Q + QD3log 2 .

3
4“4 From it supg |rr2QDslog Q| < ¢(Zo + Ao) follows.
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Therefore, recalling the inequality *°

Flp,s < |flp,s (7.7.53)

and Proposition 7.4.3 we have
I - 1 o
|Dslog 292, 5. < |(Q2rx)log 29, s, < c—|(log2Q — log2Q)|,s. (7.7.54)
= T

and

-
-

2 5 1 2
57 OD3log 20,5 < = |r' 772 (log 20 — Tog 20)|,.5. < = (Zo + Ao)
T T
so that, finally,
3_____ 0
r' 52 ODslog 2Qp,s. < c(Zp + Ao) (7.7.55)

completing the proof of Proposition 7.4.4.

Proof of Proposition 7.4.5

To apply Lemma 7.7.3 to this case we use the following definitions,

u = OQD3(2D3log)

G = div (QD3F1 L 20(V(QDslog ) - § — Q% Fy + %QtrXE) +(Gy— )
= divdiva + divFs + (G2 — Go)

Therefore we have to control the integrals

fS CVIVCMVQ’I/} ) fS’ CVIVFQ'I/J ) fS(GQ _G_2)¢ .
The following estimates hold, for any p > 2,

[ avaivay| < [ 101961 < e (ir Frials) 190

i

|

~ ~ 1 _2

[ divEu| <c [ |RIPS <o Er
S S 3—-2.2

|r° P72

Folp,s|Vihl,s

3
2

1 3-2 3~ 1
Se— a2 Rlps | CIVYles (7.7.56)

P> 72|

451t follows immediately from the Holder inequality. In fact

1
— 1 P\ 7 1_ 1_ 1,1_
Flos = (/W (/ f> ) =155 [ 7.1 sl = 115 Ul = s
S S S
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Clearly the last estimate is the appropriate one as a long but simple analysis
of all the terms composing F5 allows to conclude that, for any p > 2,

3
5072 Bylps < e(Zy + Ag) (7.7.57)

To estimate the third integral [¢(G2—G2)1 we have to examine the structure

of the term Gy = QD3G1 + (Qtry) (G —G1). We already have the estimates

of (G1 — G1) therefore we have only to investigate the term QD3G;. Ex-

tracting the terms where D3 operates on the Riemann components we can

write

1
2

D161 = 0(H)div s+ O %

)diva + O(T )p + 0( ) (B +a) + D3Gy

where D3 G is the part of D3G; which does not depend explicitely from the
Riemann components and for which it is easy to prove that the following
bounds hold, for any p > 2,

[
|7“37%T_2D3G1|p,s < o(Zi + Ay) -

Therefore we write

G = 9DyG1+ (Qrn)(G1 — Gr) = (O()divS + Ol diva)
+ [(0G00+ 05 + ) +DiGr + @iy (61 - @)
= (O(%)d{ivﬁwLO(r—lZ)d/ivg)vLéz

and it is easy to prove, collecting all the previous estimates,

2 3 .
2P T2 Galp,s < o(Ti + o)
for any p > 2. Collecting all these results together we obtain

| [(G=Goul < < [1(0G8) 1791+ ¢ [ (0G5)a) 1P6l+c [ |G - Gl

< ! 313Gy - C Sy
< e I (G - Ga)lp,sltlgs + ¢ — |72 Bl s Veblo.s
|r° P72 |r° P72
1 1—2 %
+C| 2 g |'f’ PT 7gp, W¢|q5
T pT~
< L =315 (Gy— Gy 3.2 3.3
< e [T C s T s £ Il
T pT~
1 1
A\ VWles + 51¥les (7.7.58)
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Using Lemma 7.7.3 and the analogous of 7.7.54 we conclude

1 5
(@Da(@Dalog W)s < e———{ 1" F 7 (Ga = Galps

1 9_2 3 1_2 B 1 3 .
+- <|7“ P12 Blp,s + | P alp, s)} + - (Ir P72 Fylp, )(7.7.59)
T - T

1/ 123 1, 1 1
= (10 als) b (192l + 1P blas + 51las)

1
3
Therefore
5
[r! 572 (QD5(2D3 10g )y, < clGlyyp.s (7.7.60)

and, for any p > 2,

5
2

_2 1 _2 2 3
Gl < {1372 (Ga = Glps + 1 (17 32 Blys +1r' Frialys )|

1 3.2 3 ~ 1 2 3
+ = <|r pTEF2|p,s> + — <|7" PTEQ|p,s> < c(Zy + Ap) (7.7.61)
r 2

T

Proceeding in a similar way we obtain, for any p € [2,4],
2 5
P2 P T2 Y(QD3(QD3 log Q) |5 < c(Zi + Ag + Ay)

Estimate for (2D3)log Q2

The proof goes basically as in the case of (2D3)%log (2, we stress only the
main differences. From the explicit expressions of F3 and G3 we have to
examine the dependance on the various Riemann components. In a symbolic
way we can write

1
r2

F; = d/ivD3a+O( )diva + O(—)D

= diva(LrW) + d/lvd/lvﬁ + O(%)d/iva +0

Gy = ()d/lVd/lva+0( 5)dhva(LeW) + O(-

where we reported just the dependance on the various Riemann components
associated to the Weyl tensor W except when explicitely indicated. The
factors O(L), O(Z%) in front to some of them just remind the asymptotic
behaviour of the factors multiplying the various components.

—~

(e W) + dhvp)

)div div 8 (7.7.62)

m|'_‘
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It is now easy to apply to this case Lemma 7.7.3 and obtain the thesis of
the Lemma 46.

Proof of equation 7.7.39 of Lemma 7.7.4

We write
ADslog Q = DsAlog Q + [A, D3] log Q2

Using Proposition 4.8.1 for [/A, D3]log Q we obtain
AD3logQ = D3zAlogQ
_ {—naxab% log @ + trxm Y, log @ — 2x , (VY log )b
— Cax,, Vo log 2 — (dhv X)s ¥, log @ — 8,7, log 2
(7, 102 (D5 T log 20 — (D5 W log 2 + 1Y, Ds log &

+(Alog ) D3 log Q + (4 (V, log 2)Dj3 log Q] (7.7.63)

A long but easy computation allows to rewrite this equation in the following
way:

A(OD3logQ) = OD3(Alog) +Q {2&1()(?7?7 log )ap + (V, log Q)(V, log Q)x

+ (¥, 1og Q)(div x)s + (V, log Q) (naxab — mptrx + ﬁb) } (7.7.64)
Recalling the structure equation, see 3.1.46,
YVirx —divx +¢-x —Ctrx +8=0
we obtain

(MaX,, = Mirx + B,) = (Vo log D), — (¥, log Q)tryx + (div x)s — Vytrx

so that the [ | part of the previous equation, 7.7.64, becomes:

Q] =2div(QY¥ log Q- x) — (¥, log ) (¥, Qtry)

3_2 1.
“6Remark that the control of |r2”?72Lral|,s required in the assumptions of the
Lemma is provided by the control of

Q(LoLrW)(K,K,K,es) and QLrW)(K, K, K e3)
C(u) C(u)

while we do not have, proceeding in the same way, the analogous bound for |WETQ|P,S.
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and, therefore,

AOQD3log Q) = QD3 (Alog Q) + [2dkv (2 log 2 - ) — (Y, log )(V,2try) ]

As the foliation we choose on the last slice C, is canonical, log Q) satisfies
the elliptic equation, see 3.3.12,

1

Plog = 3 [diva+ 5 - T ) — (0 7)]

so that

0D, (4052 = 5 [Da(dhva) — (Dap— Dyp) + 3 (Dsl - X) ~ Dol )]

Recalling the evolution equation of  along the C null hypersurfaces

Psn=(n-n)-x+p
a long but simple computation 47 gives

SDs(dhve) = 2 [dv(Q8 + Q0 — 1) x) — (@hvey 1) + (V,rn

1 1
2 [‘M"mﬁ + 8- x — 240 - x)] + 5 (Y trx)n, (7.7.65)
where we used again the structure equation

Virx —divx +¢-x —(trx +5=0.

From it
OD3(Alog) = [cwv(sw + Q-

+ [—%Da(l) -n)+

%IED |><

(D3(x - x) —Ds(x- %)

“"More explicitely

Ds(divn) = div(Dsn) + (¥, log Q)(Dan)a — (nax,, — mtrx +B,)n, — x,,(Vyn)a

n — (7
=div(B+Mm—n)-x)+(V,logD)(B+ 0 —n):X)a — (nax,, —mtrx +B8,)n, —x,,(Vyn)a

= SV OB+~ 1)) — ((V, logx,, + (dhvx)s — (F, log Dtrx — Vyirx) n, — x
- ld/iv(ﬂﬁ +00y =) x) — g (v, — X, (Vams + 5 (V(©@tr))m,

[dAV(Qﬁ+Q(n m) - x) — (v - x) + (V,Qtrx)n, ]
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so that finally
1 3 1
A(QD3logQ) = div <§Q§ + 5(277 . X) — §nb(WthTX) (7.7.67)
Q 0 A S
+ | =3 Ds(p=p) + 7 (Ds(x - X) — Ds(x - X))
Recalling that, on the last slice, see 3.3.10,

divy = —divy + 28log @ = [1(x- X - X %) — (o~ P)]

we have

(Vi) =~ 3div(@txn) + 5 (dhvn) Dty (7.7.68)

— v @tngn) + 5%y |52 1~ T D) - (- )

Moreover from

Q 1d /1 11 dSs| 11 d
Dsp o= —— (= [ pdpy) = —= (22N [ pdpy + = —— | pd

= @+ @irgs + oDy

21 || du

we have

SDslp—7) = 3 (WDsp - ODyp) — 1 (@r)p - o) (1.7.69)

Using the Bianchi equation for p, see eq. 3.2.8,

3 1
Dyp = —(gtrxp+ 5% -a+n-f+VlgQ-p) —div

we obtain
S Dslp—p) = ydiv(p) + (H ~ H) (7.7.70)
where
H= %(gtrxp%-%x a+n-p) (7.7.71)

In the same way

T (D50t 0 - Ds(ER) =
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and, finally, collecting all these equations togheter,

3 1 -
A(QD3log Q) = div (Qﬁ—i— EQn "X+ ZerX> + Gy — Gy (7.7.73)

where 48
1 . 1 _
Gi = H+ 9Ds(x x) - 5(Qtrx)(p —p)
1 L. =
+ (@)X x - x-x) (7.7.74)
Denoting
3 .1
div Fy = div (Qﬁ + 5977 X+ ZQntrx) (7.7.75)
the final equation is
AOD3logQ) = divF, + Gy — Gy (7.7.76)
Proof of equation 7.7.40 of Lemma 7.7.4
From
AOD3(0D3log2)) = Q(AD3(2D3log?)) + (AQ)D3(2Dj3 log Q)
+ 2Q(VlogQ) - V(D3N2D3log Q) (7.7.77)
it follows

%A(Qng(sm?, logQ)) = ADs(QDslog )+ [%Dg,(sm?, log ©)
+ 2(V log ©) YD3 (D3 log ) } (7.7.78)

From the previous lemma, see 7.7.63, we have

AD3(2Ds3log ) = D3A(2D3log 2) — [ans10g0) = {*}@psiogn) (7.7.79)

where {-}(ap,10g0) and [Jap,10g0) have the same expressions as in 7.7.63
with log 2 substituted with QD3 log €2,

{Hapsopn) = {~7aX,, V(D3 10g Q) + trxm, ¥, (2D log )
~2x,,(VV(QD3log 2))as — Cax,,, V(D3 log )
~(divx)s ¥, (D5 log ) - B, ¥, (D3 log ) } (7.7.80)

48Looking at the expression of H it seems that G; depends on a, but in fact the o
present in H is cancelled from the o with the opposite sign appearing in iQDg()Q “X)-
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and

[l@psioga) = [(V,logQ)(D3V,(2D3log ) — (o(D3V,(2D3log 2))
+ 1,¥,D3(2D3 log Q) + (Alog 2)D3(2D3log 2)
+ (o (Y, log 2)D3(2D3 log Q)] (7.7.81)

Observe that a simple use of commutation relations allows to rewrite [](Q D3 log Q)
in the following way, which will be subsequently used,

Hpsisn) = [2(F,1052)(V,Ds(0D; log ) + £57D4(0D; log )

- xa,,(%logQ)Wb(ﬂDglogQ)+caxaby7,,(QD310gQ)] (7.7.82)

Substituting the expression for AD3(2D3log(), see 7.7.79, in 7.7.78 we
obtain

%A(QD;),(QD;), log ©2)) = DsAQD; log Q) + {%Dg,(smg log ©)

+ 2(Y, log Q) ¥V, D3(2D3 log 2) — [J(ap; log Q)] —{}@Ds 1052 7-7.83)

A long but easy computation exactly on the same lines as in the previous
case allows to rewrite the last equation as

QD3 (QD3 105 2)) = D3 AQD; log ) + 2 [2x, (FV(2Ds log )y
+ (¥, log )V, (2Ds log ), + (V,(2Ds log ©)) (dhv 1)y

+ (V,(QD3 10 2) (nax,, = mirx + 5, )|

where 49

QIV](@ps102) = 2 [2X, (VV(QD3 1og )y + (¥, log )Y, (D3 log V),
+ (Y, (2D log 2)) (div x)» + (¥, (2D510g 2)) (ax,,, — mtrx + B,)]
—Q [Q&b(w(ang log ©2))ay + 2(Y, log )Y, (2D3 log ),

+ 2(V, (D3 log ©)) (dhv )b — (V,(2Ds5 log @) (¥, log )trx + Vytrx) |
= 24 (AV(2D3 log ©)) - x) — (V,(2Ds log 2)) (V,2ry) (7.7.85)

“9We used the structure equation

NaX,, — mirx + B, = (V,log Q)x_, — (¥, log Q)trx + (dhvx)s — ¥, trx -
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Finally we obtain

AQD;(2D3log2) = ODj [divQs +div A + (G1 — G1)]
+ div(2Q(V(2Dslog2) - x) — (V,(2D3 log 2))(V,Qtrx)
= OD; [divFi + (G1 - GY)]
+ div(2Q(V(2Dslog Q) - x) — (V,(2D3 log 2))(V,Qtrx)
(7.7.86)

where divFy = divQj + div F} and Fy = (%Qn X+ %Qntrx). Repeating
the previous computation, we have

Dydiv Fy = div(DsFy) + (V, log Q) (D3 F1)a + (—1ax,, + mtrx — B,)F1o — X, (ViF1)a

1 R 1
= ECMV (QD?,FI) + [(—ﬂaxab + §nbtrx — éb)Flb — Xab(WbFl)a:|

and using again the previous structure equation we obtain
QD3CMVF1 = Cl/iV (QD3F1 — QX . Fl) + (WthTX)FIb (7787)

Inserting this expression in the equation for A(QD3(22D3log$2)), see 7.7.86,
it is easy to conclude that

AQD3(2D3log)) = div(2QY(QD3log ) - x) + div(QDsF — Qx - F)
+  (Fip — V,(2D3log Q)) (V,Qtry) + QD3(G1 — Gh)
(7.7.88)

Observing that
(F1p — YV, (2D3 log ) (Y, Qtryx) =
= div ((F1p - ¥,(2Ds log ) (ry) ) — Qbrx (dhv Fy — A(QD3 log 2)
= div ((F1, — ¥,(@D3log ) (2r)) + (Qtrx)(G1 — G7)

the final result is

AOD;(QD3logQ)) = div [(QD3F — Q- F1) + 22(V(Q2D3log Q) - x

+ FiQtry — (V(2D3 log Q))Qtrx]

+{0Dy(G1 - G) + (2rx)(G1 - G1) }

div Fy + Gy — Gy (7.7.89)
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where
1
Fy = QD3 Fy +2Q(Y(Q2D3 log ) - x — Qx - Fy + §Qter1
G2 = QDgGl + (Qt’f’x) (G1 — G_l)
Therefore the final equation has the same structure of the one for QD3 log Q2:

AOD3(2D31ogQ)) = divFy + Go — Go (7.7.90)

and obviously div Fy + G5 — G = 0.

Proof of equation 7.7.41 of Lemma 7.7.4

Proceeding as in the previous case we have the following expressions

A(D3) log Q) = Q(AD3](QD5)? log Q] + (AQ)Ds[(2D3)? log ]

+ 2Q(VlogQ) - YD3[(QD3)? log Q] (7.7.91)
As before
AD3[(QDs3)*log Q] = DsA[(Q2D3)*1og Q] — [Jj@ns)? 10g ]
—{-}@ps)2 1050 (7.7.92)
where, see 7.7.82,
[i@ps)210g0) = [Q(WlogQ)WD?,[(QDa)QlOgQ]+(%)D3[(QD3)210g9]

— X (Y 108 )Y, [(2D3)? log O] + Cax,, ¥, [(2D3)? log 0|

and

Cazioea) = {—ux,, Vol(2D3) 1og Q) + tryn ¥, [(2D5) log €]
- QXab(WW[(QDi%)Z log Q) ap — Caxabm[(QDg)Z log ]
— (v x)s ¥, [(2D3)? log Q] — bby ¥, [(2D3)? log Q]}

Substituting the expression for AD3[(2D3)? log Q] in 7.7.91 we obtain

SA(OD:) log®) = DyA[(OD3)’ g + [x,,(V, log ), [(2D5)” log ]

- Caxab%[(QD:z)Z log QH - {'}[(QD3)2 log Q] (7.7.93)
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A long but easy computation on the same lines as for the previous case
allows to rewrite the equation as

A((9D3)°logQ)) = QD3A[(2D;)*log Q] + 2 [xa,,(% log 2)¥,[(2D3)* log ]
+2x,, (YY1(QD3)? log Q) s + (dhv x)5(V,[(2D3)? log Q)
+ (V,[(2D3)* log ) (max,, — mtrx +5,)]
= OD;A[(2D3)* log Q] + QUIV] oD,z 10g 0 (7.7.94)

After some easy, but long computations, where we used again the structure

equation: nex , — mirx + B, = (V,logQ)x , — (V,log Q)trx + (dhvx)s —
Y,trx, we obtain, see 7.7.85,

AUV D 2 10g ey = HV (220(2D3) log Q) - x) — (7, [(2D3)* log AV, (2#rx)
and finally, repeating the previous steps, we conclude

A((OD3)31logQ)) = divFs+ Gs — G3 (7.7.95)
where

1
F3 = QD3 F, + 2Q(V[(QD3) log Q) - x — Qx - o + S UrX P
G3 = OD3Gy + (Qt’l"x) (G2 — G_Q) (7.7.96)

and obviously divF3 + G3 — G3 = 0.
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Chapter 8

Conclusions

In this chapter we derive the most important consequences of our Main
Theorem, in particular we give a rigorous derivation of the Bondi mass law
and the precise asymptotic formula for the optical function u expressed in
terms of £ and r. Due to the construction of our spacetime based on the
double null foliation which allows us, in particular, to give a straightforward
definition of the outgoing null infinity, the derivation of these results is
simpler and more intuitive than the one in [Ch-KI]. In addition our approach
allows us to give a simple derivation of the connection between the Bondi
mass and the ADM mass.

Before embarking on the main topic of this chapter it helps to summarize
some of the main relevant features of our proof of the Main Theorem.

We recall that our spacetime has been constructed together with a double
null foliation generated by the level hypersurfaces, C'(A), C(v) of the optical
functions u, u.

Associated to these null hypersurfaces we have the two dimensional surfaces
S(A,v) = C(A)NC(v), the adapted null frames, see definition 3.1.13, and the
connection coefficients x, x, 7,7 ,w,w which satisfy the structure equations
3.1.45, 3.1.46 and 3.1.47.

We have also decomposed the curvature tensor, relative to the adapted null
frames, into its null components «, 3, p, 0, 8, @, see 3.1.19. The boundedness
of the R norms implies in particular the uniform decay of these components,

supr/2ja] < Cy , suprir_|3]al < C
K K
s%pr7/2|ﬁ| <C(Cy, s;épr2|7_|%|§| <y (8.0.1)

1 —
s%pr3|pl <Co, s%pr‘n’ltlzl(p—p,a)l < Co

415
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see 3.7.1. Observe that in Theorem 8.5.2 of section 8.5, we show that the
p component, whose decay is O(r~3), is intimately tied to the ADM mass.
In fact the following relation is proved

— 1
p:—2M +O<3>\2>.

The boundedness of the O norms implies pointwise estimates for the con-
nection coefficients and their first derivatives. Based on the properties of the
canonical foliation we were in fact able to prove somewhat stronger estimates
for the connection coefficients in Chapters 4. These stronger estimates were
not relevant ! in the proof of the Main Theorem, but play a fundamental
role in this chapter. We repeat here those estimates which will be used in
the sequel and we refer to Chapter 4, see in particular subsection 4.3.16, for
a more extended discussion,

1 1
P22 8ys < Co [P P2 VRl < Co

3 3
|172/p72>2| s<Cy , |T272/p7_2y7>2|ps§00

1 1
Ir?" b , E (Qtrx Qtrx) lp,s < Co , P2 »72 (Qtrx - Qtrx) lp,s < Co

|7"372/”T_5 Ytrxlp,s < Co |7"372/p7—iy7trX|P,5 < Co
R 1

P22 Pr2n), s < Cy |7“272/p7—2ﬂ|p,5 <Go (8.0.2)
R 1

3 2P Ymlps < Co 5 PP Wm),s < Cy

_2 3 2 1
|r2 72 (QYDslog Q)|ps < Co , |r° 272 (QYDylog 2)lys < Co

MIW

72 (2D3log Q — QD3 log )|, s < C

| 7

l\Jlb—‘

r?" 572 (QDy4 log Q — ODy log Dp,s < Co

with Cy a constant depending on the initial data.

Observe that the terms w, w, Dyw, Dsw, (Qtry — %) and (Qtry + %)

1
do not have the 72 improvement manifest in all the other terms. This is
due to their relation (in the structure equations) to the p component of the
curvature tensor, more precisely to its g part, which is tied to the ADM

mass as explained above.

!But, of course, the fact that the double null foliation is canonical was.
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Observe that these connection coefficients are the only non trivial ones in a
Schwarzschild spacetime. From this perspective our main result can be in-
terpreted as a stability of the external region of the Schwarzschild spacetime.
One of the results proved in this chapter further justifies this conclusion. We
show in Proposition 8.6.1 that on any null outgoing hypersurface C(\) we
have

dr 1 1
—=-2M-+0|—= 8.0.3
dt r + <r2> ( )

where ¢ is the time function ¢(p) = §(u(p) + u(p)) introduced ? in Chapter
3, see Proposition 3.3.1 . This proves that the null outgoing hypersurfaces
converge asymptotically to the null outgoing Schwarzschild cones.

As mentioned above our double null foliation approach allows us to de-
fine the outgoing null infinity by simply taking the limit of the incoming
null hypersurfaces C(v) as v — oo. This approach not only simplifies sig-
nificantly the derivation of the main conclusions in [Ch-Kl], but also allows
us to connect the outgoing null infinity J+ to the spacelike infinity 4. In
particular we are able to connect 3 the Bondi mass to the ADM mass. In
fact defining the Bondi mass as... put the definition we have

lim MB()\) = MADM

A——00

8.1 The spacetime null infinity

8.1.1 The existence of a global optical function

The Main Theorem provides us with a family of optical functions **Ju(p)
which are outgoing solutions of the eikonal equation with initial data on
C(vs). The following corollary allows us to conclude the existence of a
global optical function u with initial data at “null infinity”.

2Remark that, although we do not use the maximal spacelike foliation, nevertheless we
have a spacelike foliation at our disposal and, therefore, a global time function. Both are
in fact provided from Proposition 3.3.1 and, in this case, the spacelike hypersurfaces are
such that each surface S(),v) is immersed in the hypersurface 3, = {p € M|t(p) = t}.

8 Analogously, using these null incoming hypersurfaces, the derivation of the asymptotic
rotational symmetry of the spacetime is more straightforward than in [Ch-Kl]. In fact,
as described in subsection 3.4.1, the angular momentum vector fields on M are defined
starting from the last slice null hypersurface C(v.). On the other hand the angular
momentum vector fields on the last slice are defined starting from C(v.) N Xo; so that the
connection between the limits is easily established as v. — oo.
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Corollary 8.1.1 Under all the assumptions of the “Main Theorem” the
following limit holds in M,

u(p) = lim #u(p) (8.1.1)

Vx—>00

Proof: We shall show that {“Ju(p)} form a Cauchy sequence. We first
prove that for € arbitrary small, it is possible to choose 7, such that, given
Ve > Ux1 > Uy, We have |(”*’2)u — (V**l)u|c (ve) < € or, in view of our

definition (V*=1)U(p)|g*(u*,1) = (V*,l)u*(p),

Sup (V*,Z)u(p) — (V*,l)u* (p)‘ S g (812)
PeC, (¥4 1)

where (=, (p) is the solution of the last slice problem on C, (), see
??7. Once 8.1.2 is proved we can conclude that in any spacetime region
K(Xo,v1) C M the difference between “=2)(p) and “=1hu(p) tends to zero
as v, — oo. This implies the convergence of “~Ju(p) to u(p) proving the
result.

To prove 8.1.2 we choose 7, sufficiently large such that the initial data
norm write the explicit expresssion. outside C,(v,,1) N Xy is of order
O(). The restriction of 2k induces a foliation on C,(r4;). Though
strictly speaking this is not a background foliation * we can nevertheless
deform it, in the neighbourhood of C, (v, 1) N Xy, generating only errors
of order O(€), such that it becomes one. More precisely we can assume
that (“«2)y)| C.(v..) = v induces a background foliation on C, (v4,1) verifying
the assumptions of Theorem 3.3.2 . As (*~1)u, is the canonical foliation of
C,(v4,1) we infer from 3.3.12 that

d(”*’l)u* . B
e (p) = (4 (513)

where (“=1X) satisfies the following elliptic equation

Alog 2010 — %d/lv(”*,l)ﬁ n %(V*J)A(V*,l); _TmRg) — () — Tel)

log 2(»=1)2 = 0 (8.1.4)

“This requires some extra work. Between the leaves defined on C, (v«,1) by the restric-
tion of (“*2)y(p) there exists one which is “near” of order ¢ to C, (v.,1) N Zo. The proof of
this requires the use of the Oscillation Lemma, see?? and has to take into account that
U, is sufficiently large.
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Integrating equation 8.1.3 along C, (v«,1) we obtain, apart from higher order

corrections,

, , Alp) 1

s (p) = ) ) = | (W - 1) (8.15)
. ,

and from it we infer that

Alp)
< 4/ ‘log((”*’l)ﬁ)‘ (8.1.6)
0

ety (p) = “2(p) . )

In view of the elliptic equation 8.1.4 satisfied by log((*=1X2), it follows imme-
diately, using the estimates for the connection coefficients on the last slice
proved in Chapter 7, put the references of this chapter that

[Hog(“= )| < v (|div =] 4 (5| =g+ (0 = T0p) )
= 0( ! ) (8.1.7)

1
A2

Therefore, integrating the right hand side of 8.1.6 we obtain,
1

1
r2

(V*’l)’u*(p) _ (V*’2)U(p)|g*(u*,1) <c <e€ (818)

as r = r(\,7;) can be made sufficiently large provided we choose 7, appro-
priately large.

8.1.2 The outgoing null infinity limit J+

To define the outgoing null infinity limit J ™, we start by defining, in the
global spacetime M constructed by the Main Theorem, a family of diffeo-
morphisms (), v) such that

P\ v): 8% = S(\v) (8.1.9)

These diffeomorphisms are associated, in a way we will make precise, to the
diffeomorphisms ¢, and ¢, generated by the null equivariant vector field
N, N introduced in subsection 3.1.4, Lemma 3.1.1. We will construct the
diffeomorphisms (), v) as follows:

According to the results of the previous subsection we already have the
two optical functions u(p) = lim,, o “u(p) and w(p) defining a double
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null canonical foliation in M. Associated to it we define the function €2, see
subsection 3.1.4,

20% = — (9" 0pudpu) " (8.1.10)
and the null geodesic vector fields,
LV = —¢0yu and L = —g¢" 0 u (8.1.11)

as well as, see Lemma, 3.1.2, the outgoing null vector field N = 2Q?L and the
incoming null vector field N = 2Q?L, equivariant relative to the double null
integral S-foliation {S(\,v) = C(A\)NC(v)}. Using N and N we consider
the diffeomorphisms ¢; and ¢ _ generated by them, see ??, and recall that
they map the leaves of the double null integral S-foliation {S(A,v)} into
themselves.

Consider now the diffeomorphisms 9(\,v) : $? — S(\,v) defined by

1/)()" V) = Q(/\,/\O) °© ¢(V7V0) (8112)

where vy = ulcg)ns, > Ao = Ulcrg)ns,- Here we have identified we have
identified S(g) (1) with the topological sphere S? through a diffeomorphism.

Given the diffeomorphism (A, ) we can map the S(\, v)-tangent tensor
fields defined on M to tensor fields defined on S? with the help of the pull
back map ¢*(\,v). Therefore, given an S(\, v)-tangent p-covariant tensor
field w, we define the p-covariant tensor field @ on S? by the relation

o) = ¢\ v) (rPw) (8.1.13)

This allows us to introduce a precise definition of null outgoing infinite limit
of w,

Definition 8.1.1 We say that the S(\,v)-tangent p-covariant tensor field
w has W as its null outgoing infinite limit along C()\),

lim w=W
C(A),v—o0
if the following limit exists,
W(X) = VlLrglo WA, v) = VILI&¢*(A’V)(T*PW) (8.1.14)

In this case W is a p-covariant tensor field on S?.
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As we are interested to study the null outgoing infinite limit of some of the
structure equations we need also an explicit expression for %W. To obtain
it we need the following lemma,

Lemma 8.1.1 the following relations hold
0
ﬁlp* (>‘7 I/)UJ = ’(:b* (>‘7 V) ([’ﬂw)
%1/1*()\, viw =" (A, v)(Lyw) (8.1.15)

where V. = Q*_l N s the vector field generating the one parameter dif-

(A=2o)
feomorphisms Q(j\l_/\o) o ¢y o0 Q(A—)\o)'

Proof: Let p € S(\,v) and pg = ¢~ (\,v)(p) € S2,

0
(ot )l = fim 3 [(07 O+ o)), — (7 (), ] (8.116)
As
WA+ B 2)w)py = $lymsg) bl hrgy? = ¥ M) (Gw)py  (8.1.17)
we have

(aaﬂ/’ A v)w)ly, = }%H(w*(x,u)qs;w) —(w*(x,u)w)po} (8.1.18)

= 9 0u) (fim 3 (@) — ] ) =9 Ou0) (Lary)

To prove the second relation we write

(%q/;*(x, v)w)ly, = lim % [(q/;*(x, v+ h)w),, — (%*(\, V)w)po] (8.1.19)

—0
As

W\ v+ h)w)py, = ¥*(A\v) ((gaiko))*lqs;%w)w)p (8.1.20)
we obtain
(ot Ol = 9O im 2 (6] ) iy ), — 0]
= P (\v)(Lywlp) (8.1.21)
where V is the vector field generating the one parameter diffeomorphisms
Fa-20) P r0)-

From Lemma 8.1.1 it follows that

0
- — -p
GAW()\) C(/\l)lfln—)oo Lyw = Jim P (N v)(r PLyw) (8.1.22)
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8.1.3 The null outgoing limit of the metric

Let v = g[s(x,») be the induced metric on S(A,v). Define (X, v) the Rie-
mannian metric on S2,

T v) = 9" (A p)(r™*y) (8.1.23)
Lemma 8.1.2 7 satisfies the following equation on S?,
0y — ~
T (Qtrx - Qtrx) v+ 20Qx (8.1.24)
Proof:
8

= VOLar ) = 9 A {2 N Py e Ly
= —(Qtrx)7 +r 29 (N v)(2Qx) = —(rx)F + 29 (A, v) (v Qry + 2Q%)

= (Qnx - Dbrx) 7 + 200 29" (A, ) (%) = (Vrx — Dbrx) 7 +20% -

Using this Lemma the following proposition holds,

Proposition 8.1.1 The melric (y,,) converges as v — 00 to a melric Yoo
on S?,

lim F(x,) = Foo (8.1.25)

V—r00

Moreover Yoo has Gauss curvature 1, is independent from A and can be
considered as the standard metric on S2.

Proof: We start to compare 7).y t0 Y(\o(1),)- To do it we choose an or-
thonormal basis {E4} on (52, Y(xo(v),v)) Such that the matrix ¥ ,)(Ea, Ep)
is diagonal, with smallest eigenvalue A_ (), v) and highest eigenvalue A4 (A, v).
Proceeding as in section 3.3 of [Ch-KI] we denote,

py(\v)=VA_AL , v\ v) = \/%

and we prove, under appropriate conditions on the connection coefficients
(satisfied in view of the Main Theorem) listed below, that 5 (X, v) and v5 (A, v)
can be bounded by their values at (\,v) = (M\o(v), ) plus lower order cor-
rections going to zero as v — oo. Therefore

lim N”Y(Aay) = Vlggoﬂ”y(AU(V)ay)

V—r00

lim vy(\,v) = Vlgglo vy(Ao(v),v) (8.1.26)

v—00
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This means that, for v — oo, the metric () ,) converges to the metric
Yro(v)w) In the sense that its eigenvalues converge to lim, e A—(Ao(v), V)
and lim, o Ay (Ao(v), V), respectively. Moreover the connection I'(A, v) of
the metric 7y, is bounded by the connection of the metric y()y(),,) plus
correction terms, see the remark below. Thus in the v — oo limit we have
Vlgrglo IT(A,v) = T'(Xo(v),v)| =0 (8.1.27)

with the pointwise norm taken relative to the metric yx,(u),)-
Similarily, using the diffeomorphism on 3y generated by the gradient flow of
the canonical function u ), see definition 3.3.1, we can connect A (Ao(v), V)
and A;(N\(v),v) to the corresponding eigenvalues of the rescaled metric
7'_2')/(/\0(,,),1,). In view of our the initial conditions, see definition 3.6.1 it is
easily seen that this rescaled metric tends to the standard metric at spacelike
infinity as v — oo and therefore

Vlgrgo A_(Xo(v),v) = Vlgrgo Ar(Mo(v),v) =1 (8.1.28)
We have, therefore proved that the limit lim, o0 ¥(),) = Yoo €xists. More-
over, in view of the boundedness of the pointwise norms

|2 (Qtrx - Qtrx) |, [rm— x| (8.1.29)
we deduce from 8.1.24 that
. |0y
Vlgglo . = 0 (8.1.30)

Thus ¥+ does not depend on A.

Remark: To prove the limit of the connection in 8.1.27 we need the
boundedness of |[r3Vtrx|, [r27_%|, |r?®n|, |r?n| and the fact that r?K(\,v)
tends as v — oo to the Gauss curvature of the spacelike infinity surface
limy—00S (Ao (v), V).

8.1.4 The null outgoing infinite limit of the S(\, ) orthonor-
mal frame

Let e, be an orthonormal basis for the tangent space to S(A,v). Using the
diffeomorphism (A, v) introduced above, we define a basis on S? as follows

Eqlpe = ¥ (A, V) (realp) (8.1.31)

where p = (), v)(po), and py is a point on S2.
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Lemma 8.1.3 The frame {E,(\,v)} converges as v — oo to a frame or-
thonormal with respect to Yoo-

Proof: The frame {E‘a = E’a()\, v)} is orthonormal with respect to the
metric ¥(\,v) = 9*(\,v)(r~2y). Deriving {E,} with repect to v we obtain

aEa|po

5 = flbl_r%% [¢*_1(A, v+ h)(reg) — .\ v) (rea)} . (8.1.32)
= 9 O Jim (6, 0 900 87, )0e0)) |y — (el

= ¢*71 (A v)(Lv(red)lp)

where V = ¢_ (_/\17 /\O)N . Using the definition of the | - |5, and the definition
of the Lie derivative it is immediate to infer that

1 1
< ;|£N(7“€a)|v + 0(5) (8.1.33)

Yoo

oE,
ov

To proceed we can further assume that the frame {e,} is Fermi transported
along C'(X), that is Lye, = —Qxapesr- An explicit calculation gives

1 _
In(req) = —§(Qtrx — Qtrx)re, — Qxapres (8.1.34)

from which immediately |Ln(req)|y = [£n(req)]y < cr ! and finally

‘aE“ =0(r?) (8.1.35)

ov

Yoo

This implies that {E,(\, )} converges as v — oo to a frame orthonormal
with respect to Yoo-

With this definition of the {E,(\,v)} frame, given w a S(\,v) tangent, p-
covariant tensor field on M and & its rescaled pull back on S2, the following
relation holds

@(E,,, ...E’ap) = w(eq; -€a,) (8.1.36)
Therefore we have proved the following lemma,

Lemma 8.1.4 An S(\,v) tangent, p-covariant tensor field w has a null
outgoing limit, in the sense of definition 8.1.1, if and only if the limit
limy 00 w|g(A ) (€ay +-€a,) eists.
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8.2 The behaviour of the curvature tensor at the
spacetime null infinity

To examine the behaviour of the various components of the Riemann tensor
moving toward the future infinity along an outgoing null hypersurface C()\)
we recall that, as discussed in section 8.1, a covariant p-tensor w defined on
S(A,v) has a null infinity limit along C()\) if the following limit exists for
any A °,

. « SN . _
C(/\l)l;lrjnﬁoozp()\,y)(r w) C(/\l)l;lr/n%oow(A’V)_W(A) (8.2.1)

Moreover Lemma 8.1.4 shows that this is equivalent to proving that the
following limit does exist

colm w)(ens e, (8.2.2)

Using these results we have the following proposition

Proposition 8.2.1 The null components of the Riemann tensor have the
following future outgoing null infinity limits

1]]“ ro = A ,w 5 1““ 7 ,13 — B ,w 8.2.3
C(A),V*}()O ()\ ) C(A),V*}()O ()\ ) ( )
]]]“ 7 3[) — P )\, w 9 11111 7 3(7 — Q )\, w
C(A),V—)OO ( ) C(A),V—)OO ( )

and A\, w), B(A\,w), P(\,w), Q(\,w) satisfy the following estimates

AN W) <@+ A)"2 5 [BOw)| <e(l+ )3 (8.2.4)
(P =P)A\w)| <cl+A)77 5 [(Q-Q)(Aw)| <c(l+ )77

Remark: The limits lim)ﬁ)\oﬁ and lim)ﬁ)\oa will be discussed in sec-
tion 8.5.

Osservazione 8.2.1 Le stime in 77 sono un risultato nuovo da dimostrare,
e ragionevole pensare che siano collegate alla massa all’interno della regione
compatta K definita su Y.

Proof: This result is, basically, the same as the one in Conclusion 17.0.1
in [Ch-KI]. We sketch its proof for completeness.

®Any X means in fact any A < Xg.
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Using the Bianchi equation for a, see 3.2.8, and assuming the frame {e,}
Fermi transported along the null outgoing hypersurfaces we have the evolu-
tion equation for a(e,,ep)

aag;” +%Qtrxgab = {~(V&B)ar+ [Aweray —3(X, 0~ X0 + ((C—40)BB) ab] }

Recalling that 3%7“ = %errx, see 4.1.30, from the previous equation we
derive
8(’ra{ab)

o =f(v, A, )(rag) + F(v,A,-) (8.2.5)

where
F A, W) = { - %(Qtrx Q) + 494 (8.2.6)
F(v, 0, w0") = 1@ { (V88w + [8(k,,p—X,y0) + ((C—4mEB) |}

From 8.2.5 we easily obtain, omitting the dependance on the angular vari-
ables,
v
|’I"Qab(7/, )‘) - Tgab(yla >‘)| < / (Iflrg“l/la )‘) + LF|(I/I’ >‘)) dV” (827)
l/,
From the Main Theorem, see 8.0.1 and 8.0.2, f(v,A) = O(r 2(\,v)) and
supy r|)\|g|g| < Cp. Therefore

1 1

WY (8.2.8)

14
/ [fral(v",N)dv" < Cy

VI
Moreover in view of the results of our Main Theorem, the R norms are uni-
formily bounded by a constant Cy which implies immediately the following
estimate for [} F (v, \)dV', taking into account only the principal term of

F(Va )\a wa), TQ(W®é)aba

/ PO N < e[ r(TEB) aldy” (8.2.9)

1
v v 3 1 1
< c</ |7“Y75|2r2d1/"> (/ r2dy"> <—=
v v r(\ )z X’

Choosing ¢/ sufficiently large we can make the right hand side of 8.2.8 and
8.2.9 arbitrarily small, proving the existence of the limit for ra()\, v). Then,

[SIEAN
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using again 8.2.5, Gronwall lemma and the estimate for o on 3, see 77, we
obtain

Tim [rag|(v,)) < <|ma,,| (o(A +/ F(/,\)d ) <l (8.2.10)

proving our result.

The limits for 3, p, o are obtained in the same way using the corresponding
Bianchi equations, see 3.2.8, and we do not report them here.

According to the Penrose hypothesis of smooth conformal compactifica-
tion, [Pel], [Pe2], [?], a and [ should also have outgoing null infinity limits.
It is in fact known that smooth compactification implies the following

C(}\l)i;rynﬁoo Pa=A\w) C(/\l)i”rjlr;OO B =B\ w) (8.2.11)
These results are, however out of reach with our methods. In fact in this
work, as well as in [Ch-K]l], we have been only able to prove the boundedness
of 3 and r%ﬁ . This, by itself, does not exclude ® the possibility that c, 8
have better bounds under, possibly, more stringent conditions on the initial
data.
The issue of smooth conformal compactification has drawn a lot of atten-
tion in the last twenty years. In particular one of the main promoter of
the idea that there must exist an important class of data which lead to a
smooth compactification is H.Friedrich, [Frl], [?]. On the other hand a lot
of evidence has been accumulated suggesting that one cannot expect the
smoothness of the compactification for generic initial data [?] or for physi-
cally relevant ones, [?], [?]. In particular D.Christodoulou has shown, under
some reasonable “physical” assumptions concerning © the past null infinity
J~, that the following limit hold,

a=r1A,(0,0) +r PlogrAds(X;0,¢) + 1 5A3(\;0, )
B =rtlogrBy(6,¢) +r “By(\;6,¢) (8.2.12)

6Observe that we cannot show that the quantities rs a, r%ﬁ have a null outgoing limit.
Indeed if we were trying to implement the same startegy for « and [ as for the other
quantities we encounter the following difficulties: in the case of a the Bianchi equations,
see 3.2.8, do not contain an evolution equation for a along the e4 direction. On the other
hand for 3 we have an evolution equation along C(\) which would suggest that r*8 has
a null outgoing limit. To prove this, however, we would need to control the quantity
f |r*Va| whose boundedness is not at our disposal.

"It is assumed there is no incoming radiation from 7~ and the outgoing radiation had
the structure suggested from the quadrupole approximation of the gravitational radiation
produced by NN point accelerated massses.
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This is in agreement with the polyhomogeneity expansions suggested by the
work of many authors, see 7?7 and the references within.

8.3 The behaviour of the connection coefficients
at the spacetime null infinity

Proposition 8.3.1 The following null outgoing infinity limits hold

lim Q= l

C(A)v—o0 2
li try=2, i try = —2 8.3.1
oo "X =20 i (8.3.1)

Proof: From the estimates 8.0.2 proved in the Main Theorem it follows
that, choosing v1 > ve > M > 0, |log2Q(vy, A, ) — log2Q(ve, A, -)| can be
made arbitrarily small. In fact

vi

log 2011, A, -) — log 2Q(va, A, )| < c/ (D4 log Q)|(+/, A, -)do/

V2

1 1 1
<

- c}\—% rOv) (A1) (8.3.2)

Therefore the limit lime(y),,— o0 l0g 2Q2(v, A, +) exists. To prove that it is
equal to % we observe first that | log 2—log 2| goes to zero as v goes to infinity
and subsequently we look at the evolution equation of log 22 along the C(v)
null hypersurfaces, similarily to the procedure in Lemma 4.3.4, and we ob-
tain the final result estimating log 2Q(, v) in terms of log 2Q(X, v)|¢(,)ns, =
log 2€2(Ao(v),v) and correction terms which go to zero as n — oo and recall
that log 2Q(A, v)|c()ns, goes to zero as v — oo. The proof of the lim-
its for rtry and rtry proceeds exactly ion the same way. First by looking
at their evolution equation along C'(\) and using the estimates from the
Main Theorem one proves that these limits do exist. Then using the corre-
sponding evolution equations along the C'(v) null hypersurfaces it is possible
to connect these limits to the limits of the corresponding quantities on ¥
obtaining the result.

Proposition 8.3.2 The connection coefficients X and x have the null out-
going infinity limits

li 29 — X(\, - li vy = X (], - 8.3.3
C’()\)l;f/nﬂoolr X () C(A)l;f/nﬂoorx XA ( )
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and
XL e+ D2 LX) Se(l+[A) 2 (8.3.4)

Proof: We start looking at the null infinity limit of x. As it was done
for the underlined null components of the curvature tensor, we look at the
evolution equation along the null outgoing hypersurfaces C'(A) for x, starting
with initial data on ¥y and use ® it for estimating the limit v — co. The
evolution equation for y, see 3.1.45, can be written as

0
%)A(ab + QtrxXab + 2QwXab = —Qab (8.3.5)
and also
2 ~
AT Xab) _ 1y, 0, ) (1 00) — Dt (8.3.6)
ov
where
h(v, A, w®) = —(Qtry — Qtry) + 2Qw (8.3.7)

In view of the Main Theorem results, see 8.0.1, 8.0.2, we easily check the
pointwise bounds,

1
Irtal < Cy , [r2h| < Gy, |r2r2%| < Cy (8.3.8)

thus by integration of 8.3.6, choosing v1 > 15 > M > 0, we have

2 24 Yoo N, vt 1
"I" Xab(l/la)‘) -r Xab(VZaA)‘ <c / |’I" aab|(>‘ay )dl/ +/ O
2] v

I
r2\z

As the right hand side can be made arbitrarily small as M — oo, we conclude
that the following limit exists,

1i 20 = X()\,- 8.3.9

e X=X (8:3.9)

To obtain an estimate for the behaviour of X (),-) with respect to A we

use the evolution equation for  along the null incoming hypersurfaces C(v)
written as

0 1 1 ~ ~
af(ab =— {gﬁtrx + 294 Xab — §Qtrxxab - Q(VY®n —n®n) (8.3.10)

8Observe that our procedure here differs from that of Chapter 4 where the integration
took place with the initial conditions given on the last slice.
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from which we derive

0

X —(rxap) = t(W, \,w*) (rxa) + T(v, A, w®) (8.3.11)

where
1 .
t(v, \,w?) = { - i(Qtrx — Qtry) + 2Qg]
1 ~ ~
T(v,\,w") = —§Qtrx(rXab) — Qr(Y®n —n®n) (8.3.12)

Applying Gronwall lemma, and denoting A\o(v) = u|s,nc(v), We obtain

IN

7 anl () (|r talOo) )+ [ W(¥en - n®n>|(x,u>dx>

IA

A 1
C/ (¥l + [0 ) (X, v)dX < ex2 (8.3.13)
Xo(v)

where the last inequality follows from the estimates 8.0.2. Taking the limit
as v goes to infinity and recalling the asymptotic behaviour of |r?¥ 4| on 3o,

see 7.2.3, we infer that | X (X, )| < c(1 + |A|) 2.
We proceed similarily for . Consider the evolution equation for x along
C(A), which we express in the following way

J .

1 . 1 . N R
oo Xa = kmrx + 29&1] Xop = 3 HIXXab — UY®N —n®n) (8.3.14)

which implies also

8 ~
3y TXa) = 4w A W) (1) + Qv A, W) (8.3.15)
where
q(Va A, wa) = |- %(Qtrx - Qtrx) + 2Quw

~

Qv \,w®) = —%Qtrx(rﬁgab) — QT(W@QQ - n®n) (8.3.16)

In view of the Main Theorem results, see 8.0.1, 8.0.2, we easily check the
pointwise bounds,

(SIS

1 ~ ~
lrql < Cy , |72 (Y®n—n&@n)| < Co , |rr2x| < Co (8.3.17)



8.4. THE NULL OUTGOING INFINITY LIMIT OF THE STRUCTURE EQUATIONS431

Proceeding as before, we obtain

v

72,1 ) ~ 2 V] < ¢

v2

(P8 —n@n)|(\/)d/ + /o( 13> (8.3.18)

r2\2
Letting v1, vy going to 0o, as before, we infer that rx has a limit

li y =X (A, -) .
C(/\)l;lr/nﬁoorx X()

Moreover, recalling the asymptotic behaviour of |7“Xab| on Y, derived from
the boundedness of the norms 7.2.3, it is imme%iate to prove, proceeding as
in the case of X(J,-), that X behaves as O(A™2). Therefore

XA <1+ A7

8.4 The null outgoing infinity limit of the struc-
ture equations
We show in this section that some of the structure equations have some limit

equations when v — oo, involving X (A, ), X (), -) and the null infinity limit
of the null Riemann tensor components,

Proposition 8.4.1 The following equations are satisfied by the null out-
going infinity limit of the connection coefficients and of the null Riemann
components,

JvX =B , (%1:—%4 , %X:—X (8.4.1)

Proof: Let us consider the structure equation, see 3.1.46,
Vtry —divx +¢-x = Ctry = =3 .

Multiplying it by r? we obtain

rdhv (rx)a = r*(V,trx) + (¢ - X)a — (Ctrx)a + 778, (8.4.2)

and taking the limit v — oo, recalling the estimates for the connection
coefficients and for the Riemann null components provided by the Main
Theorem, we obtain, denoting with div the divergence on S? relative to the
Yoo Metric,

JivX =B (8.4.3)
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Let us now consider the structure equation

D3x +trxx — (D3logQ)x = —a
which we rewrite as

~

and also, multiplying by r and recalling the definition and asymptotic prop-
erties of h, see 8.3.7 and 8.0.2,

a(’FXU,IJ) —

Y =h(v,\, ) (r?x Q(rag) (8.4.5)

_ab) B

Therefore, taking the v — oo limit, we obtain

0 1

—X=—-A 8.4.6

2N 2= ( )
Finally, from the structure equation

0

1 1 ~ ~
ﬁf(ab = - [EQtrK + 294 Xab — §QtrXXab - Q(Y®n —n®n) (8.4.7)

proceeding exactly in the same way, multiplying by r? and taking the limit
v — 00 we obtain

0
li —(r?Xap) = — i % 8.4.8
COJso0 O (r"Xa) C(A)l;in»oo(rx“b) ( )
which implies
0
—X =-X 8.4.9
o\ - ( )

8.4.1 Other structure equations in the outgoing null infinity
limit
We start proving the following lemma

Lemma 8.4.1 the following limit holds

(8.4.10)

Iim r‘w=

2, L
C(A)y—o0 8



8.4. THE NULL OUTGOING INFINITY LIMIT OF THE STRUCTURE EQUATIONS433

Proof: w satisfies the following evolution equation, see 4.3.58
QD (Qw) = O%(Dy log Q)w + Q?Dyw — —%Q(E —Qp) (8411
which we rewrite as
0’Dyw = —Q*(Dylog Q)w — %Q(E - Qp) (8.4.12)
or

aﬁg = —Q(Dylog Q)w — = (F — Qp) (8.4.13)
1%

N | —

As limg(y);p—s00 w = 0, integrating 8.4.13 we obtain
[ 1 [ . 1 [
wil,v) = / QD log Q)w + 5/ Ets / Qp  (84.14)
and, multiplying both sides by 72,
(r2w)(\, ) = r2(\, v) / (D4 log Qw + E] (A /) + (A, v) / Qp  (8.4.15)

From the previous estimates, see 77, validated in the Main Theorem, it is
immediate to see that

/ [Q(D4 log Q)w + E} =0(r™3) (8.4.16)
Therefore, performing the limit v — oo, it follows
o
. 2 T g2
Vlggo(r w)(\,v) = Vlggor ()\,V)/V Qp (8.4.17)

% ) P % Q)
1 2 M3 . 2 2
= lim (7’ (A,V)/V 3 (r°p P)> + 5 Jim (7’ (A,V)/V r3>
From the result of Proposition 8.2.1 we have immediately that the first
integral in the right hand side goes to zero and we are left with

P
. 2 _
Jim (r*w) (A, v) = 3 (8.4.18)
proving the lemma.
Remark: Observe that the estimate of Lemma 8.4.1 is stronger than the
estimate provided by the Main Theorem, see Proposition 4.3.4 and Proposi-
tion 7.4.4. Once this estimate is obtained one can obtain a better estimate

also for Yw. In fact we prove
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Lemma 8.4.2 the following limit holds

li *Yw = 4.1
cowte” T2 (5419

_1
moreover we can also prove r’Yw = O(r~!7_2).

Proof: The proof is similar to the one of the previous lemma. First we ob-
serve that lime(y),y— o0 (rYw) = 0 as follows from the LP(S) norm estimates

for Yw and Y2w. Then we look at the evolution equation satisfied from Yw,
4.3.79

Dy(QYD3 05 Q) + Strx(Q¥Dslog ) = ~X(Q¥Ds log ) + ¥
—(D3log 2)(QYD4 log Q) —

N 2 A
where H satisfies the following bound |r P H|, g < Cor—>, see Proposi-
tion 4.3.8. This equation can be rewritten as

O 9w+ X (Yu) = -04(Tw) +2 (Vi - wFw) + L LY

1 1
- _EWP—,_ 0 <’r‘47‘>

This allows to write

%(TW&) - —% (Qtrx — Wrx) (rYw) — %TWIO"’_ 0 <#> - __TWIO—’_ X < 172>

and from it, using that limg(y),) o0 (rVw) =0,

372

(r2Vw) (A, v) = —%T(A, u)/yoo rYp(\ 1) — %r()\,u)/yoo 0 ( L 2) (8.4.20)

which implies that

(r2Yw)(\,v) = O(r~'7%) (8.4.21)

As before we can estimate the limit of the right hand side as v — oo and
conclude that, in this case, it goes to zero. This is due to the fact that the

1
integrand Yp in 8.4.20 goes to zero as O(r~*r_?), proving the lemma.

Remark: Observe that in this case we do not have a pointwise limit as
v — oo for rYw due to the fact that its evolution equation involves the
first tangential derivatives of p which has not a pointwise limit.

Using the previous Lemma we can prove the following proposition
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Proposition 8.4.2 The quantities Yiry and ¢ have the null outgoing in-
finity limits

li 2 — VH(), - li 20 = Z(\,- 4.22
e YTIX =FHO) o Jim re= 20 (84.22)

Moreover the following “structure equation” holds at infinity
— lg
JivX = §Y7H +Z (8.4.23)

Proof: to be added from my notes.

8.5 The Bondi mass

Definition 8.5.1 The Hawking mass enclosed by a two surface S(\,v) is
given by the following expression, see[Ch-KIJ, Chapter 17,

1
m(\v) = rdv) 1+ —/ trxtry (8.5.1)
2 167 Js(aw) =
Recalling the definition of the mass aspect function, see 3.3.6,

1 1
p(Av) =K+ Ztrxtrx —divyp = —divp+sx-X—p (8.5.2)

\)

and using the Gauss Bonnet theorem, we can reexpress the Hawking mass

in the form ?,

m(\v) = r(); v) (1 + E/g(/\y)(ﬁ—K—i—(Mvg))

(A,V)/ T(A,V)/ <1A 5 )
_ _ Spg— 8.5.3
8 S(A,u)E 8T Js(aw) pX X P ( )

Proposition 8.5.1 the Hawking mass m(\,v) satisfies the following

[a—y

<

0 _
gm(k,y) =0(r?) (8.5.4)

°In most of the equations we omit the dependance on the angular variables, except
where strictly needed.
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Proof: From definition 8.5.1 we have

0 10r 1 r 0
gm()\, v) = 29 (1 + I6m /S(/\yy)trxtrx> + 397 9 /S()\,V)trxtrx
or 1 r 0
= 3,8x /S(/\,V)E_i_ 397 00 /S()\’V)trxtrx

Qtrx T 0 9 >
= — — —(trxt Qtrx“t
2 8w /g(,\,y)ﬂ * 32m /s(,\,,,) (8V( rtrx) + rxCtry

r

1 10
= — Ot —Qtry’t —— (tryt 8.5.5
167 /S(/\,u)< xRt g X Xt 2 31/( X IX)) ( )

From the structure equations 3.1.45, it is easy to derive

0
a—trxtrx = —Q(try)%try — Q|x|*try + 2Qtrx|n|* + 2Qtry <d/iv77 -
» X X X n

= —20trxp — Q(trx)*try — Q|x|*try + 2Qtry|n|?

Plugging this relation in 8.5.5 we obtain

0 7

1
—m\v)=— Qtry — Ot Ot 2 _ZQtryly 2} 5.
aym( V) 1671'/5()\ ) [( rx —Qtrx) p+Qtrx || 5 rx|x|?| (8.5.7)

and due to the estimates 8.0.1 and 8.0.2 the right hand side of 8.5.7 is
O(r~?), proving the proposition.

From the expression of the Hawking mass in equation 8.5.3 and the existence
of the null outgoing infinity limit of 72y, rx and r3p proved in propositions
8.2.1 and 8.3.2 it follows immediately that m(\,v) has a limit as v — oo,
uniform in A. We can therefore introduce the Bondi mass '°, see [?], in the
following way,

Definition 8.5.2 The Bondi mass relative to the null outgoing hypersurface
C(N) is

Mp(A) = lim m(),v) (8.5.8)

v—00

As a corollary to Proposition 8.5.1 we have

Corollary 8.5.1 On any C(X) the following relation holds

m(\v) = Mp()\) +O(r™") (8.5.9)

9For a discussion about the Bondi mass see [Wa2], Chapter 11.

x-xw)

(8.5.6)
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Proof: It follows immediately by integrating the right hand side of 8.5.4.

Observe that, on any C(v), A varies in the interval [Ao(v), Ag], where \o(v) =
ulow)ns,- Aslimy, o Ao(v) = —00, Mp(A) is defined in the interval (—oo, Ao
and we have the following proposition

Theorem 8.5.2 The Bondi mass has the following limit

lim Mp(A\) =M (8.5.10)
A——00
where M, defined in the global initial data conditions, see Definition 3.6.1,
is the ADM enerqy on Xg.

Proof: From equation 8.5.3, and the definition of the Bondi mass it follows
immediately that

1

" 8

Ms(\) / X-X-P)()") (8.5.11)
SZ

where the integration is relative to the standard volume element of S?. The

asymptotic behaviour in A of X (A, ) and X (X, -), proved in Proposition 8.3.2,

implies that

Mp(\) = _8% /52 P\, +0 (%) (8.5.12)
and
Mp(—o0) = —% im PO = 1 im (lim () (A, v)) (8.5.13)

We express (r35) (), ) using its evolution equation along C(v), see subsec-
tion 5.1.6,

_ _ I S— _
PO = D)) g [ [ @y - o - 7)

_ﬁ /Az(u) /s(A,V) u <(gn - %Q) £ %X e 'é> (5544

and recalling Propositions 8.2.1 and 8.3.2, we can write
_ s 1
PO = Jim ("D Oa).n) - 5= [ [ x40

= lim () (A (v),v) + O (%) (8.5.15)
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where the last integral in 8.5.15 has been estimated observing that X =
0] ()F%) and A = O()F%). Computing expicitely the asymptotic expres-
sion of p on ¥y we obtain, see subsection 7.1.3,

MB(—OO) = (Tgp)()\o(y),y) =Fapy=M (8516)

—— lim
2 v—00

proving the proposition.

We are now ready to give a rigorous derivation of the Bondi mass formula

Theorem 8.5.3 The following equation is satisfied, in the null outgoing
infinity limit,

O\ 32r
Proof: To prove equation 8.5.17 we first differentiate with respect to A the
Hawking mass m(\, ) and subsequently take the limit v — 0o. Proceeding
as in the derivation of 8.5.5

OMp(N\) _ 1 /52 X (A, )|2 (8.5.17)

0 or 1 r 0

—m(A = —— —_— tryt 8.5.18

3>\m( V) O\ 8w /5(/\7,,)E + 321 OX Js(aw) EXUEX ( )

r 1 10
= — Ot —OQtry %t ——(tryt
T6m /S()\,V)< Y [+ 5 ry“try + 28)\( ry rx))
From the structure equations 3.1.45, it is easy to obtain
1
a—itrxtrx = —Q(trx)Qtrx — Q|X|2trx + 2Qtrx|77|2 + 2Qtry (d/lvn — §X SR+ ,0>
= —20tryp — Q(try)*try — Q[x[*trx + 2Qtrx|n|? (8.5.19)

and equation 8.5.18 can be rewritten as

0 — 1
—m(A\,v) = L/ (Qtrxu — Qtryp — = Qtry|x|* + Qtrx|17|2> (8.5.20)
167 Js(aw) == = 2 =

Using the previous results we see that the integrand of 8.5.20 admits a limit
for v — oo, uniform in A. Moreover the only term in the right hand side not
converging to zero is —(327) lr fs(/\,y)Qtrx|X|2. Thus we conclude

0 1 9
M) ==z [ X\
proving our result.

ARSI K G [ [9())HHH ISR R HAK
add some physical comment

Using equation 8.5.15 we can complete Proposition 8.2.1 proving the follow-

ing lemma
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Lemma 8.5.1 The following limits hold

im P =7 =
Jim P=7, lim Q=0 (8.5.21)

Proof:

8.6 Asymptotic behaviour of null outgoing hyper-
surfaces

In this section we recover conclusion 17.0.6 of [Ch-Kl]. We want to show
that, as v — 00, the null outgoing hypersurfaces C(\) approach the null out-
going cones of the Schwarzschild spacetime with ADM mass M = Mp(—00).
In particular we show that they diverge logarithmically from the standard
position of outgoing null cones in Minkowski spacetime.

Proposition 8.6.1 On any null outgoing hypersurface C(X) the following
relation holds

dr 1 1
—=-2M-+0|—= 8.6.1
dt r + <r2> ( )

Proof: We first recall the definition of the time function in the spacetime
K, see Proposition 3.3.1,

1
1Ow) = 504 0)
Recall also that r = r(\,v) is defined by the formula
r(\v) = (4m) 2 |SA )7 -

Computing %7’ on a null hypersurface C(\) we obtain, see 4.1.30,

d 0 — 1
=9 pr =9rQ =1 Q — .6.2
dtr|C ayr rQtry + r(Qtry 7“) (8.6.2)

To obtain an explicit relation between r(Qtry — %) and the Bondi mass, we
express this quantity as an integral along the null incoming hypersurface

C(v),

1 1 1
Qtry — -)= — / Qtry — —
/ SO ( X 3) dmr(Ao(v),v) S(/\O(V):V)( )

>\
4i/ 83 (1/ Qtry — l)>(,\',y) (8.6.3)

4grr(
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Using Lemma 3.1.3 we have

’\ 0 1 A 1 /0 1
) o\ mW‘;>—zaﬁwﬂ‘ﬁ(aV)L@JmW‘;>
0 1
+- / (3_ Qtrx — =) + Qtry (Qtry — —))
S(Aw)

1 Qtry 1
Qt - = =(Qtry — —
47r Xo(v { X 7“) 2 ((2erx 7“)}

o /S NS (Qtrx))(Qtrx—%)} (8.6.4)

1 1 0 1 Qtry 1 1
== = 9 (Qtry — - X (Qtry — - L
4%/)\0(,,)7"/5(,\,,,) {8)\( X 7“) + 2 ((2trx 7")] +0 <7“3()\,1/)>

where the estimate of the last term uses the boundedness of r2|Qtrxy—(Qtry)|
and of r?|(Qtry —1)| implicit in the bounds for the O norms proved in
Theorem M1. Using the structure equations 3.1.45 we calculate

0 1 Qtry N A
{ﬁ(ﬁtrx - ;) + (Qtry — ;)} =0 [(_X Sx A+ 2p) + 2div( + 24 1log ©

+2|C2 +4¢ - Wlog 2 + 2|V log 2] (8.6.5)

Using once more the estimates for the connection coefficients implicit in the
bounds for the O norms provided by the Main Theorem, we write

0 (1 1 2 1 1
— | - Qtry ——) | = - ——X X — .6.
o\ <7"/S(/\,V)( X 7")> r /S(A,u)< X X * p) O <7“3> (8.6.6)

Therefore, from 8.6.4 and using 8.5.3 we have,

L0 b oo [0 LD (L)
AT Jaow) OX \ /s Xy Yo) 2\ 4T (v ) XX TP

A 1 1

= -2 ——m(N Ol 8.6.7
No(v) 7“2()\’,1/)m( V) + (7“2> ( )

Recalling that from Corollary 8.5.1, m(\,v) = Mp(\) + O(r~!), we write

d 1 1 1 A 0 /1 1
%T - drr(Xo(v),v) /S(/\o(l/), )(Qtrx B _) + E/ Ao(v) E)Y <;/S(Qtrx B _)>

"
1 1 A 1 1

S Qtry — -) — 2 . _Mg(\)+0 —)
4WT(A0(V),V)/9(A0(V),V)( X 7“) M) T2V, V) () 2
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Using the Bondi masss formula, see 7?7, we write

A 1 N A 1 e N % ;
_2/ o) OV U)MB(A)— 2/%(”) ) (MB( )+[w (A ))

z
/ ,,42 )\/ (MB(_OO) - %/OO g2 |X(>‘”v')|2>

1
/ ) X Mp(— )+0< ) (8.6.9)

Therefore

d 1 1 A 1 1

Rl Qtry — —) — 2M —oo/ dX+0(—

dt* Amr(Xo(v),v) /suo(u),u)( =) p(=e0) o) T2(N, V) r?

T e s (LYo

o)) Jsouww 0 TGO T e T A

where we have used the relation dA\ = —(1 4+ <)dr, which follows from

Lemma 4.1.8. To complete the proof we consider the first term in the last
line of 8.6.8,

1 1
IO () ) Qtry — — 8.6.10
drr(Ao(v),v) /S(/\o(y),y)( =) ( )

_ e 1 w0 - ) anro (2
‘ﬁw ax \drr(\, (N) /su,uou»(“ Y <_>

where the O ( ) term originates from the integration of the terms due to
(Qtry — atrf), see subsections 3.3.1 and ??. Recall that

A=ulsncny s Y0(A) = Ulsone) -

Repeating the computation done in 8.6.4 with N the unit vector field along
Yo normal to the canonical foliation {Sy(v)} and taking into account equa-
tion 7.2.6,

1 ~
V gt + 5(tre)2 =D+ [—IWlog al® — 10 +9(k)]

and Vgr = “tng

as well as the estimates of the norms O(3o\K) we write
there is a factor between 3% and N to check!!!

) 1 1 . 1 1
Ay (. E— 0 — =) ) = -N —/ 0 — =
0 (4W(AW0(A)) /Su,uo(A))(a : 7“)> <4W(A,w)(k)) S(/\,Vo()\))(a ' r)>
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1 1 1 1 1
2 (V) /S(A,VO(A))(atro Rl /,S'()\,Vo()\)) (vﬁ(atro =) +atrdlatrd - F)>

= —L/ [Vﬁ(atw — l) + ﬁ(atr@ — 1)] + ! / (atrO—(atrO))(atrO—l)
S(A (M) r S(wo(X))

4rr r 2 Sr r

1 1 atrd 1 1
- _R/S(/\,uo(/\)) [Vﬁ(atw — ;) + T(atr@ — ;)} +0 (77’3()\,1/00\)))

: s L) om0 (ot
- M/su,uo(x))wr X (m> =rdn)p+0o <r3(>\, VU(A))> (8.6.11)

Plugging this result in 8.6.10 we obtain easily, recalling the Global initial
data conditions, see definition 3.6.1, taking into account the equation, see

seny

D= ...
1 1 rW) 1, 1
4rr(No(v),v) /g(,\o(y),y)(gtrx B ;) B /_oo (T_zr p> A+o (ﬁ)
2 1
- M O (72) (8.6.12)

The constant M above is the ADM mass associated to the initial data and
concide, as proved in Proposition 8.5.2, with the Bondi mass for A — —o0,
M = Mp(—o0). Using this relation, equation 8.6.8 can be written as

d 1 1
%r()\,u) = —2MT(>\’V) +0 (m> (8.6.13)

completing the proof of Proposition 8.6.1.

Remarks:
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