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Abstract

Robertson and the second author [7] proved in 1986 that for all h there exists f(h) such that for every
h-vertex simple planar graph H, every graph with no H-minor has tree-width at most f(h); but how
small can we make f(h)? The original bound was an iterated exponential tower, but in 1994 with
Thomas [9] it was improved to 2O(h5); and in 1999 Diestel, Gorbunov, Jensen, and Thomassen [3]
proved a similar bound, with a much simpler proof. Here we show that f(h) = 2O(h log(h)) works.
Since this paper was submitted for publication, Chekuri and Chuzhoy [2] have announced a proof
that in fact f(h) can be taken to be O(h100).



1 Introduction

Graphs in this paper are finite, and may have loops or multiple edges. A tree-decomposition of a
graph G is a pair (T,W ), where T is a tree, W = (Wt : t ∈ V (T )) is a family of subsets of V (G),
and for each t ∈ V (T ), Wt ⊆ V (G) satisfies the following:

• ∪t∈V (T )Wt = V (G), and for every edge uv of G there exists t ∈ V (T ) with u, v ∈ Wt

• if r, s, t ∈ V (T ), and s is on the path of T between r and t, then Wr ∩ Wt ⊆ Ws.

A graph G has tree-width w if w ≥ 0 is minimum such that G admits a tree-decomposition (T, (Wt :
t ∈ V (T ))) satisfying |Wt| ≤ w + 1 for each t ∈ V (T ).

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph
of G by contracting edges, and if so, we say G has an H-minor. The following was proved in [7]:

1.1 For every planar graph H there exists w such that every graph with no H-minor has tree-width
at most w.

This is of interest for two reasons. First, graphs of bounded tree-width are easier to handle (for
algorithms, and for proving theorems) than general graphs, and 1.1 tells us that if we we have to give
up this advantage, we have a large grid minor instead, which can also be useful (again for algorithms,
and for proving theorems). Second, no non-planar graph H satisfies the conclusion of 1.1 (because if
H is non-planar, then for any w a large enough grid has tree-width at least w and does not contain
H as a minor).

In this paper we are concerned with the numerical dependence of w on H, and for this let us
restrict ourselves to simple planar graphs H. In [9], it was shown that for every simple planar graph
H with h vertices, every graph with no H-minor has tree-width at most 2064h5

. Diestel, Gorbunov,
Jensen, and Thomassen [3] proved a similar bound of 2O(h5 log(h)), with a much simpler proof. Here
we prove that:

1.2 For every simple planar graph H with h vertices, every graph with no H-minor has tree-width
at most 215h+8h log(h).

(Logarithms have base two.) Independently, Kawarabayashi and Kobayashi [5] have proved a similar
result. Since the present paper was submitted for publication in June 2012, Chandra Chekuri and
Julia Chuzhoy [2] have announced a much stronger result, namely that the bound in 1.2 can be
replaced by a polynomial in h (currently O(h100)).

Our proof uses the same approach as the proof of [3], but we implement some of the detailed
arguments more efficiently. The work reported here is partially based on [6]. Let us sketch the proof.

• A “linkage” means a set of vertex-disjoint paths. Our main tool, which was also the main tool
of [3], is the “linkage lemma”, that if G has two sufficiently large linkages P,Q, where the
paths in P are between two sets A,B ⊆ V (G), then either G contains a large grid as a minor,
or there is a path Q ∈ Q such that there is still a large linkage between A,B in G disjoint from
Q, not as large as before, but still as large as we need. (This is more-or-less 3.1.)

• To prove the linkage lamma, we first prove (as did [3]) that if G contains a large grill, then G
contains a large grid minor. A “grill” means a set of pairwise disjoint connected subgraphs,
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and a set of vertex-disjoint paths, so that each path has one vertex from each subgraph, and
always in the same order. We have found a better proof for this than that in [3], and this is
the main place where we gain numerically. (This is 2.1.)

• To deduce the linkage lemma from the grill lemma, we choose the linkage P such that the
union of its paths with the paths of the linkage Q is as small as possible; then for each edge
e which belongs to a path in P, if e also belongs to a member of Q we can contract it and
win by induction, so we assume not; and the choice of P tells us that if we deleted e, there
would be no linkage any more between A,B of cardinality |P|. Consequently there is a cutset
(consisting of the edge e and otherwise of vertices) that separates A from B, of order |P|. This
gives us many cutsets, one for each edge in each path of P, and we can uncross them so they
all line up linearly, and the paths in P cross each of them only once, and in the right order.
Then we have something like a large grill, ready for the application of the grill lemma. (This
is in section 3.)

• With this linkage lemma in hand, we turn to the main proof. If the tree-width is large, then
any attempt to grow a tree-decomposition of small width must get stuck at some stage; and
by “greedily” growing a tree-decomposition as far as we can, it is easy to obtain a separation
(A,B) of large (but bounded) order, k say, such that every two subsets of A ∩ B of the same
size are joined within G|B by a linkage of that size. With more care, we can choose (A,B) so
that in addition, it is possible to contract a path from G|A onto the vertices in A ∩ B. (This
is 4.1.)

• Let us perform this contraction; so now we have a graph G′ say with vertex set B, which is a
minor of G, with a k-vertex path P say, with the property that any two subsets of V (P ) of
the same size are joined by a linkage of that size. Partition P into many long subpaths, say
P1, . . . , Pt. Any two of these are joined by a large linkage in G′; and by repeated application of
the linkage lemma, we can choose a path between every two of P1, . . . , Pt, such that all these
paths are pairwise disjoint. But then we have a large clique as a minor, and so we win.

This is the basic idea of the proof. There are some technical refinements that are not worth detailing
here; for instance,

• we can use the part G|A of the separation above to get more of the desired minor, by contracting
a more complicated tree onto A ∩ B than just a path;

• it is wasteful to produce a large clique minor at the end, because all we need is a large grid
minor, so we should just obtain paths between certain pairs of P1, . . . , Pt rather than between
all of them;

• sometimes we don’t even want a large grid minor, we want some particular planar graph as a
minor, and it is wasteful to produce the large grid in its place; we get better numbers by going
directly for the minor that we really want.

2 Linkages, grids and grills

If G is a graph, a linkage in G means a set P of paths of G, pairwise vertex-disjoint (a path has no
“repeated” vertices); and if A,B ⊆ V (G), an (A,B)-linkage means a linkage P such that each of its
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paths has one end in A and the other in B. If P is a linkage, ∪P means the subgraph formed by the
union of the paths in P.

For g ≥ 1, the g × g-grid is the graph with g2 vertices ui,j (1 ≤ i, j ≤ g) where ui,j and ui′,j′ are
adjacent if |i − i′| + |j − j′| = 1.

For a, b > 0, an (m,n)-grill is a graph G with mn vertices

{vi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

in which

• for 1 ≤ p ≤ m and 1 ≤ j < n, vp,j is adjacent to vp,j+1, and so vp,1-vp,2- · · · -vp,n are the vertices
in order of a path, Pp say

• for 1 ≤ j ≤ n, the subgraph Tj induced on {v1,j , . . . , vm,j} is connected.

The result of this section is the following. (This is the main improvement of our proof over the
proof in [3]; they prove something analogous, but they require n to be exponentially large to get
essentially the same conclusion.)

2.1 Let g ≥ 1 and h ≥ 3 be integers, and let m ≥ (2g + 1)(2h − 5) + 2 and n ≥ h(2g + h − 2)
be integers. Let G be an (m,n)-grill. Then G contains either a g × g-grid or the complete bipartite
graph Kh,h as a minor.

The proof requires several lemmas.

2.2 Let G be an (m,n)-grill, with the usual notation. Let 1 ≤ h < j ≤ n, and let X ⊆ V (Th) and
Y ⊆ V (Tj), with |X| = |Y | = k say. If j − h ≥ k + 1, there is an (X,Y )-linkage P of cardinality k
in G, such that every vertex of ∪P belongs to X ∪ Y ∪

⋃
h<i<j V (Ti).

Proof. Let H be the subgraph of G induced on X∪Y ∪
⋃

h<i<j V (Ti). We must show that in H there
are k vertex-disjoint paths from X to Y . Suppose not; then there exists Z ⊆ V (H) with |Z| < k such
that every connected subgraph of H containing a vertex of X and one of Y also contains a vertex
of Z. Since |X| > |Z|, there exists p ∈ {1, . . . ,m} such that X ∩ V (Pp) 6= ∅ and Z ∩ V (Pp) = ∅; and
similarly there exists q ∈ {1, . . . ,m} such that Y ∩ V (Pq) 6= ∅ and Z ∩ V (Pq) = ∅. Since j − h > k,
and therefore there are at least |Z| + 1 values of i with h < i < j, it follows that there exists i with
h < i < j such that Z ∩ V (Ti) = ∅. But then

(Pp ∩ H) ∪ (Pq ∩ H) ∪ Ti

is a connected subgraph of H meeting both X,Y and not meeting Z, a contradiction. This proves 2.2.

A leaf of a graph is a vertex of degree one. The following result is related to that of [4].

2.3 If r ≥ 1 and h ≥ 3 are integers, and G is a connected simple graph with

|V (G)| ≥ (r + 2)(2h − 5) + 2,

then either
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• G has a spanning tree T with at least h leaves, or

• there is a path of G with r vertices, such that all its internal vertices have degree two in G.

Proof. Suppose that neither of these outcomes hold, for a contradiction. Since G is connected, it
has a spanning tree; choose a spanning tree T with as many leaves as possible. (Note that |V (G)| ≥ 2
and so no vertex of T has degree zero.) Now T has at most h−1 leaves, and hence (since |V (G)| ≥ 2)
has at most 2h − 4 vertices of degree different from two. Consequently T is a subdivision of a tree
with at most 2h− 4 vertices and hence at most 2h− 5 edges. Thus T is the union of at most 2h− 5
paths, such that every internal vertex of each of these paths is in D, where D is the set of vertices
that have degree two in T . Let the longest such path have vertices v1- · · · -vt say, in order. Thus
(t − 2)(2h − 5) ≥ |D|.

Let 4 ≤ i ≤ t − 3. We claim that vi has degree two in G. For suppose that vi is adjacent in
G to some vertex v ∈ V (G) = V (T ) different from vi−1, vi+1. Let Q be the path of T between vi

and v. From the symmetry we may assume that vi−1 ∈ V (Q). Let T ′ be the spanning tree of G
obtained from T by adding the edge vvi and deleting the edge vi−2vi−1. Now vi−1 is a leaf of T ′,
and so is vi−2 unless v = vi−2. It follows that T ′ has strictly more leaves than T , a contradiction.
Thus vi has degree two in G, for 4 ≤ i ≤ t − 3. Let P be the path with vertices v3-v4- · · · -vt−2 in
order. Then every internal vertex of P has degree two in G. Since P has t − 4 vertices, we may
assume that t− 4 ≤ r − 1, and since (t− 2)(2h− 5) ≥ |D|, it follows that (r + 1)(2h− 5) ≥ |D|. But
|V (G)| ≤ 2h − 4 + |D|, and so |V (G)| ≤ (r + 2)(2h − 5) + 1, a contradiction. This proves 2.3.

If X is a subset of the vertex set of a graph G, we denote by G\X the graph obtained by deleting
X (and we write G \ v for G \ {v}.) We denote by G|X the subgraph of G induced on X.

2.4 Let h ≥ 1 be an integer, and let m ≥ h + 1 and n = h2. Let G be an (m,n)-grill, labeled as
usual. Suppose that for 1 ≤ j ≤ h, T(h+1)j−h has a spanning tree with at least h leaves. Then G
contains Kh,h as a minor.

Proof. For 1 ≤ j ≤ h, let Xj ⊆ V (T(h+1)j−h) be a set of exactly h leaves of some spanning tree of
T(h+1)j−h; and let T ′

j = T(h+1)j−h \Xj . Thus each T ′
j is a connected subgraph, since a > h, and each

vertex in Xj has a neighbour in V (T ′
j). By 2.2, for 1 ≤ j < t, there is an (Xj ,Xj+1)-linkage Pj with

cardinality h such that every vertex of ∪Pj belongs to

Xj ∪ Xj+1 ∪
⋃

(V (Ti) : (h + 1)j − h < i < (h + 1)(j + 1) − h).

The graph formed by the union of all the graphs ∪Pj (1 ≤ j < h) therefore has h components, each a
path; and if we contract each of these components to a single vertex, and contract each T ′

j (1 ≤ j ≤ h)
to a single vertex, we obtain Kh,h as a minor. This proves 2.4.

Proof of 2.1. We may assume that n = h(2g + h− 2). Let G be an (m,n)-grill, with notation as
usual. Let 1 ≤ i ≤ n−2g+2, and let Hi be the subgraph of G induced on the set V (Ti∪· · ·∪Ti+2g−2).
Let Ji be the simple graph underlying the minor of Hi obtained by contracting all edges of Pp ∩ Hi

for 1 ≤ p ≤ m. For 1 ≤ p ≤ m, let up be the vertex of Ji formed by contracting the edges of Pp ∩Hi.
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(1) If there exists i with 1 ≤ i ≤ n − 2g + 2 such that Ji has no spanning tree with at least h
leaves, then G contains a g × g-grid as a minor.

To prove this, we observe that if i satisfies the hypothesis of (1), then by 2.3, some path of Ji

has 2g− 1 vertices, and all its internal vertices have degree two in Ji; and we may assume by renum-
bering that this path has vertices u1, . . . , u2g−1 in order. Consequently for 2 ≤ p ≤ 2g − 2, and
i ≤ j ≤ i + 2g − 1, the vertex vp,j has degree at most two in Tj , and has no neighbours in Tj except
possibly vp−1,j and vp+1,j. Since Tj is connected, it follows that one of

v1,j-v2,j- · · · -vg,j, vg,j-vg+1,j- · · · -v2g−1,j

is (the sequence of vertices of) a path of Tj . From the symmetry, we may assume that v1,j-v2,j- · · · -vg,j

is a path of Tj for at least g of the 2g − 1 values of j ∈ {i, . . . , i + 2g − 2}. But then these g paths,
together with the paths P1 ∩ Hi, . . . , Pp ∩ Hi (with some edges contracted appropriately), form a
g × g-grid. This proves (1).

From (1) we may assume that for 1 ≤ i ≤ n−2g+2, Ji has a spanning tree with at least h leaves.
Let d = 2g + h − 1, and for j = 1, . . . , h and 1 ≤ p ≤ m, let us contract the edges of Pp ∩ Hjd−d+1.
This yields an (m,h2)-grill satisfying the hypotheses of 2.4, and so G contains Kh,h as a minor. This
proves 2.1.

Let us say that for integers m,n > 0 and a real number ǫ with 0 ≤ ǫ ≤ 1, an (m,n, ǫ)-pregrill
is a graph G such that there is an (A,B)-linkage {P1, . . . , Pm} in G for some A,B, and there are
vertex-disjoint connected subgraphs T1, . . . , Tn of G, satisfying:

• for 1 ≤ p ≤ m and 1 ≤ i < j ≤ n, every vertex of Pp ∩ Ti lies in Pp before every vertex of
Pp ∩ Tj , as Pp is traversed from A to B

• for 1 ≤ j ≤ n, Pp ∩ Tj is null for at most ǫm values of p ∈ {1, . . . ,m}.

Thus if ǫ = 0, then by contracting the edges of each Pp between the first and last vertex of each Ti,
and some further contraction, we obtain an (m,n)-grill.

We need a small extension of 2.1:

2.5 Let g ≥ 1 and h ≥ 3 be integers. Let m ≥ 2(2g + 1)(h − 2) and n ≥ 2h(2g + h− 2) be integers,
and let ǫ = (4(2g + 1)(h − 2))−1. Let G be an (m,n, ǫ)-pregrill, with P1, . . . , Pm and T1, . . . , Tn as
above. Then G contains either a g × g-grid or Kh,h as a minor.

Proof. Let m′ = 2(2g + 1)(h − 2). On average (over 1 ≤ i ≤ m), Pi is disjoint from at most ǫn of
T1, . . . , Tn; and so we can choose m′ of P1, . . . , Pm, say P1, . . . , Pm′ , such that at most ǫm′n = n/2
of T1, . . . , Tn are disjoint from one of them. Consequently at least ⌈n/2⌉ of T1, . . . , Tn meet all of
P1, . . . , Pm′ . But then we have an (m′, ⌈n/2⌉)-grill as a minor, and the result follows from 2.1.
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3 Finding a path disjoint from a linkage

In this section we prove the following.

3.1 Let g ≥ 1, h ≥ 3, m ≥ 2(2g + 1)(h − 2) and n = 2h(2g + h − 2)m be integers, and let
ǫ = (4(2g + 1)(h − 2))−1. Suppose that

• G contains neither a g × g-grid nor Kh,h as a minor

• A,B ⊆ V (G), and there is an (A,B)-linkage in G of cardinality m

• Q is a set of pairwise vertex-disjoint connected subgraphs of G, with |Q| ≥ n.

Then for some Q ∈ Q, there is an (A\V (Q), B\V (Q))-linkage of cardinality at least ǫm in G\V (Q).

We need the following lemma. A separation in a graph G is a pair (C,D) of subsets of V (G),
such that there is no edge of G between C \ D and D \ C; and its order is |C ∩ D|. The following is
essentially theorem 12.1 of [8], but we sketch its proof for the reader’s convenience.

3.2 Let P be the only (A,B)-linkage of cardinality m in a graph G; and suppose that V (∪P) = V (G).
Let |V (G)| = p. Then there is a sequence (Ci,Di) (1 ≤ i ≤ p − m + 1) of separations of G, each of
order m, satisfying the following:

• Ci ⊆ Ci+1 and Di+1 ⊆ Di, for 1 ≤ i ≤ p − m;

• for 1 ≤ i ≤ p − m there is a unique vertex u ∈ Ci+1 \ Ci, and a unique vertex v ∈ Di \ Di+1,
and u, v are adjacent

• C1 = A, Dp−m+1 = B, and D1 = Cp−m+1 = V (G).

Proof. We proceed by induction on |V (G)|. If there is a separation (C,D) with order m and A ⊆ C
and B ⊆ D, and with |C|, |D| > m, then the result follows by the inductive hypothesis applied to
G|C (and the pair A,C ∩ D) and to G|D (and the pair C ∩ D,B). We assume there is no such
(C,D). If ∪P has no edges then the result is clear, so we assume that e is an edge of ∪P. From the
uniqueness of P, there is no (A,B)-linkage of cardinality m in G \ e; and so there is a separation
(C,D) of G \ e of order m − 1 with A ⊆ C, B ⊆ D. Thus e has ends u, v where u ∈ C \ D and
v ∈ D\C. Both (C,D∪{u}) and C∪{v},D) are separations of G of order m, and since D∪{u} 6= B
it follows that C = A, and similarly D = B. But then the result holds. This proves 3.2.

Proof of 3.1. We proceed by induction on |V (G)| + |E(G)|. Let ∪Q denote the union of the
members of Q. Choose an (A,B)-linkage P in G of cardinality m. If P can be chosen such that
some edge or vertex of G belongs to neither ∪P nor ∪Q, we may delete it and apply the inductive
hypothesis; and similarly if some edge belongs to both ∪P, ∪Q, we may contract it. Thus we assume
that E(∪P) = E(G) \ E(∪Q) for every choice of P. If some vertex does not belong to ∪P, we may
contract an edge incident with it and apply induction, if there is such an edge; and if there is no such
edge then there is a one-vertex graph in Q disjoint from ∪P and this satisfies the theorem. So we
may assume that V (∪P) = V (G) for every choice of P. In particular, P is the only (A,B)-linkage
of cardinality m in G.
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Thus P satisfies the hypotheses of 3.2; let (Ci,Di) (1 ≤ i ≤ |V (G)| − m + 1) be as in 3.2. For
each Q ∈ Q, let I(Q) be the set of all i ∈ {1, . . . , |V (G)|−m+1} such that some vertex of Q belongs
to Ci ∩Di. Each set I(Q) is non-empty, since Q has at least one vertex and every vertex belongs to
Ci ∩ Di for some choice of i. Moreover, each I(Q) is an interval (of integers), since Q is connected.
For each i, since |Ci ∩Di| = m, there are at most m paths Q ∈ Q such that i ∈ I(Q). It follows that
no subset of {1, . . . , |V (G)| − m + 1} of cardinality less than n/m has nonempty intersection with
all the intervals I(Q) (Q ∈ Q), since |Q| ≥ n. Consequently, there are at least n/m members Q ∈ Q
such that the corresponding intervals I(Q) are pairwise disjoint, say Q1, . . . , Qn/m. Number them so
that the corresponding intervals are in increasing order. Let P = {P1, . . . , Pm} say. It follows that
for 1 ≤ p ≤ m, as Pp is traversed from A to B, for j < j′ every vertex of Pp ∩ Qj is before every
vertex of Pp ∩Qj′ . If each Qj is disjoint from at most ǫm of P1, . . . , Pm, 2.5 implies that G contains
either a g × g-grid or Kh,h as a minor, a contradiction; and so some Qj is disjoint from at least ǫm
of P1, . . . , Pm. This proves 3.1.

Let Z ⊆ V (G). A path P in G is Z-proper if its ends are in Z, but no internal vertex of P is in
Z, and P does not have exactly one edge. (A path with no edges whose unique vertex is in Z counts
as Z-proper.) A linkage is Z-proper if all its members are Z-proper. We deduce:

3.3 Let g ≥ 1, h ≥ 3, m ≥ 2(2g + 1)(h − 2) and n = 2h(2g + h − 2)m be integers, and let
ǫ = (4(2g + 1)(h − 2))−1. Suppose that

• G contains neither a g × g-grid nor Kh,h as a minor, and Z ⊆ V (G)

• A,B ⊆ Z, and there is a Z-proper (A,B)-linkage in G of cardinality m

• Q is a Z-proper linkage in G, with cardinality n.

Then for some Q ∈ Q there is a Z \V (Q)-proper (A \V (Q), B \V (Q))-linkage of cardinality at least
ǫm in G \ V (Q).

Proof. Let P be a Z-proper (A,B)-linkage with cardinality m. Let G′ be the union of ∪P and
∪Q. By 3.1 applied in G′, for some Q ∈ Q there is an (A \ V (Q), B \ V (Q))-linkage R of cardinality
at least ǫm in G′ \ V (Q). Choose R with ∪R minimal. We claim that R is Z \ V (Q)-proper. For
certainly no member of R has exactly one edge, because no edge of G′ has both ends in Z. Suppose
for some R ∈ R, some internal vertex v of R belongs to Z. Thus v has degree at least two in G′; and
since v ∈ Z, it has degree at most one in ∪P, and degree one only if v is an end of one of the paths
in P. The same holds for Q; and we deduce that v is an end of a member of P and also an end of a
member of Q. In particular it belongs to A ∪ B; but then some proper subpath of R is a path of G′

from A \ V (Q) to B \ V (Q), contrary to the minimality of R. This proves 3.3.

3.4 Let g ≥ 1, h ≥ 3 and n ≥ 1 be integers, and let ǫ = (4(2g + 1)(h − 2))−1. Let k1, . . . , kn ≥
2(2g + 1)(h − 2), where

kn ≥ 2h(2g + h − 2)(k1 + · · · + kn−1).

Suppose that
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• G is a graph containing neither a g × g-grid nor Kh,h as a minor, and Z ⊆ V (G), and

• for 1 ≤ i ≤ n, there is a Z-proper (Ai, Bi)-linkage of cardinality ki, where Ai, Bi ⊆ Z.

Then there is a Z-proper path Q from An to Bn such that for 1 ≤ i ≤ n−1 there is a Z \V (Q)-proper
(Ai \ V (Q), Bi \ V (Q))-linkage in G \ V (Q) of cardinality at least ǫki.

Proof. Let Q be a Z-proper (An, Bn)-linkage of cardinality kn. For 1 ≤ i ≤ n− 1, let Qi be the set
of all Q ∈ Q such that there is no Z \ V (Q)-proper (Ai \ V (Q), Bi \ V (Q))-linkage of cardinality at
least ǫki in G \ V (Q). By 3.3, |Qi| < 2h(2g + h − 2)ki, since ki ≥ 2(2g + 1)(h − 2). Thus

|Q1 ∪ · · · ∪ Qn−1| < 2h(2g + h − 2)(k1 + · · · + kn−1) ≤ kn,

and so some member of Q belongs to none of Q1, . . . ,Qn−1. This proves 3.4.

3.5 Let g ≥ 1, h ≥ 3 and n ≥ 1 be integers, and let ǫ = (4(2g +1)(h−2))−1 and d = 2h(2g +h−2).
Let k1 = ǫ1−n, and for 2 ≤ i ≤ n, let ki = d(1 + d)i−2ǫ1−n. Suppose that

• G is a graph containing neither a g × g-grid nor Kh,h as a minor, and Z ⊆ V (G),

• for 1 ≤ i ≤ n, there is a Z-proper (Ai, Bi)-linkage of cardinality ki, where Ai, Bi ⊆ Z.

Then there are Z-proper paths P1, . . . , Pn of G, pairwise vertex-disjoint, such that Pi is from Ai to
Bi for 1 ≤ i ≤ n.

Proof. We proceed by induction on n. If n = 1 the result is true, since k1 > 0. If n ≥ 2, note that
k1, . . . , kn−1 ≥ ǫ−1 = 4(2g + 1)(h − 2); and

2h(2g + h − 2)(k1 + · · · + kn−1) = dǫ1−n(1 + d)n−2 = kn.

Hence by 3.4, there is a path P between An and Bn such that for 1 ≤ i < n, there is an (Ai \
V (P ), Bi \V (P ))-linkage of cardinality at least ǫki in G\V (P ). But then the result follows from the
inductive hypothesis. This proves 3.5.

4 Highly connected sets without making a mesh

Now we need to use 3.5 to give a bound on the tree-width of the graphs not containing these minors.
Here we could just follow [3]; certainly their method is numerically as good as what we are about to
present. But their argument at this point can be simplified, and this seems an appropriate place to
explain how.

Let Z ⊆ V (G). We say Z is linked in G if for every two subsets A,B of Z with |A| = |B| (not
necessarily disjoint) there is a Z-proper (A,B)-linkage in G of cardinality |A|. What we need to
show now, is that if G has big tree-width, then it has a separation (A,B) such that |A ∩ B| is big
(comparable with the tree-width), and A∩B is linked in G|B, and there are many disjoint connected
subgraphs of G|A, each containing many members of A ∩ B. (The first “many” here is the number
of vertices in the minor we are excluding, and the second is the size of the ki’s in 3.5.) We will say
all this more precisely later.

If we had such a thing, then 3.5 immediately gives our main result. In [3], they construct it by
making what they call a “mesh”, but this can be improved, in two ways:
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• their proof actually constructs something better than a mesh

• a different proof gives something much better than a mesh.

Let us explain.
Let H be a simple graph with vertex set {v1, . . . , vh}. A model of H in G means a family

(C1, . . . , Ch) of pairwise disjoint non-null subsets of V (G), each inducing a connected subgraph of G,
such that for each edge vivj of H, some vertex of Ci is adjacent in G to some vertex of Cj. If (A,B)
is a separation of G, we say that (A,B) left-contains a model (C1, . . . , Ch) of H if |A ∩ B| = h, and
C1, . . . , Ch are all subgraphs of G|A, each containing exactly one vertex of A ∩ B. If such a model
exists we say that (A,B) left-contains H.

4.1 Let w ≥ 1 be an integer, and let G be a graph with tree-width at least 3w/2 − 1. Then there is
a separation (A,B) of G such that

• |A ∩ B| = w

• A ∩ B is linked in G|B, and

• (A,B) left-contains a path.

The proof is exactly the proof of [3], so there is little point in repeating it. In any case, this
result is just a special case of the next. Not only can one persuade the separation to left-contain a
path, one can make it left-contain any desired tree with the appropriate number of vertices. It seems
the easiest proof uses the concept of a “bramble”, so we begin with that. A bramble of order k in a
graph G is a set B of non-null connected subgraphs of G, such that

• every two members B1, B2 ∈ B touch, that is, either V (B1 ∩ B2) 6= ∅, or there is an edge of G
with one end in V (B1) and the other in V (B2)

• for every X ⊆ V (G) with |X| < k, there exists B ∈ B with X ∩ V (B) = ∅.

The following was proved in [10]:

4.2 Let G be a graph and k ≥ 1 an integer. Then G has tree-width at least k − 1 if and only if G
admits a bramble of order k.

We use this to show the following:

4.3 Let w ≥ 1 be an integer, let T be a tree with |V (T )| = w, and let G be a graph with tree-width
at least 3w/2 − 1. Then there is a separation (A,B) of G such that

• |A ∩ B| = w

• G|(B \ A) is connected, and every vertex in A ∩ B has a neighbour in B \ A

• A ∩ B is linked in G|B, and

• (A,B) left-contains T .
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Proof. The proof is that of [1], modified to use brambles instead of the “blockages” of that paper.
Choose a vertex t1 of T , and number the other vertices t2, . . . , tw in such a way that for 2 ≤ i ≤ w,
ti is adjacent to one of t1, . . . , ti−1. For 1 ≤ i ≤ w, let Ti be the subtree of T induced on {t1, . . . , ti}.
Now let G be a graph with tree-width at least 3w/2 − 1; by 4.2 it has a bramble B of order at least
3w/2. Choose B maximal; thus if C is a connected subgraph of G including a member of B, then
C ∈ B (because otherwise it could be added to B, contrary to maximality). For each X ⊆ V (G) with
|X| ≤ 3w/2 − 1, there is therefore a unique component of G \X that belongs to B; let its vertex set
be β(X).

Choose v ∈ β(∅); then β({v}) ⊆ β(∅), and the separation ((V (G)\β(∅))∪{v}, β(∅)) left-contains
T1. Consequently we may choose a separation (A,B) of G with the following properties:

• (A,B) has order at least one, and at most w; say order k where 1 ≤ k ≤ w;

• (A,B) left-contains Tk;

• β(A ∩ B) ⊆ B;

• there is no separation (A′, B′) of G of order strictly less than k, with A ⊆ A′ and B′ ⊆ B, and
such that β(A′ ∩ B′) ⊆ B′;

• subject to these conditions, |A| − |B| is maximum.

(1) There is no separation (A′, B′) of G of order k with A ⊆ A′ and B′ ⊆ B and (A′, B′) 6= (A,B),
such that β(A′ ∩ B′) ⊆ B′.

For suppose that there is such a separation (A′, B′). From the optimality of (A,B), (A′, B′) does
not left-contain Tk. Consequently there do not exist k vertex-disjoint paths of G|(B ∩ A′) between
A ∩ B and A′ ∩ B′; and so by Menger’s theorem there is a separation (C,D) of order less than k,
with A ⊆ C and B′ ⊆ D. Since β(C ∩ D) touches β(A′ ∩ B′), and β(A′ ∩ B′) ⊆ B′ ⊆ D, it follows
that β(C ∩ D) ⊆ D. But this contradicts the fourth condition above. This proves (1).

(2) G|(B \ A) is connected, and every vertex in A ∩ B has a neighbour in B \ A.

Now β(A ∩ B) ⊆ B \ A, and hence is the vertex set of a component of G|(B \ A). Let D =
(A ∩ B) ∪ β(A ∩ B), and let C = V (G) \ β(A ∩ B); then (C,D) is a separation of G satisfying
the first four conditions above. From the optimality of (A,B) it follows that (A,B) = (C,D), and
in particular, β(A ∩ B) = B \ A. This proves the first assertion. For the second, suppose some
v ∈ A ∩ B has no neighbour in B \A. Then (A,B \ {v}) is a separation, and since β(A ∩ (B \ {v}))
touches β(A ∩ B), and hence is contained in B \ {v}, this contradicts the fourth condition above.
This proves (2).

(3) k = w.

Suppose that k < w. Let (C1, . . . , Ck) be a model of Tk in G|A, where each Ci contains a unique
vertex vi say of A ∩ B. Let tk+1 be adjacent in T to ti. By (2), vi has a neighbour in B \ A, say
vk+1. Let A′ = A∪ {vk+1}; then (A′, B) is a separation of G, and it left-contains Tk+1 (as we see by
setting Ck+1 = {vk+1}). Moreover, since β(A′∩B) touches β(A∩B), it is a subset of B; and (A′, B)
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satisfies the fourth condition above because of (1). But this contradicts the optimality of (A,B), and
hence proves (3).

(4) A ∩ B is linked in G|B.

For suppose not. Let X,Y ⊆ A∩B, with |X| = |Y |, such that there is no A∩B-proper (X,Y )-linkage
in G of cardinality |X|. We may assume that X ∩ Y = ∅ (by replacing X,Y by X \ Y, Y \ X). Let
Z = (A ∩ B) \ (X ∪ Y ). Let F be the set of edges of G between X and Y , and let G′ be obtained
from (G|B) \ F by deleting Z. Then there is a separation (C ′,D′) of G′, such that |C ′ ∩ D′| < |X|.
Let C = C ′ ∪ Z and D = D′ ∪ Z. Then (C,D) is a separation of (G \ F )|B of order less than
|X| + |Z| ≤ |C ∩ A|, |C ∩ B|. It follows that (A ∪ C,D) is a separation of G of order

|C ∩ D| + |(A ∩ B) \ C| = |C ∩ D| + |A ∩ B| − |A ∩ C| < |A ∩ B| = w,

and so β((A ∪ C) ∩ D) exists; and the fourth condition above implies that β((A ∪ C) ∩ D) is not a
subset of D. Consequently it is a subset of A ∪ C. Similarly β(((A ∪ D) ∩ C) ⊆ A ∪ D.

Let X = (A∩B)∪ (C ∩D). Since A∩B, (A∪C)∩D, and (A∪D)∩C are all subsets of X, and
each vertex of X belongs to at least two of these three subsets, it follows that 2|X| is at most the
sum of the cardinalities of these three subsets. Consequently 2|X| ≤ w +(w− 1)+ (w− 1) = 3w− 2,
and so |X| ≤ 3w/2 − 1. Thus β(X) exists. Since β(X) touches β(A ∩ B), it follows that β(X) ⊆ B,
and hence either β(X) ⊆ C or β(X) ⊆ D. But β(X) touches β(((A ∪ D) ∩ C), and hence β(X) is
not a subset of C, and similarly it is not a subset of D, a contradiction. This proves (4).

From (2)–(4), this proves 4.3.

We remark that 4.3 implies the following, which seems to be new.

4.4 Let H be a simple graph with |V (H)| ≥ 2 such that H \ v is a forest for some vertex v. Then
every graph with no H-minor has tree-width at most 3|V (H)|/2 − 3.

Proof. We may assume by adding edges that H \ v is a tree T ; let w = |V (T )| ≥ 1. Now let
G be a graph with tree-width at least 3w/2 − 1. By 4.3, there is a separation (A,B) of G such
that |A ∩ B| = w, G|(B \ A) is connected, every vertex in A ∩ B has a neighbour in B \ A, and
(A,B) left-contains T . Let (C1, . . . , Cw) be the corresponding model of T , and let Ci ∩ B = {vi}
for 1 ≤ i ≤ w. Since each vi has a neighbour in B \ A, and G|(B \ A) is connected, by contracting
G|(B \ A) and each of C1, . . . , Cw to a single vertex, we obtain an H-minor. This proves 4.4.

5 Conclusion

Let us combine these lemmas to deduce our main result, the following.

5.1 Let H be a connected simple graph, not a tree, with h vertices, and let g ≥ 1 be an integer. Let
G be a graph that G contains neither a g × g-grid nor H as a minor. Then the tree-width of G is at
most

3(8h(h − 2)(2g + h)(2g + 1))|E(H)|−|V (H)| + 3h/2.
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Proof. Since H is not a tree, it follows that h ≥ 3 and m ≥ 1. Since H is a minor of Kh,h, G does
not contain Kh,h as a minor. Let V (H) = {t1, . . . , th}, and let m = |E(H)| − |V (H)|. Let T0 be a
spanning tree of H, let f1, . . . , fm+1 be the edges of H not in E(T ), and for 1 ≤ i ≤ m + 1 let the
ends of fi be tp(i), tq(i). Let ǫ = (4(2g + 1)(h− 2))−1, and d = 2h(2g + h− 2). Let k1 = ǫ−m, and for
2 ≤ i ≤ m+1, let ki = d(1+d)i−2ǫ−m. For 1 ≤ i ≤ m+1, take a set of ki −1 new vertices and make
a tree Ti with vertex set consisting of these new vertices together with tp(i), where tp(i) is adjacent
to all the new vertices. Also take another set of ki − 1 new vertices and make a tree T ′

i consisting of
these new vertices and tq(i), where tq(i) is adjacent to all the new vertices. Altogether we need

2(k1 + · · · + km+1) − 2(m + 1) = 2((d + 1)/ǫ)m − 2(m + 1)

new vertices. Let T be the tree consisting of the union of T0 and all the trees Ti, T
′
i (1 ≤ i ≤ m + 1).

Thus T has at most 2((d + 1)/ǫ)m + h vertices.
Let w = |V (T )|, and suppose that the tree-width of G is at least 3w/2 − 1. By 4.3, there is a

separation (A,B) of G such that |A ∩ B| = w, A ∩ B is linked in G|B, and (A,B) left-contains T .
It follows that there is a model (C1, . . . , Ch) of T0 in G|A, such that if 1 ≤ i ≤ m + 1 and 1 ≤ j ≤ h
and fi is incident with tj then |Z ∩ V (Cj)| ≥ ki, where Z = A ∩B. Thus for 1 ≤ i ≤ m + 1, there is
a Z-proper (Z ∩ V (Cp(i)), Z ∩ V (Cq(i)))-linkage of cardinality ki. By 3.5, there are Z-proper paths
P1, . . . , Pm+1 of G|B, pairwise vertex-disjoint, such that for 1 ≤ i ≤ m+1, Pi is between Z∩V (Cp(i))
and Z ∩V (Cq(i)). But then contracting each Ci to a single vertex and contracting each Pi to an edge
yields an H-minor, a contradiction. Thus the tree-width of G is less than 3w/2 − 1, and hence at
most 3((d + 1)/ǫ)m + 3h/2. But (d + 1)/ǫ ≤ 8h(h − 2)(2g + h)(2g + 1). This proves 5.1.

We deduce:

5.2 Let H be a simple connected planar graph, not a tree. Let h = |V (H)| and m = |E(H)|−|V (H)|.
Every graph with no H-minor has tree-width at most 3(160h4)m + 3h/2.

Proof. Let g = 2h. By theorems 1.3 and 1.4 of [9], H is a minor of the g × g grid. Let G have no
H-minor. By 5.1, the tree-width of G is at most

3(8h(h − 2)(4h + h)(4h + 1))m + 3h/2 ≤ 3(160h4)m + 3h/2.

This proves 5.2.

Consequently we have:

5.3 Let H be a simple planar graph, with h vertices. Every graph with no H-minor has tree-width
at most 215h+8h log(h).

Proof. We may assume that h ≥ 3, and by adding edges we may assume that H is connected and
not a tree. Let m = |E(H)| − |V (H)|. Since m ≤ 2h− 6, 5.2 implies that if G has no H-minor, then
the tree-width of G is at most

3(160h4)2h−6 + 3h/2 ≤ (160h4)2h ≤ 215h+8h log(h).

This proves 5.3.
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We also have:

5.4 Every graph not containing the g × g grid as a minor has tree-width at most g8g2

.

Proof. Let H be the g × g grid. We may assume that g ≥ 2, and so H is not a tree. Since H
has g2 vertices and 2g(g − 1) edges, 5.1 implies that if G does not contain H as a minor, then the
tree-width of G is at most

3(8g2(g2 − 2)(2g + g2)(2g + 1))2g(g−1)−g2

+ 3g2/2 ≤ g8g2

.

This proves 5.4.

References

[1] D. Bienstock, N. Robertson, P.D. Seymour and R. Thomas, “Quickly excluding a forest”, J.
Combin. Theory (Ser. B), 52 (1991), 274–283.

[2] C. Chekuri and J. Chuzhoy, “Polynomial bounds for the grid-minor theorem” [arXiv:1305.6577]
(manuscript October 2013).

[3] R. Diestel, K.Yu. Gorbunov, T.R. Jensen and C. Thomassen, “Highly connected sets and the
excluded grid theorem”, J. Combin. Theory (Ser. B), 75 (1999), 61-73.

[4] G. Ding, T. Johnson and P. Seymour, “Spanning trees with many leaves”, J. Graph Theory, 37
(2001), 189-197.

[5] K. Kawarabayashi and Y. Kobayashi, “Linear min-max relation between the treewidth of H-
minor-free graphs and its largest grid minor”, Symposium on Theoretical Aspects of Computer
Science 2012, 278–289.

[6] Alexander Leaf, Improved Bounds for the Excluded Grid Theorem, Senior Thesis (advisor Paul
Seymour), Princeton University, 2012.

[7] N. Robertson and P.D. Seymour, “Graph minors. V. Excluding a planar graph”, J. Combina-
torial Theory, Ser. B, 41 (1986), 92–114.

[8] N. Robertson and P.D. Seymour, “Graph minors. XXI. Graphs with unique linkages”, J. Com-
binatorial Theory, Ser. B, 99 (2009), 583–616.

[9] N. Robertson, P.D. Seymour and R. Thomas, “Quickly excluding a planar graph”, J. Combi-
natorial Theory, Ser. B, 62 (1994), 323-348.

[10] P.D. Seymour and R. Thomas, “Graph searching, and a min-max theorem for tree-width”, J.
Combinatorial Theory, Ser. B, 58 (1993), 22–33.

13


