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Abstract

A pure pair of size t in a graph G is a pair A,B of disjoint subsets of V (G), each of cardinality at
least t, such that A is either complete or anticomplete to B. It is known that, for every forest H,
every graph on n ≥ 2 vertices that does not contain H or its complement as an induced subgraph
has a pure pair of size Ω(n); furthermore, this only holds when H or its complement is a forest.

In this paper, we look at pure pairs of size n1−c, where 0 < c < 1. Let H be a graph: does
every graph on n ≥ 2 vertices that does not contain H or its complement as an induced subgraph
have a pure pair of size Ω(|G|1−c)? The answer is related to the congestion of H, the maximum of
1− (|J | − 1)/|E(J)| over all subgraphs J of H with an edge. (Congestion is nonnegative, and equals
zero exactly when H is a forest.) Let d be the smaller of the congestions of H and H. We show that
the answer to the question above is “yes” if d ≤ c/(9 + 15c), and “no” if d > c.



1 Introduction

Graphs in this paper are finite, and without loops or parallel edges. Let A,B ⊆ V (G) be disjoint.
We say that A is complete to B, or A,B are complete, if every vertex in A is adjacent to every vertex
in B, and similarly A,B are anticomplete if no vertex in A has a neighbour in B. We say A covers
B if every vertex in B has a neighbour in A. A pure pair in G is a pair A,B of disjoint subsets of
V (G) such that A,B are complete or anticomplete. The number of vertices of G is denoted by |G|.
The complement graph of G is denoted by G. Let us say G contains H if some induced subgraph of
G is isomorphic to H, and G is H-free otherwise. If X ⊆ V (G), G[X] denotes the subgraph induced
on X.

When can we guarantee that a graph has a large pure pair? The most we can ask for is a pure
pair A,B, where both sets have size Ω(|G|). It turns out that to get this it is enough to exclude a
forest and its complement. In an earlier paper with Maria Chudnovsky, we proved the following [1]:

1.1 For every forest H there exists ε > 0 such that for every graph G with |G| > 1 that is both
H-free and H-free, there is a pure pair A,B in G with |A|, |B| ≥ ε|G|.

It is easy to see (with a random construction) that this has a converse: if H is a graph and neither
H nor H is a forest then there is no ε as in 1.1.

What happens if H is not a forest? Do we still get a large pure pair? A theorem of Erdős, Hajnal
and Pach [2] (not normally stated in this form, but this is equivalent) says that we do:

1.2 For every graph H there exist ε, b > 0 such that for every graph G with |G| > 1 that is both
H-free and H-free, there is a pure pair A,B in G with |A|, |B| ≥ ε|G|b.

But in this, b might be very small, and that raises the question: what sort of graph H will make 1.2
true with b close to 1?

In an earlier paper [4] we proved that certain sparse graphs H have this property. We say that
H has branch-length at least k if H is an induced subgraph of a graph that can be constructed as
follows: start with a multigraph (possible with loops or parallel edges) and subdivide each edge at
least k − 1 times. We proved in [4] that:

1.3 Let c > 0 with 1/c an integer, and let H be a graph with branch-length at least 4c−1 + 5. Then
there exists ε > 0 such that for every graph G with |G| > 1 that is both H-free and H-free, there is
a pure pair A,B in G with |A| ≥ ε|G| and |B| ≥ ε|G|1−c.

So graphs H with large branch-length make 1.2 true with b close to 1, but there are graphs with
small branch-length that do this as well, for instance forests; so large branch-length is sufficient but
not necessary for our property.

We also proved (unpublished) a similar theorem, that if H can be obtained from a multigraph H ′

by selecting a spanning tree and subdividing many times all edges not in the tree, then something
like 1.3 holds. (Not quite the analogue of 1.3: for a given value of c, the number of times the non-tree
edges have to be subdivided depends not only on c but also on the graph H ′.) But that is not the
answer either; we shall see, for instance, that if we take a long cycle, and for each of its vertices v
add a new vertex adjacent only to v, this graph H has our property, but cannot be built by either
of the constructions just given.

The answer is related to “congestion”. Let H be a graph. If E(H) 6= ∅, we define the congestion
of H to be the maximum of 1− (|J | − 1)/|E(J)|, taken over all subgraphs J of H with at least one
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edge; and if E(H) = ∅, we define the congestion of H to be zero. Thus the congestion of H is always
non-negative, and equals zero if and only if H is a forest. Graphs of small congestion must have large
girth, but that is not the same thing: for instance, there are graphs with girth and average degree
at least 100, and their congestion is at least .98. Roughly speaking, a graph has small congestion
if and only if it has large girth and its maximum average degree is at most slightly more than two
(that is, every induced subgraph has average degree at most 2 + ε for some small ε). As we shall see,
another way to think of graphs with small congestion is, they are the graphs that can be built by
starting from the null graph and repeated adding vertices with at most one neighbour, and adding
long paths joining vertices in what we already have built.

It turns out that graphs H where one of H,H has small congestion satisfy 1.2 with a value of b
close to 1, while those where both of H,H have large congestion do not. Let us say these two things
more precisely. The first of these statements is the main result of the paper, the following:

1.4 Let c > 0, and let H be a graph such that one of H,H has congestion at most c
9+15c . Then

there exists ε > 0 such that for every graph G with |G| > 1 that is both H-free and H-free, there is
a pure pair A,B in G with |A|, |B| ≥ ε|G|1−c.

The second statement is the following, which we will prove now:

1.5 Let c > 0, and let H be a graph such that H,H both have congestion more than c. There is no
ε > 0 such that for every graph G with |G| > 1 that is both H-free and H-free, there is a pure pair
A,B in G with |A|, |B| ≥ ε|G|1−c.

Proof. Let J be a subgraph of H with E(J) 6= ∅ and |J | − 1 < (1 − c)|E(J)|, and let J ′ be a
subgraph of H with E(J ′) 6= ∅ and |J ′| − 1 < (1− c)|E(J ′)|. Let

c′ := 1−max

(
|J | − 1

|E(J)|
,
|J ′| − 1

|E(J ′)|

)
;

so c < c′ < 1. Choose d with c < d < c′. Let ε > 0, let n be a large number, let p := nd−1, and
let G be a random graph on n vertices, in which every pair of vertices are adjacent independently
with probability p. Then (if n is sufficiently large with ε given), an easy calculation (which we omit)
shows that, G has no pure pair A,B in G with |A|, |B| ≥ (ε/2)n1−c with probability more than 1/2
(indeed, approaching 1 as n goes to infinity).

The expected number of induced subgraphs of G isomorphic to J is at most

n|J |p|E(J)| = n|J |+(d−1)|E(J)| ≤ n|J |−(|J |−1)
1−d
1−c′ = n

1−(|J |−1) c
′−d

1−c′ ≤ n/16

since |E(J)| ≥ (|J | − 1)/(1 − c′). Consequently the probability that there are more than n/4 such
subgraphs is at most 1/4. Similarly the probability that there are more than n/4 induced subgraphs
isomorphic to J ′ is at most 1/4; and so with positive probability, G contains at most n/4 of copies of
J , and most n/4 copies of J ′, and has no pure pair A,B in G with |A|, |B| ≥ (ε/2)|G|1−c. But then by
deleting at most n/2 vertices, we obtain a graph G′ containing neither J nor J ′, and hence containing
neither H nor H, and with no pure pair A,B with |A|, |B| ≥ ε|G′|1−c (since ε|G′|1−c ≥ (ε/2)n1−c).
This proves 1.5.
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The conclusion of 1.3 is stronger than that of 1.4: one of the sets of the pure pair has linear size.
That raises the question, is the corresponding strengthening of 1.4 true? More exactly:

1.6 Possibility: For all c > 0, there exists ξ > 0 with the following property. For every graph H
with congestion at most ξ, there exists ε > 0 such that for every graph G with |G| > 1 that is H-free
and H-free, there is a pure pair A,B in G with |A| ≥ ε|G| and |B| ≥ ε|G|1−c.

(The difference from 1.4 is that we are now asking for |A| to be linear.) We were unable to decide
this.

2 Reduction to the sparse case

Let us say a graph G is ε-sparse if every vertex has degree less than ε|G|. An anticomplete pair in G
is a pair A,B of subsets of V (G) that are anticomplete. For γ, δ ≥ 0, let us say G is (γ, δ)-coherent
if there is no anticomplete pair A,B with |A| ≥ γ and |B| ≥ δ. We observe:

2.1 If ε > 0, and ε ≤ 1/2, and G is ε-sparse and (ε|G|, ε|G|)-coherent with |G| > 1, then |G| > 1/ε.

Proof. Suppose that |G| ≤ 1/ε. If some distinct u, v ∈ V (G) are non-adjacent, {u}, {v} form an
anticomplete pair, both of cardinality at least ε|G|, a contradiction. So G is a complete graph; but
its maximum degree is less than ε|G| and ε ≤ 1/2, which is impossible since |G| > 1. This proves
2.1.

A theorem of Rödl [3] implies the following:

2.2 For every graph H and all η > 0 there exists δ > 0 with the following property. Let G be an
H-free graph. Then there exists X ⊆ V (G) with |X| ≥ δ|G|, such that one of G[X], G[X] is η-sparse.

Consequently, in order to prove 1.4, it suffices to prove the following:

2.3 Let c > 0, and let H be a graph with congestion at most c
9+15c . Then there exists ε > 0 such

that every ε-sparse (ε|G|1−c, ε|G|1−c)-coherent graph G with |G| > 1 contains H.

Proof of 1.4, assuming 2.3. Let c > 0, and let H have congestion at most c
9+15c . Choose

η ≤ 1/2 such that 2.3 holds with ε replaced by η. Choose δ such that 2.2 holds. Let ε := ηδ. We
claim that ε satisfies 1.4.

Let G be a graph with |G| > 1 that is H-free and H-free. We must show that there is a pure pair
A,B in G with |A|, |B| ≥ ε|G|1−c. From the choice of δ, there exists X ⊆ V (G) with |X| ≥ δ|G|,
such that one of G[X], G[X] is η-sparse; and by 2.1 we may assume that |G| > 1/ε ≥ 1/δ, and so
|X| > 1. If G[X] is η-sparse, then from the choice of η, 2.3 applied to G[X] implies that there is an
anticomplete pair A,B in G[X] with

|A|, |B| ≥ η|X|1−c ≥ ηδ1−c|G|1−c ≥ ηδ|G|1−c = ε|G|1−c,

as required. If G[X] is η-sparse we argue similarly, working in G[X]. This proves 1.4.

The remainder of the paper is devoted to proving 2.3.
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3 Congestion

In this section we replace the “small congestion” hypothesis of 2.3 with a different hypothesis that
is easier to use. A branch of a graph G is either:

• a path P of G with ends p1, p2 say, with length at least one, such that all the internal vertices
of P have degree two in G, and p1, p2 have degree different from two in G; or

• a cycle of G such that all its vertices except at most one have degree two in G.

It follows that every edge of G belongs to a unique branch of G.
We need two ways to make a larger graph from a smaller one. First, let H be a graph, and let

v ∈ V (H) have degree at most one; then we say that H is obtained from H \ {v} by adding the
subleaf v. Second, let H be a graph, and let P be an induced path of H of length at least two, such
that all its internal vertices have degree two in H; then we say that H is obtained from H \ P ∗ by
adding the handle P , where P ∗ denotes the set of internal vertices of P .

Let β ≥ 2 be an integer. We say that a graph H is weakly β-buildable if it can be constructed,
starting from the null graph, by repeatedly either adding a subleaf, or adding a handle of length at
least β. It is easy to see that if H is weakly β-buildable, then H has congestion at most 1/β. We
need a partial converse to this:

3.1 Let ξ ≤ 1/3, and β = b1/(3ξ)c + 1. If H is non-null and has congestion at most ξ, then H is
weakly β-buildable.

Proof. We proceed by induction on |H|, and so we may assume that every vertex has degree at
least two, and H is connected. If C is an induced cycle of H, then since H, and therefore C, has
congestion at most ξ, it follows that ξ ≥ 1 − (|C| − 1)/|E(C)|, and since |C| = |E(C)|, we deduce
that ξ ≥ 1/|C|, that is, |C| ≥ 1/ξ. Thus every induced cycle, and hence every cycle, of H has length
at least 1/ξ > 1/(3ξ) + 1. Suppose that some branch B is a cycle. Since B has length more than
1/(3ξ) + 1, H can be obtained from a smaller graph by adding a handle of length more than 1/(3ξ)
and hence at least β, and the result follows from the inductive hypothesis.

So we may assume that every branch is a path with distinct ends, both in W , where W is the set
of vertices of H with degree at least three in H. Thus every branch, of length b say, contains exactly
b− 1 vertices of degree two, and they belong to no other branches.

Let H have k branches, with lengths b1, . . . , bk respectively. Thus H has b1 + · · ·+ bk edges. At
most two edges in each branch are incident with vertices in W ; and by summing the degrees of the
vertices in W , we deduce that |W | ≤ 2k/3. Hence

|H| = |W |+ (b1 − 1) + · · ·+ (bk − 1) ≤ 2k/3 + (b1 + · · ·+ bk)− k.

Since 1− (|H| − 1)/|E(H)| ≤ ξ, it follows that |H| ≥ 1 + (1− ξ)|E(H)|, and so

2k/3 + (b1 + · · ·+ bk)− k ≥ 1 + (1− ξ)(b1 + · · ·+ bk),

that is, b1 + · · ·+ bk ≥ 1/ξ + k/(3ξ). Consequently some bi > 1/(3ξ), and in particular, the branch
of maximum length has length more than 1/(3ξ). Since ξ ≤ 1/3, this branch has length at least two,
and so H can be obtained from a smaller graph by adding a handle of length more than 1/(3ξ), and
hence at least β, as required. This proves 3.1.
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Let β ≥ 2 be an integer. We say that G is β-buildable if it can be constructed, starting from a
two-vertex graph with no edges, by repeatedly adding a handle of length at least β. We observe:

3.2 For β ≥ 2, if H is weakly β-buildable, then H is an induced subgraph of a β-buildable graph.

Proof. We proceed by induction on |H|. We may assume that H can be obtained from a weakly
β-buildable graph H ′ by either adding a subleaf, or adding a handle of length at least β. From the
inductive hypothesis, H ′ is an induced subgraph of a β-buildable graph J ′; and so H is an induced
subgraph of a graph J , where J is obtained from J ′ by either adding a subleaf, or adding a handle
of length at least β. In the second case, J is β-buildable, so we assume that J is obtained from J ′

by adding a subleaf v. Thus v has at most one neighbour in V (J ′); and since |J ′| ≥ 2, we can add a
handle B to J ′ of length at least max(4, β), such that v is an internal vertex of B. Consequently J ,
and hence H, is an induced subgraph of a β-buildable graph as required. This proves 3.2.

In order to prove 2.3, it therefore suffices to show the following (because 2.3 is trivially true when
c ≥ 1, and if a graph has congestion at most c

9+15c when c < 1 then by 3.1 and 3.2 it is β-buildable
with c > 1/b(β − 3)/3c):

3.3 Let β ≥ 2 be an integer, let H be a β-buildable graph, and let c > 1/b(β − 3)/3c. There exists
ε > 0 such that every ε-sparse (ε|G|1−c, ε|G|1−c)-coherent graph G with |G| > 1 contains H.

This will be proved in the final section.

4 Blockades, and a proof sketch

Let G be a graph and let the sets Bi (i ∈ I) be nonempty, pairwise disjoint subsets of V (G), where
I is a set of integers. We call (Bi : i ∈ I) a blockade in G, and the sets Bi (i ∈ I) are its blocks;
its length is |I|, and its width is min(|Bi| : i ∈ I). The shrinkage of B is the number σ such that
the width is |G|1−σ. (We will not need shrinkage until the end of the paper.) If B = (Bi : i ∈ I) is
a blockade in G, an induced subgraph J of G is B-rainbow if V (J) ⊆

⋃
i∈I Bi, and each block of B

contains at most one vertex of J . If H is a graph, a B-rainbow copy of H means a B-rainbow induced
subgraph of G that is isomorphic to H.

If A,B are disjoint subsets of a graph G, the max-degree from A to B is defined to be the
maximum, over v ∈ A, of the number of neighbours of v in B. Let B = (Bi : i ∈ I) be a blockade in
a graph G. For all distinct i, j ∈ I, let di,j be the max-degree from Bi to Bj . The linkage of B is the
maximum of di,j/|Bj |, over all distinct i, j ∈ I (or zero, if |I| ≤ 1).

We will prove in 12.1 that if H is a β-buildable graph, and c > 1/b(β − 3)/3c, and G is
(|G|1−c, |G|1−c)-coherent and sufficiently large, then there is an A-rainbow copy of H for every
blockade A in G with sufficient length and sufficiently small shrinkage and linkage. This will imply
3.3.

As we said earlier, we do not know whether 3.3 is true with “(ε|G|1−c, ε|G|1−c)-coherent” replaced
by “(ε|G|1−c, ε|G|)-coherent”. But the latter is sufficient for almost all the proof, and so we have
written the proof just using this where we can.

The idea of the proof of 12.1 is to work by induction on |H|; so we can assume that H is obtained
by adding a handle of length at least β to a graph H ′ for which the theorem holds. Since the theorem
holds forH ′, there are numbersK ′, λ′, σ′, such that in every sufficiently large (|G|1−c, |G|1−c)-coherent
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graph G, and for every blockade A in G with length at least K ′ and with linkage and shrinkage at
most λ′, σ′ respectively, there must be an A-rainbow copy of H ′. In fact we prove more, that for all
sufficiently small σ′ (less than c− 1/b(β− 3)/3c) there exist K ′, λ′ with this property. We would like
to prove the same statement for H, modifying K,σ, λ appropriately. So we are given σ, less than
c− 1/b(β− 3)/3c (and it is important that this is a strict inequality). We choose σ′ strictly between
σ and c−1/b(β−3)/3c; now apply the inductive hypothesis to H ′ and σ′ to get K ′, λ′; and use these
to construct K,λ with the property we want. The rest of the paper is explaining the details of this
last sentence, but the crucial thing is that we are proving that σ works for H, with the knowledge
that a strictly larger number, σ′, works for H ′. This allows some wiggle room, which would not be
available if we were trying to prove 1.6.

Let us give some idea of the details just mentioned. The number c is fixed throughout, and is
larger than 1/b(β−3)/3c. Let us say that (N,K, σ, λ, c) forces H if for every (|G|1−c, |G|1−c)-coherent
graph G with |G| ≥ N , and for every blockade A in G of length K, shrinkage at most σ, and linkage
at most λ, there is an A-rainbow copy of H.

We know that for all σ′ < c − 1/b(β − 3)/3c, there exist N ′,K ′, λ′, such that (N ′,K ′, σ′, λ′, c)
forces H ′; and we need to show that for all σ < c − 1/b(β − 3)/3c, there exist N,K, λ, such that
(N,K, σ, λ, c) forces H. To obtain H from H ′, we need to add a handle of some specified length, at
least β, with specified ends u′, v′, but we can do this in two steps: first, add two vertices u, v adjacent
only to u′, v′ respectively (forming H ′′ say); and then add a handle to H ′′ with ends u, v of the right
length (at least β − 2).

The first part, adding the leaves u, v, is easy, by means of a theorem proved in [5]. We need to
prove that for all σ′′ with σ′′ < c−1/b(β−3)/3c, there exist N ′′,K ′′, λ′′ such that (N ′′,K ′′, σ′′, λ′′, c)
forces H ′′. To prove this, we choose σ′ with σ′′ < σ′ < c − 1/b(β − 3)/3c; we use the inductive
hypothesis to obtain K ′, λ′ such that (N ′,K ′, σ′, λ′, c) forces H ′; and then we apply the theorem
of [5] to deduce what we want. But, crucially, the theorem of [5] gives more than this, by exploiting
the fact that u, v both have degree one in H ′′. The theorem of [5] gives N ′′,K ′′, λ′′ such that
(N ′′,K ′′, σ′′, λ′′, c) forces H ′′ in such a way that the vertices u, v of H ′′ appear in the first and last
blocks of the blockade that contain any vertices of H ′′ (an “aligned” copy of H ′′, say).

For the second part, we need to show that for all σ with σ < c − 1/b(β − 3)/3c, there exist
N,K, λ such that (N,K, σ, λ, c) forces H. Choose σ′′ with σ < σ′′ < c − 1/b(β − 3)/3c, and choose
N ′′,K ′′, λ′′ such that (N ′′,K ′′, σ′′, λ′′, c) forces an aligned copy of H ′′. Now we have some blockade
A of huge length, and shrinkage at most σ, and linkage as small as we want. We know that in every
long enough blockade of shrinkage at most σ′′ and linkage at most λ′′ there is an aligned rainbow
copy of H ′′. In particular, there are many aligned A-rainbow copies of H ′′, but we don’t know which
will be the pairs of blocks containing the first and last vertices of such a copy.

We need to build a contraption that will allow us to add an A-rainbow handle of the desired
length between a pair of blocks of A, when we don’t yet know the right pair of blocks. This we can
do, with a device we call a “bi-grading”, at the cost of increasing the shrinkage of the blockade by
a small constant (which we can afford, because of the wiggle room between σ, σ′′). Obtaining this
device is the main part of the paper, and we omit further details here.
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5 Expansion

To avoid constantly having to refer to a blockade A, we define the A-size of a set X to be |X|/|A|, if
X ⊆ A for some block A of A. For γ, δ ≥ 0, we say that a blockade A = (Ai : i ∈ I) is (γ, δ)-divergent
if there exist distinct i, j ∈ I, and X ⊆ Ai and Y ⊆ Aj such that |X| ≥ γ|Ai|, and |Y | ≥ δ|Aj |, and
X is anticomplete to Y .

Let A = (Ai : i ∈ I) be a blockade in G. If J ⊆ I, we say (Ai : i ∈ J) is a sub-blockade of A;
and if Bi ⊆ Ai for each i ∈ I, we say that (Bi : i ∈ I) is a contraction of A. Let B = (Bi : i ∈ J) be
a contraction of a sub-blockade of A, and let κ be the minimum of the A-size of Bi, over all i ∈ J .
We call κ the A-size of B.

Let us say a blockade B = (Bi : i ∈ I) in G is τ -expanding if

|N(X) ∩Bj |
|Bj |

≥ min

(
τ |X|
|Bi|

,
1

4

)
for all distinct i, j ∈ I, and all X ⊆ Bi.

5.1 Let G be a graph, and let K ≥ 2 be an integer. Let δ > 0 with δK ≤ 1/4, and let A = (Ai : i ∈ I)
be a blockade in G of length K that is not (1/8, δ)-divergent. For each i ∈ I there exists Bi ⊆ Ai
with |Bi| ≥ (1− δK)|Ai| such that B = (Bi : i ∈ I) is (1/(4δ))-expanding.

Proof. For all i, j ∈ I, let Zi,j ⊆ Ai, where Zi,i = ∅. For all i ∈ I, let Zi =
⋃
j∈I Zi,j , and for all

distinct i, j ∈ I, let Yi,j denote the set of vertices in Aj \ Zj that have a neighbour in Zi,j . We say
such a choice of sets Zi,j (i, j ∈ I) is good if |Zi,j |/|Ai| < δ and |Yi,j |/|Aj | ≤ |Zi,j |/(3δ|Ai|) for all
distinct i, j ∈ I.

(1) If Zi,j (i, j ∈ I) is a good choice of sets, then |Zi| ≤ δK|Ai| ≤ |Ai|/4 for each i ∈ I, and
|Yi,j | ≤ |Aj |/3 for all distinct i, j ∈ I.

Since each |Zi,j | ≤ δ|Ai|, it follows that |Zi| ≤ δK|Ai| ≤ |Ai|/4 for each i ∈ I. Also, for all
distinct i, j ∈ I, since |Yi,j |/|Aj | ≤ |Zi,j |/(3δ|Ai|) and |Zi,j | ≤ δ|Ai|, it follows that |Yi,j | ≤ |Aj |/3.
This proves (1).

There is a good choice of sets Zi,j (i, j ∈ I), since we may take each Zi,j = ∅. Let Zi,j (i, j ∈ I)
be a good choice of sets with

∑
i,j∈I |Zi,j | maximum (we call this optimality).

(2) Let i, j ∈ I be distinct, let X ⊆ Ai \ Zi, and let Y be the set of vertices in Aj \ Zj that have a
neighbour in X. Then

|Y |/|Aj | ≥ min(|X|/(3δ|Ai|), 1/4) ≥ min(|X|/(4δ|Ai \ Zi|), 1/4).

To prove the first inequality, we may assume that |Y |/|Aj | < |X|/(3δ|Ai|) (and therefore X 6= ∅).
Since |Yi,j |/|Aj | ≤ |Zi,j |/(3δ|Ai|), it follows that |Y ∪ Yi,j |/|Aj | ≤ |X ∪ Zi,j |/(3δ|Ai|).

From optimality, adding X to Zi,j violates one of the conditions of “good choice”, and we have just
seen that it does not violate the second condition. So it violates the first, that is, |Zi,j ∪X| ≥ δ|Ai|.
Since A is not (1/8, δ)-divergent, fewer than |Aj |/8 vertices in Aj are anticomplete to Zi,j∪X, and so
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at least 7|Aj |/8 vertices in Aj have a neighbour in Zi,j∪X. But all such vertices belong to Zj∪Yi,j∪Y ;
and since |Zj | ≤ |Aj |/4 and |Yi,j | ≤ |Aj |/3 by (1), it follows that |Y | ≥ 7|Aj |/24 ≥ |Aj |/4. This
proves the first inequality of (2).

Since |Zi| ≤ |Ai|/4, and δ ≤ 1/8 (because δK ≤ 1/4 and K ≥ 2), it follows that

|Y |/|Aj \ Zj | ≥ |Y |/|Aj | ≥ min(|X|/(3δ|Ai|), 1/4) ≥ min(|X|/(4δ|Ai \ Zi|), 1/4).

This proves (2).

Hence (Ai \ Zi : i ∈ I) is (1/(4δ))-expanding. This proves 5.1.

In the next result, we have changed the index set of the blockade from I to H, for convenience
when we apply it later.

5.2 Let G be a graph, and let ρ ≥ 2 be an integer. Let δ > 0 with δρ ≤ 1/4, and let A = (Ai : i ∈ H)
be a blockade in G of length ρ, that is not (γ, δ)-divergent, where γ ≤ 1/8 and (4δ)ρ−1|G| ≤ 3. For
each i ∈ H let Bi ⊆ Ai be as in 5.1, and B = (Bi : i ∈ H). Let i1, i2 ∈ H be distinct, let v ∈ Bi1,
and let Y ⊆ Bi2 with |Y | ≥ γ|Ai2 |. Then there is a B-rainbow path with one end v and the other end
in Y (and hence there is such a path that is induced).

Proof. By hypothesis, |Ai \ Bi| ≤ δρ|Ai| ≤ |Ai|/4 for each i ∈ H, and B is τ -expanding, where
τ = 1/(4δ). Without loss of generality we may assume that H = {1, . . . , ρ}, where i1 = 1 and i2 = ρ.
For 1 ≤ i ≤ ρ, let Xi be the set of vertices in Bi that can be joined to v by a (B1, . . . , Bi)-rainbow
path. Since for i ≥ 2, Xi contains all vertices in Bi that have a neighbour in Xi−1, it follows that

|Xi|
|Bi|

≥ min

(
τ |Xi−1|
|Bi−1|

,
1

4

)
,

and since τ ≥ 1, it follows that |Xi|/|Bi| ≥ min
(
τ i−1/|B1|, 1/4

)
. In particular, since

τρ−2

|B1|
≥ τρ−2

|G|
≥ 4δ

3
,

(because (4δ)ρ−1|G| ≤ 3) it follows that

|Xρ−1|
|Bρ−1|

≥ min

(
τ |Xρ−2|
|Bρ−2|

,
1

4

)
≥ min

(
4δ

3
,
1

4

)
=

4δ

3
;

and so |Xρ−1|/|Aρ−1| ≥ δ, since |Bρ−1| ≥ 3|Aρ−1|/4. Since A is not (γ, δ)-divergent, there are fewer
than γ|Aρ| vertices in Aρ that have no neighbour in Xρ−1; and so |Bρ \Xρ| < γ|Aρ|. Since Y ⊆ Bρ
and |Y | ≥ γ|Aρ|, it follows that Xρ ∩ Y 6= ∅. This proves 5.2.

A levelling in a graph G is a sequence (L0, . . . , Lk) of pairwise disjoint subsets of V (G), where
k ≥ 1, with the following properties:

• |L0| = 1;

• for 1 ≤ i ≤ k, Li−1 covers Li; and

8



• for 2 ≤ i ≤ k, L0 ∪ · · · ∪ Li−2 is anticomplete to Li.

We call the unique member of L0 the apex of the levelling, and Lk is its base, and k is its height.
Let L = (L0, . . . , Lk) be a levelling in G, and let C ⊆ V (G). We say that L reaches C if

(L0, L1, . . . , Lk, C) is a levelling.
Now let B = (Bi : i ∈ I) be a blockade in G, and let L = (L0, . . . , Lk) be a levelling in G. We

say that L is B-rainbow if for 0 ≤ i ≤ k, there exists hi ∈ I such that h0, . . . , hk are all distinct, and
Li ⊆ Bhi for 0 ≤ i ≤ k.

5.3 Let τ ≥ 6, and let B = (Bi : i ∈ I) be a blockade in a graph G. Let h0 ∈ I, and let
(Bi : i ∈ I \ {h0}) be τ -expanding. Let ρ be an integer such that (τ/2)ρ−1 ≥ |G|, let H ⊆ I with
h0 ∈ H and |H| = ρ, and let v ∈ Bh0, with a neighbour in

⋃
h∈H\{h0}Bh. Then there exist J ⊆ I \H

with |J | ≥ |I|/ρ− 1, and a levelling L = (L0, . . . , Lk−1,
⋃
j∈J Ej) for some k ≤ ρ, with apex v, such

that (L0, . . . , Lk−1) is (Bi : i ∈ H)-rainbow, and Ej ⊆ Bj and |Ej | ≥ |Bj |/(4ρ) for all j ∈ J .

Proof. Let L0 := {v}. Since v has a neighbour in
⋃
h∈H\{h0}Bh, we may choose h ∈ H \ {h0} such

that |N(v)∩Bh|/|Bh| is maximum, and we set h1 = h andm1 = |N(v)∩Bh|/|Bh|, and L1 = N(v)∩Bh.
Thus m1 ≥ 1/|G|. We define t and h2, . . . , ht inductively as follows. Assume inductively that for some
i ≤ ρ − 1, we have already defined h0, . . . , hi, and L0, . . . , Li, and m1, . . . ,mi, with the properties
that:

• h0, h1, . . . , hi ∈ H are all distinct;

• Lg ⊆ Bhg for 0 ≤ g ≤ i;

• (L0, . . . , Li) is a levelling;

• mg = |N(Lg−1) ∩Bhg |/|Bhg | for 1 ≤ g ≤ i;

• |N(Lg−1) ∩Bh|/|Bh| ≤ mg for all g with 1 ≤ g ≤ i and all h ∈ H \ {h0, h1, . . . , hi};

• mg ≥ (τ − 3)(m1 + · · ·+mg−1) and |Lg| ≥
(
1− 2

τ

)
mg|Bhg | for 1 ≤ g ≤ i.

If |Li| ≥ |Bhi |/(4τ), let t := i and the inductive definition is complete. Otherwise we proceed as
follows. Since |Li| < |Bhi |/(4τ), and |Li| ≥ (1 − 2/τ)mi|Bhi |, it follows that (1 − 2/τ)mi < 1/(4τ),
and so mi < 1/(4(τ − 2)). But

mg ≥ (τ − 3)(m1 + · · ·+mg−1) ≥ (τ − 3)mg−1

for 2 ≤ g ≤ i, and consequently mi ≥ (τ − 3)i−1m1 ≥ (τ − 3)i−1/|G|; and therefore

|G| > 4(τ − 2)(τ − 3)i−1 ≥ (τ/2)i.

Since |G| ≤ (τ/2)ρ−1, it follows that i < ρ− 1, and so

|{h0, h1, . . . , hi}| < ρ = |H|.

Choose h ∈ H \ {h0, h1, . . . , hi} with |N(Li) ∩ Bh|/|Bh| maximum, and define hi+1 = h and
mi+1 = |N(Li) ∩Bh|/|Bh|. Let Li+1 be the set of vertices in N(Li) ∩Bhi+1

that have no neighbour
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in L0 ∪ · · · ∪ Li−1. Thus the first five conditions above are satisfied. It remains only to check the
final condition, that is, mi+1 ≥ (τ − 3)(m1 + · · ·+mi) and |Li+1| ≥ (1− 2/τ)mi+1|Bhi+1

|.
Since (Bi : i ∈ I \ {h0}) is τ -expanding and |Li|

|Bhi
| <

1
4τ , it follows that mi+1 ≥ τ |Li|

|Bhi
| . But

|Li| ≥
(
1− 2

τ

)
mi|Bhi |, and so

mi+1 ≥ (τ − 2)mi = (τ − 3)mi +mi ≥ (τ − 3)mi + (τ − 3)(m1 + · · ·+mi−1).

This proves the first part of the final condition. For the second part, we observe that for 0 ≤ g ≤ i−1,
the number of vertices in N(Li) ∩ Bhi+1

that have a neighbour in Lg is at most mg|Bhi+1
|, because

of the choice of hg+1. Thus

|Li+1|
|Bhi+1

|
≥ mi+1 − (m1 + · · ·+mi) ≥

(
1− 1

τ − 3

)
mi+1 ≥

(
1− 2

τ

)
mi.

Thus the final condition holds. This completes the inductive definition. We see that t ≤ ρ− 1, and
|Lt| ≥ |Bht |/(4τ).

For 0 ≤ i ≤ t, let ni be the number of j ∈ I \H such that at least (i+1)|Bj |/(4(t+1)) vertices in
Bj have a neighbour in L0 ∪ · · · ∪Li. We see that |Lt| ≥ |Bht |/(4τ); and so, for each j ∈ I \H, since
(Bi : i ∈ I \ {h0}) is τ -expanding, it follows that at least |Bj |/4 vertices in Bj have a neighbour in
Lt; and so nt = |I|− |H|. Choose k ∈ {1, . . . , t+1} minimum such that nk−1 ≥ (k/(t+1))(|I|− |H|).
It follows from the minimality of k that there are at least (|I| − |H|)/(t + 1) values of j ∈ I \ H
such that at least k|Bj |/(4(t + 1)) vertices in Bj have a neighbour in L0 ∪ · · · ∪ Lk−1, and at most
(k−1)|Bj |/(4(t+1)) vertices in Bj have a neighbour in L0∪· · ·∪Lk−2 (this last statement is vacuously
true if k = 1). Let J be the set of all such values of j; thus |J | ≥ (|I| − |H|)/(t+ 1) ≥ (|I| − |H|)/ρ.
For each j ∈ J , let Ej ⊆ Bj be the set of all vertices in Bj that have a neighbour in L0 ∪ · · · ∪ Lk−1
and have no neighbour in L0 ∪ · · · ∪ Lk−2 (and therefore have a neighbour in Lk−1). It follows that
|Ej | ≥ |Bj |/(4(t + 1)) ≥ |Bj |/(4ρ) for each j ∈ J . Then (L0, . . . , Lk−1,

⋃
j∈J Ej) is a levelling with

the properties required. This proves 5.3.

6 Gradings

Let B = (Bi : i ∈ I) be a blockade in a graph G, and let L = (L0, . . . , Lk) be a levelling. We say
that L grades B if L reaches

⋃
i∈I Bi, and I can be written as {i1, . . . , in} (not necessarily listed

in increasing order), such that for 1 ≤ g ≤ n there exists Y ⊆ Lk that covers
⋃
g≤h≤nBih and is

anticomplete to
⋃

1≤h<g Bih .

6.1 Let τ ≥ 6, and let B = (Bi : i ∈ I) be a τ -expanding blockade with linkage at most 1/(8|I|) in a
graph G. Let ρ be an integer such that (τ/2)ρ−1 ≥ |G|, let H ⊆ I with |H| = ρ, let h0 ∈ H, and let
v ∈ Bh0. Then there exist J ⊆ I \H with |J | = d|I|/ρe − 1, and Cj ⊆ Bj with |Cj | ≥ |Bj |/(8|I|) for
all j ∈ J , and a (Bi : i ∈ H)-rainbow levelling L with apex v that grades (Cj : j ∈ J).

Proof. By 5.3, there exists J ⊆ I \H with |J | ≥ |I|/ρ−1, and a levelling L = (L0, . . . , Lk) for some
k ≤ ρ, with apex v, such that (L0, . . . , Lk−1) is (Bi : i ∈ H)-rainbow, and |Lk ∩ Bj | ≥ |Bj |/(4ρ) for
all j ∈ J . We may choose J with |J | = d|I|/ρe − 1.
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Let |J | = n, and Y0 = ∅. We define Y1, . . . , Yn ⊆ Lk−1, and distinct j1, . . . , jn ∈ J in-
ductively as follows. Let 1 ≤ i ≤ n, and suppose that Y1, . . . , Yi−1 and j1, . . . , ji−1 have been
defined, with Y0 ⊆ Y1 ⊆ · · · ⊆ Yi−1. Choose Yi ⊆ Lk−1 including Yi−1, minimal such that
|N(Yi) ∩ Lk ∩ Bj | ≥ i|Bj |/(4ρn) for some j ∈ J \ {j1, . . . , ji−1}; and let ji := j for some such
choice of j. (This is possible since i ≤ n, and |Lk ∩Bj | ≥ |Bj |/(4ρ), and Lk−1 covers Lk ∩Bj .) This
completes the inductive definition.

(1) For 1 ≤ i ≤ n, Yi 6= Yi−1, and

|N(Yi) ∩ Lk ∩Bj | ≤
(

1

8|I|
+

i

4ρn

)
|Bj |

for all j ∈ J \ {j1, . . . , ji−1}.

We prove both statements simultaneously by induction on i. Thus, we assume both statements
hold for i− 1 (if i > 1). To prove the first statement holds for i, we may assume that i ≥ 2, because
clearly Y1 6= Y0. Since

|N(Yi−1) ∩ Lk ∩Bj | ≤
(

1

8|I|
+
i− 1

4ρn

)
|Bj |

for all j ∈ J \ {j1, . . . , ji−2}, and in particular for j = ji, and since

|N(Yi) ∩ Lk ∩Bji | ≥
i

4ρn
|Bji | >

(
1

8|I|
+
i− 1

4ρn

)
|Bji |

(because n ≤ |I|/ρ) it follows that Yi 6= Yi−1. This proves the first statement of (1). To prove the
second statement, since Yi 6= Yi−1, we may choose u ∈ Yi \ Yi−1; and by the minimality of Yi, for
each j ∈ J \ {j1, . . . , ji−1} it follows that

|N(Yi \ {u}) ∩ Lk ∩Bj | <
i

4ρn
|Bj |.

But B has linkage at most 1/(8|I|), and so at most |Bj |/(8|I|) vertices in Bj are adjacent to u; and
therefore

|N(Yi) ∩ Lk ∩Bj | ≤
i

4ρn
|Bj |+

1

8|I|
|Bj |.

This proves the second statement and so proves (1).

For 1 ≤ i ≤ n, let Cji be the set of vertices in Bji ∩ Lk that have a neighbour in Yi and have no
neighbour in Yi−1. Thus by (1),

|Ci|
|Bji |

≥ i

4ρn
−
(

1

8|I|
+
i− 1

4ρn

)
≥ 1

4ρn
− 1

8|I|
≥ 1

8ρn
≥ 1

8|I|
.

For 1 ≤ i ≤ n, Yi covers Cj1 , . . . , Cji , and is anticomplete to Cji+1 , . . . , Cjn . Hence (L0, . . . , Lk−1)
grades (Cj : j ∈ J). This proves 6.1.
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Now we come to the main result of this section, an extension of 6.1. We say two levellings
(L0, . . . , Lk) and (M0, . . . ,Mm) in a graph G are parallel if L0 = M0, and M1 ∪ · · · ∪Mm is disjoint
from and anticomplete to L1 ∪ · · · ∪ Lk. Let B = (Bi : i ∈ I) be a blockade in a graph G, and let
L = (L0, . . . , Lk) be a levelling. We say that L grades B forwards if L reaches

⋃
i∈I Bi, and for each

j ∈ I there exists Y ⊆ Lk that covers
⋃
i∈I,i≥j Bi and is anticomplete to

⋃
i∈I,i<j Bi.

Let C = (Cj : j ∈ J) be a blockade in a graph G. Let L = (L0, . . . , Lk) and M = (M0, . . . ,Mm)
be parallel levellings both reaching

⋃
j∈J Cj . Let L grade C forwards. In these circumstances we say

that (L,M, C) is a bi-levelling, and the blocks of C are called the blocks of the bi-levelling. We call
the sum of the heights of L and M the height of the bi-levelling, and its length is the length of C.

Let A = (Ai : i ∈ I) be another blockade in G. We say that the bi-levelling (L,M, C) is A-rainbow
if

• each of the sets Cj (j ∈ J), Lj (0 ≤ j ≤ k), Mj (1 ≤ j ≤ m) is a subset of one of the sets
Ai (i ∈ I); and

• for each i ∈ I, Ai includes at most one of the sets Cj (j ∈ J), Lj (0 ≤ j ≤ k), Mj (1 ≤ j ≤ m).

We stress that here the order of the blocks of A is immaterial. In particular, the orders of the blocks
of C may be different from the order of the corresponding blocks of A.

The following is immediate but crucial, so we state it explicitly.

6.2 Let (L,M, C) be an A-rainbow bi-levelling in G of height `, and let x, y belong to the bases of
M,L respectively. There is an induced path P between x, y, of length `, such that each of its vertices
belongs to a different block of A, and each of these blocks of A includes no block of C; and no internal
vertex of P has a neighbour in any block of C.

If A = (Ai : i ∈ I) is a blockade, and φ : J → I is a bijection, where J is a set of integers, let
Bj := Aφ(j) for each j ∈ J ; then B = (Bj : j ∈ J) is also a blockade, with the same blocks, but in a
different order. We say that B is obtained from A by re-indexing. Some of our results are invariant
under re-indexing the blockade in question, and it can simplify notation to take advantage of this.

6.3 Let k ≥ 1 and ρ ≥ 2 be integers. Let K := kρ4, let γ, λ > 0 with λ ≤ 1/(512ρ2K) and
γ ≤ 3/(256K), let G be a graph, let δ > 0 with δ ≤ 3ρ/(128K2) and (256Kδ/3)ρ−1|G| ≤ 1, and let
A = (Ai : i ∈ I) be a blockade in G of length K, with linkage at most λ, that is not (γ, δ)-divergent.
Then there is an A-rainbow bi-levelling (L,M, C) with length k and height at most 3ρ− 3, such that
the A-size of C is at least 1/(64ρ3K).

Proof. By 5.1, for each i ∈ I there exists Bi ⊆ Ai with |Ai\Bi| ≤ δK|Ai|, such that B = (Bi : i ∈ I)
is (1/(4δ))-expanding. It follows that B has linkage at most 4λ/3, since |Bi| ≥ (1−δK)|Ai| ≥ 3|Ai|/4
for each i ∈ I. Choose H1 ⊆ I with |H1| = ρ. Since 8(1− δK)−1γ|I| ≤ 1, by 6.1 applied to B, taking
τ = 1/(4δ), there exist J1 ⊆ I \ H1 with |J1| = d|I|/ρe − 1, and Cj ⊆ Bj with |Cj | ≥ |Bj |/(8|I|)
for all j ∈ J1, and a (Bi : i ∈ H1)-rainbow levelling L = (L0, . . . , Lt) that grades C = (Cj : j ∈ J1).
(See figure 1.) Thus L has height at most ρ− 1. The statement of the theorem is invariant under re-
indexing the blocks of A; and so we may assume without loss of generality that L grades C forwards
(by re-indexing appropriately C, and correspondingly B,A).

Since A is not (γ, δ)-divergent, and

|Cj | ≥
1

8|I|
|Bj | ≥

3

32|I|
|Aj |
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i ∈ J1i ∈ I \ (H1 ∪ J1)

i ∈ H1

Bi

Ci

Bi

u

Lt

Figure 1: B, C, and L. Everything is A-rainbow, and L grades C forwards (not shown).

for each j ∈ J1, it follows that C is not (32|I|γ/3, 32|I|δ/3)-divergent. Since 32|I|γ/3 ≤ 1/8, and
32|I|δ|J1|/3 ≤ 1/4, it follows from 5.1 applied to (Cj : j ∈ J1) (with δ replaced by 32|I|δ/3) that for
each j ∈ J1 there exists Dj ⊆ Cj with |Dj | ≥ 3|Cj |/4, such that D = (Dj : j ∈ J1) is (3/(128|I|δ))-
expanding. Thus

|Dj | ≥
3

4
|Cj | ≥

3

32|I|
|Bj | ≥

9

128|I|
|Aj |.

Let the apex of L, u say, belong to Bh1 where h1 ∈ H1. Choose H2 ⊆ I \(H1∪J1) with cardinality
ρ− 2. (Since |H1| ≤ ρ, and |J1| ≤ |I|/ρ, it follows that

|I \ (H1 ∪ J1)| ≥ |I|(1− 1/ρ)− ρ ≥ ρ− 2,

so this is possible.) Let H3 ⊆ J1 be the set of the ρ − 1 smallest members of J1, and let j1 ∈ H3.
Since

|Dj1 | ≥
9

128|I|
|Aj1 | ≥ γ|Aj1 |,

it follows from 5.2 applied to (Aj : j ∈ H2 ∪ {h1, j1}) that there is a (Bi : i ∈ H2 ∪ {h1, j1})-rainbow
path with one end u and the other in Dj1 . Its length is at most ρ − 1. Consequently there is a
(Bi : i ∈ H2 ∪ {h1})-rainbow path P of minimum length such that one end is u, and the other end,
v say, has a neighbour in

⋃
j∈H3

Dj . It follows that P has length at most ρ − 2, and V (P ) \ {v} is
anticomplete to

⋃
j∈H3

Dj .
Since L grades D and hence L reaches

⋃
i∈J1 Di, it follows that u has no neighbour in

⋃
j∈H3

Dj ,
and so v 6= u. Let v ∈ Bh2 say, where h2 ∈ H2. Now D is (3/(128|I|δ))-expanding, and 3/(128|I|δ) ≥
6, and (3/(256|I|δ))ρ−1 ≥ |G|. Define Dh2 = Bh2 . By 5.3 applied to the blockade (Di : i ∈ J1∪{h2}),
taking H = H3 ∪ {h2}, there exists J2 ⊆ J1 \ H3 with |J2| ≥ (|J1| + 1)/ρ − 1, and Ej ⊆ Dj with
|Ej | ≥ |Dj |/(4ρ) for all j ∈ J2, and a (Dj : j ∈ H3 ∪ {h2})-rainbow levelling M = (M0, . . . ,Mm),
with apex v, reaching E = (Ej : j ∈ J2). (See figure 2.) Thus M has height at most ρ− 1.

This is almost what we want. There are two things to fix: there might be edges between V (P )
and

⋃
j∈J2 Ej , and there might be edges between V (P ) \ {u} and L1 ∪ · · · ∪ Lt. To handle the first,

we just use the bound on linkage, as follows. For each j ∈ J2, and each w ∈ V (P ) \ {u}, at most
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i ∈ J2i ∈ H3i ∈ H2 i ∈ J1 \ (H3 ∪ J2)

i ∈ H1

i ∈ I \ (H1 ∪H2 ∪ J1)

Bi
Ci
Di

Bi

u

v

Lt

Mm
EiP

Figure 2: P , D, E and M. M reaches E (not shown).

λ|Aj | vertices in Aj are adjacent to w Since |V (P ) \ {u}| ≤ ρ, and u has no neighbours in Ej ,
there are at most λρ|Aj | vertices in Ej with a neighbour in V (P ); and so there exists Fj ⊆ Ej with
|Fj | ≥ |Ej | − λρ|Aj |, anticomplete to V (P ). Since

|Ej | ≥
1

4ρ
|Dj | ≥

9

512ρ|I|
|Aj |,

it follows that

|Fj | ≥
(

9

512ρ|I|
− λρ

)
|Aj | ≥

1

64ρ|I|
|Aj |

since λρ ≤ 1/(512ρ|I|).
Now we handle edges between V (P ) \ {u} and L1 ∪ · · · ∪ Lt. Let j ∈ J2. Since L grades C

forwards, there exists Yj ⊆ Lt that covers
⋃
i∈J1,i≥j Ci and hence

⋃
i∈J1,i≥j Fi, and is anticomplete

to
⋃
i∈J1,i<j Ci. In particular, Yj is anticomplete to

⋃
i∈H3

Ci.
Let f ∈ Fj . There is an induced path Q between f and u, with vertex set consisting of one vertex

in each of L0, L1, . . . , Lt−1, Yj , {f}. Since u ∈ V (P ), there is a subpath Q′ of Q with one end f , and
a subpath P ′ of P \ {u} with one end v, such that the subgraph induced on V (P ′) ∪ V (Q′) is an
induced path between f, v. Choose some such pair (P ′, Q′) for each f ∈ Fj ; we call (|P ′|, |Q′|) the
type of f . Since 2 ≤ |P ′| < |P | ≤ ρ− 1, and 2 ≤ |Q′| ≤ ρ+ 1 (because f has no neighbour in V (P )),
there are at most ρ2 possible types. Hence there exists Gj ⊆ Fj with |Gj | ≥ |Fj |/ρ2 such that all
vertices in Gj have the same type. We call this common type the type of j. There exists J3 ⊆ J2
with |J3| ≥ |J2|/ρ2 such that all j ∈ J3 have the same type; let this common type be (a, b).

Let P ′ be the subpath of P with a vertices and with one end v, and let w be its other end. Let
N0 := {w}, and let N1 be the set of neighbours of w in Lt−b+2. It follows that for each j ∈ J3, and
for each f ∈ Gj , there is an induced path Q′ between f and some vertex in N1, with one vertex in
each of Lt−b+2, Lt−b+3, . . . , Lt−1, Yj and {f}; and the only edge between V (P ′) and V (Q′) is the edge
between w and N1. For i = 2, . . . , b − 1, let Ni be the set of all vertices in Lt−b+i+1 that have no
neighbour in V (P ′) and have a neighbour in Ni−1. Thus N = (N0, . . . , Nb−1) is a levelling of height
b− 1 that grades G = (Gj : j ∈ J3).
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Let the vertices of P ′ in order be w = p1, p2, . . . , pa = v. Then

M′ = ({p1}, {p2}, . . . , {pa} = M0,M1, . . . ,Mm)

is a levelling of height a+m− 1, reaching
⋃
j∈J3 Gj . Thus (N ,M′,G) is a bi-levelling. Its height is

(a+m− 1) + (b− 1) ≤ 3ρ− 3, and so it satisfies the theorem. This proves 6.3.

7 Selective covering

Let B = (Bi : i ∈ I) be a blockade in G, and let A ⊆ V (G) \ V (B) cover V (B). We wish to find a
subset of A that covers a significant amount and misses a linear fraction of several of the blocks of
B, assuming that B is sufficiently long. That is the content of the next result.

7.1 Let K ≥ k ≥ 1 be integers, let c > 0 with K ≥ (2 + 1/c)(k − 1), let 0 < ε, α ≤ 1, let
B = (Bi : i ∈ I) be a blockade of length K in a graph G, and let A ⊆ V (G) \ V (B) cover V (B).
Suppose that for each i ∈ I, the max-degree from A to Bi is less than ε|Bi|. Suppose also that there
is no partition P of A into at most Kk sets, such that for each X ∈ P there exists J ⊆ I with |J | = k
where |N(X) ∩ Bj | < Kkα|Bj | for each j ∈ J . Then there exists X ⊆ A and a subset J ⊆ I with
|J | = k, such that

|G|−cα ≤ |N(X) ∩Bi|/|Bi| < Kkα+ ε

for each i ∈ J .

Proof. Let J be the set of all subsets of I with cardinality k. For each J ∈ J , choose X(J) ⊆ A
and Y (J) ⊆ V (B) with the following properties:

• the sets X(J) (J ∈ J ) are pairwise disjoint subsets of A;

• the sets Y (J) (J ∈ J ) are pairwise disjoint subsets of V (B);

• for each J ∈ J , Y (J) ⊆ N(X(J)) ∩
⋃
j∈J Bj (and consequently, Y (J) ∩Bj = ∅ if j /∈ J);

• for each J ∈ J and each j ∈ J , N(X(J)) ∩Bj ⊆
⋃
J ′∈J Y (J ′);

• for each J ∈ J , and all distinct i, j ∈ J , |Y (J) ∩Bi|/|Bi| ≥ |G|−c|Y (J) ∩Bj |/|Bj |;

• for each J ∈ J , and each j ∈ J , |Y (J) ∩Bj | < α|Bj |; and

• subject to these conditions,
⋃
J∈J X(J) is maximal.

This is possible, since we may set X(J) = Y (J) = ∅ to satisfy the first six conditions. Suppose
that

⋃
J∈J X(J) = A. Then the sets X(J) (J ∈ J ) form a partition of A into at most Kk subsets.

Moreover, for each J ∈ J , and each j ∈ J , we have N(X(J)) ∩ Bj ⊆
⋃
J ′∈J Y (J ′), and |Y (J ′) ∩

Bj |/|Bj | < α for each J ′ ∈ J , and so |N(X(J)) ∩ Bj | < Kkα|Bj |, contrary to the hypothesis. It
follows that

⋃
J∈J X(J) 6= A.

Let Y =
⋃
J∈J Y (J). Choose a ∈ A \

⋃
J∈J X(J). For each i ∈ I, let ni be the number of

neighbours of a in Bi \ Y . Without loss of generality we may assume that I = {1, . . . ,K} where

n1
|B1|

≤ n2
|B2|

≤ · · · ≤ nK
|BK |

.

15



If nk = 0, then we may add a to X(J), where J = {1, . . . , k}, contrary to the maximality of⋃
J∈J X(J). Thus nk/|Bk| ≥ |G|−1. Choose an integer t ≥ 1 with t(k − 1) + 1 ≤ K, maximum such

that nt(k−1)+1

|Bt(k−1)+1|
≥ |G|−1+(t−1)c.

Since nt(k−1)+1/|Bt(k−1)+1| < ε ≤ 1, it follows that |G|−1+(t−1)c < 1, and so −1 + (t − 1)c < 0,
that is, t + 1 < 2 + 1/c. But (2 + 1/c)(k − 1) ≤ K, and therefore (t + 1)(k − 1) < K. From the
maximality of t, it follows that

n(t+1)(k−1)+1

|B(t+1)(k−1)+1|
< |G|−1+tc.

Let J := {j : t(k − 1) + 1 ≤ j ≤ (t+ 1)(k − 1) + 1}, so |J | = k and J ∈ J . Since

nt(k−1)+1

|Bt(k−1)+1|
≥ |G|−1+(t−1)c,

it follows that n(t+1)(k−1)+1

|B(t+1)(k−1)+1|
< |G|−1+tc ≤ |G|c

nt(k−1)+1

|Bt(k−1)+1|
.

Consequently ni/|Bi| > |G|−cnj/|Bj | for all distinct i, j ∈ J .
For each i ∈ I, we define Ni = N(a) ∩ (Bi \ Y ) (so ni = |Ni|). Define X ′(J) = X(J) ∪ {a}, and

Y ′(J) = Y (J) ∪
⋃
j∈J Nj , and define X ′(J ′) = X(J ′) and Y ′(J ′) = Y (J ′) for all J ′ ∈ J \ {J}. From

the maximality of
⋃
J∈J X(J), replacing X(J) by X ′(J) and Y (J) by Y ′(J) violates one of the first

six of the seven bullets above. The first four remain satisfied, so let us examine the fifth and sixth
bullets.

Let i, j ∈ J be distinct. Then |Y (J) ∩ Bi|/|Bi| ≥ |G|−c|Y (J) ∩ Bj |/|Bj |; and |Ni|/|Bi| ≥
|G|−c|Nj |/|Bj |; and since |Y ′(J)∩Bi| = |Y (J)∩Bi|+ |Ni| and |Y ′(J)∩Bj | = |Y (J)∩Bj |+ |Nj |, it
follows that |Y ′(J) ∩Bi|/|Bi| ≥ |G|−c|Y ′(J) ∩Bj |/|Bj |. Thus the fifth bullet remains satisfied.

Consequently the sixth bullet is violated, and so there exists j ∈ J such that |Y ′(J)∩Bj | ≥ α|Bj |.
We claim that setting X = X ′(J) satisfies the theorem; and so we must check that

|G|−cα ≤ |N(X ′(J)) ∩Bi|/|Bi| < Kkα+ ε

for each i ∈ J . To prove these two inequalities, let i ∈ J .
Since Y ′(J) ⊆ N(X ′(J)) ∩

⋃
j∈J Bj , and therefore Y ′(J) ∩Bi ⊆ N(X ′(J)), it follows that

|N(X ′(J)) ∩Bi|/|Bi| ≥ |Y ′(J) ∩Bi|/|Bi| ≥ |G|−c|Y ′(J) ∩Bj |/|Bj | ≥ |G|−cα

(since the fifth bullet still holds). This proves the first inequality. For the second, since |Y (J)∩Bi| <
α|Bi| and |N(a) ∩ Bi| ≤ ε|Bi|, it follows that |Y ′(J) ∩ Bi| < (α + ε)|Bi|. But |Y ′(J ′) ∩ Bi| < α|Bi|
for each J ′ ∈ J \ {J}, and N(X ′(J)) ∩ Bi ⊆

⋃
J ′∈J Y (J ′), and consequently |N(X ′(J)) ∩ Bi| ≤

(Kkα+ ε)|Bi|. This proves the second inequality, and so proves 7.1.

We would like to obtain a better version of 6.3, where we can prescribe the height of the bi-levelling
exactly. We show next that we can increase it by one, with the aid of 7.1.
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7.2 Let K ≥ k ≥ 1 be integers, let γ, δ, λ, η, c > 0 with K ≥ (2 + 1/c)k, and let A be a blockade with
linkage at most λ in a graph G, that is not (γ, δ)-divergent, where η/2 ≥ Kk+1δ|G|c + λ + γ. Let
(L,M, C) be an A-rainbow bi-levelling with length K and height L say, where C has A-size at least
η. Then there is an A-rainbow bi-levelling (L′,M′, C′) with length k and height L + 1, such that C′
is C-rainbow, and has C-size at least 1/2.

Proof. Let L = (L0, . . . , Lρ), and let M = (M0, . . . ,Mm). Thus ρ + m = L. Since L grades C
forwards and C has length K, we may assume without loss of generality that C = (C1, . . . , CK), and
for 1 ≤ i ≤ K there exists Yi ⊆ Lρ that covers Ci ∪ · · · ∪ CK and is anticomplete to C1 ∪ · · · ∪ Ci−1.

Now Mm covers V (C). Moreover, for each a ∈ Mm, and each block C of C, since A has linkage
at most λ, and C has A-size at least η, it follows that a has at most (λ/η)|C| neighbours in C.

(1) If there is a partition P of Mm into at most Kk+1 sets, such that for each X ∈ P there ex-
ists J ⊆ {1, . . . ,K} with |J | = k + 1 such that |N(X) ∩ Cj | < Kk+1(δ|G|c/η)|Cj | for each j ∈ J ,
then there is a bi-levelling satisfying the theorem.

Since Mm covers C1, there exists X ∈ P that covers a subset M ⊆ C1 with C-size at least K−k−1

and hence with A-size at least ηK−k−1. Since X ∈ P, there exists J ′ ⊆ {1, . . . ,K} with |J ′| = k+ 1
such that |N(X) ∩ Cj | < Kk+1(δ|G|c/η)|Cj | for each j ∈ J ′. Choose J ⊆ J ′ with 1 /∈ J , and with
|J | = k. For each j ∈ J let Dj := Cj \ (N(X) ∩ Cj); thus Dj has C-size at least 1−Kk+1(δ|G|c/η).
Since M has A-size at least ηK−k−1 ≥ δ and A is not (γ, δ)-divergent, at most γ|Aj | ≤ (γ/η)|Cj |
vertices in Aj have no neighbour in M . Let C ′j be the set of vertices in Dj that have a neighbour in

M ; thus C ′j has C-size at least 1−Kk+1(δ|G|c/η)− γ/η ≥ 1/2. Let

L′ :=

L0, . . . , Lρ−1,
⋃
j∈J

Yj


M′ := (M0, . . . , ,Mm−1, X,M)

C′ :=
(
C ′j : j ∈ J

)
;

then (L′,M′, C′) is a bi-levelling satisfying the theorem. This proves (1).

By (1) we may therefore assume that there is no such partition P. By 7.1 (with ε replaced
by λ/η, and k replaced by k + 1, and α replaced by δ|G|c/η) there exists X ⊆ Mm and a subset
J ′ ⊆ {1, . . . ,K} with |J ′| = k + 1, such that

δ

η
≤ |N(X) ∩ Ci|

|Ci|
< Kk+1 δ|G|c

η
+
λ

η

for each i ∈ J ′. Let j0 be the smallest member of J ′, and let J := J ′ \ {j0}. Let M := N(X) ∩ Cj0 ;
thus M has C-size at least δ/η, and so has A-size at least δ. For each j ∈ J , let Dj be the set of
vertices in Cj that have no neighbour in X; thus Dj has C-size at least 1 − Kk+1(δ|G|c/η) − λ/η.
Since the set of vertices in Cj with no neighbour in M has A-size at most γ and hence C-size at most
γ/η, it follows that C ′j has C-size at least 1−Kk+1(δ|G|c/η)− λ/η − γ/η ≥ 1/2, where C ′j is the set
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of vertices in Dj with a neighbour in M . Let

L′ :=

L0, . . . , Lρ−1,
⋃
j∈J

Yj


M′ := (M0, . . . , ,Mm−1, X,M)

C′ :=
(
C ′j : j ∈ J

)
;

then (L′,M′, C′) is a bi-levelling satisfying the theorem. This proves 7.2.

By combining 6.3 and 7.2, we obtain a version of 6.3 where we can specify the height of the
bi-levelling exactly, the following.

7.3 Let k ≥ 1 be an integer, and let c > 0. Let ρ := d1 + 1/ce. Let ` ≥ 3ρ − 2 be an integer.
Let K := dk(3 + 1/c)`+2e. Let γ, λ > 0 with λ, γ ≤ 2−8−`/(ρ3K). Let G be a graph and define
δ := K−K |G|−c. Let A = (Ai : i ∈ I) be a blockade in G of length K, with linkage at most λ, that
is not (γ, δ)-divergent. Then there is an A-rainbow bi-levelling (L,M, C) with length k and height `,
such that C has A-size at least 24−`/(ρ3K).

Proof. We would like to apply 6.3 with k replaced by bk(3 + 1/c)`−2c. We must check that

bk(3 + 1/c)`−2c ≤ K/ρ4

λ ≤ 1/(512ρ2K)

γ ≤ 3/(256K)

δ ≤ 3ρ/(128K2)

(256Kδ/3)ρ−1|G| ≤ 1.

The first follows since since

k(3 + 1/c)`−2 ≤ k(3 + 1/c)`+2/ρ4 ≤ K/ρ4

(because ρ ≤ 2 + 1/c). The second and third are implied by the hypothesis λ, γ ≤ 2−8−`/(ρ3K),
since ρ ≥ 2 and therefore ` ≥ 4 (because ` ≥ 3ρ− 2). The fourth follows since

δ = K−K |G|−c ≤ K−K ≤ 3/(128K2) ≤ 3ρ/(128K2)

(because K ≥ 34, and so K2−K ≤ 3/128). The fifth follows since

(256Kδ/3)ρ−1 ≤ (δKK)ρ−1 = |G|−c(ρ−1) ≤ |G|−1

(because 256K/3 ≤ KK). Thus we can apply 6.3. We deduce that there is an A-rainbow bi-levelling
(L′,M′, C′) with length bk(3 + 1/c)`−2c and height at most 3ρ − 3, such that C has A-size at least
1/(64ρ3K).

Let its height be ` − t; thus 1 ≤ t ≤ ` − 2. Define K0 = k, and for i = 1, . . . , t let Ki :=
d(2 + 1/c)Ki−1e. Thus Ki ≤ b(3 + 1/c)Ki−1c, and so

Kt ≤ bk(3 + 1/c)tc ≤ bk(3 + 1/c)`−2c ≤ K/ρ4.
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For i = 0, . . . , t define ηi = 2i−t−6/(ρ3K). Thus (setting Lt = L′ and Mt = M′, and letting Ct
be a sub-blockade of C′ with the right length) we deduce that there is an A-rainbow bi-levelling
(Lt,Mt, Ct) with length Kt and height `− t, such that Ct has A-size at least ηt.

(1) ηs/8 ≥ KKs−1+1
s δ|G|c + λ+ γ for 1 ≤ s ≤ t.

Certainly ηs = 2s−t−6/(ρ3K) ≥ 2−t−5/(ρ3K). Moreover, 2`+7 ≤ 32`+1 since ` ≥ 4; so

2`+7(2 + 1/c)3 ≤ (3 + 1/c)2`+4 ≤ K2.

Consequently
ηs
16
≥ 1

2t+9ρ3K
≥ 1

2`+7ρ3K
≥ 1

2`+7(2 + 1/c)3K
≥ 1

K3
.

Since K − 3 ≥ Ks−1 + 1, and therefore KK−3 ≥ KKs−1+1 ≥ KKs−1+1
s , it follows that

ηs
16
≥ K−3 ≥ KKs−1+1

s K−K = KKs−1+1
s δ|G|c.

But also, since λ, γ ≤ 2−8−`/(ρ3K), it follows that

ηs
16
≥ 2−t−9/(ρ3K) ≥ 2−7−`/(ρ3K) ≥ γ + λ.

Adding, we deduce that
ηs/8 ≥ KKs−1−1

s δ|G|c + γ + λ.

This proves (1).

By (1), taking s = t, we may apply 7.2, replacing η,K, k by ηt,Kt, and Kt−1 respectively.
We deduce that there is an A-rainbow bi-levelling (Lt−1,Mt−1, Ct−1) with length Kt−1 and height
`− (t− 1), such that Ct−1 is A-rainbow and Ct−1 has A-size at least ηt−1.

Choose s ≤ t− 1 with s ≥ 0 minimum such that there is an A-rainbow bi-levelling (Ls,Ms, Cs)
with length Ks and height ` − s, such that Cs has A-size at least ηs. Suppose that s > 0. By (1)
we may apply 7.2, replacing η by ηs, and replacing K by Ks and replacing k by Ks−1, giving a
contradiction to the minimality of s.

Thus s = 0. Hence there is an A-rainbow bi-levelling (L0,M0, C0) with length K0 = k and height
`, such that C0 has A-size at least η0 ≥ 24−`/(ρ3K). This proves 7.3.

8 A digression

The result 7.3 needs to be strengthened further for its use in this paper, but as it stands it is already
quite strong. For instance, it gives an improvement over a result of [4] which was one of the main
theorems of that paper. In [4] we proved:

8.1 Let c > 0 with 1/c an integer, and let ` ≥ 4/c + 5 be an integer. Then there exists ε > 0 such
that if G is an ε-sparse (ε|G|1−c, ε|G|)-coherent graph with |G| > 1, then G has an induced cycle of
length `.
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With the aid of 7.3 we can do a little better:

8.2 Let c > 0 with 1/c an integer, and let ` ≥ 3/c + 3 be an integer. Then there exists ε > 0 such
that if G is an ε-sparse (ε|G|1−c, ε|G|)-coherent graph with |G| > 1, then G has an induced cycle of
length `.

Proof. Let K := (3+1/c)`, and ρ = 1+1/c. Let ε > 0 satisfy 2Kε ≤ K−K and 2Kε ≤ 2−6−`/(ρ3K).
We claim that ε satisfies the theorem.

Let G be an ε-sparse (ε|G|1−c, ε|G|)-coherent graph. By 2.1, |G| > 1/ε ≥ K, and so b|G|/Kc ≥
|G|/(2K); and consequently there is a blockade A in G of length K and width at least |G|/(2K).
Its linkage is at most 2Kε since G is ε-sparse, and it is not (2Kε|G|−c, 2Kε)-divergent since G is
(ε|G|1−c, ε|G|)-coherent.

Let ε′ := γ = 2Kε; so A has linkage at most ε′. Let δ := K−K |G|−c; then δ ≥ 2Kε|G|−c since
K−K ≥ 2Kε, and so A is not (γ, δ)-divergent. Let `′ := ` − 2. Thus `′ ≥ 3ρ − 2 since ` ≥ 3/c + 3.
Also, ε′, γ ≤ 2−8−`

′
/(ρ3K). By 7.3 with k = 1, there is an A-rainbow bi-levelling (L,M, C) with

length 1 and height `′. Choose w in the unique block of C. Then w has a neighbour u in the base of
L and a neighbour v in the base ofM, and there is an induced path of length `′ between u, v whose
internal vertices are anticomplete to the block of C; and so adding w to this path gives an induced
cycle of length `. This proves 8.2.

9 Bi-gradings

Let (L,M, C) be a bi-levelling. Thus L grades C forwards, but M does not, and next we want to
arrange thatM also grades C. We can do this with the same argument that we used for L, and that
gives a corresponding ordering of the boxes of C (or rather, of the contraction of a sub-blockade of C
that survives this argument), but the two orderings might be very similar, and that turns out not to
be useful. What we need is that M grades C in the opposite order from L, and that is the subject
of this section.

If we start with a blockade with sufficient length, the result 7.3 provides us with a bi-levelling
of any desired height, and any desired length, just at the cost of shrinking the blocks by constant
factors. But to persuade the partM of the bi-levelling to grade C backwards, we no longer have the
luxury of linear shrinking; now we will have to shrink the blocks by fractions that are polynomial in
|G|. (This is why the proof only proves 1.4 and not 1.6.)

Let us say this more precisely. Let M = (M0, . . . ,Mm) be a levelling and B a blockade. We
say that M grades B backwards if M reaches

⋃
i∈I Bi, and for each j ∈ I there exists Y ⊆ Mm

that covers
⋃
i∈I,i≤j Bi and is anticomplete to

⋃
i∈I,i>j Bi. We say that a bi-levelling (L,M, C) is a

bi-grading if M grades C backwards. Other definitions (length, height, A-rainbow) are the same as
for a bi-levelling.

9.1 Let `, k ≥ 1 be integers, and let 0 < c, d, λ′ < 1, such that ` ≥ 3d1/ce+ 1. Then there exist an
integer K ≥ 1 and λ > 0 with the following property. Let G be a graph, and let A = (Ai : i ∈ I) be
a blockade in G of length K, with linkage at most λ, that is not (2−6−2`/K,K−K |G|−c)-divergent.
Then there is an A-rainbow bi-grading (L,M,B) with length k and height `, such that B has A-size
at least 2−k−2`K−1−K |G|−d and linkage at most λ′.
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Proof. Let Kk := 1, and for t = k − 1, k − 2, . . . , 0 let Kt := d(2 + 1/d)Kt+1 + 1e. Let K :=
dK0(3 + 1/c)`+2e, and let ρ = d1 + 1/ce; then ` ≥ 3ρ − 2, since ` ≥ 3d1/ce + 1. It follows that
ρ3 ≤ (` + 2)3/27 ≤ 2`−2, since ` ≥ 7. Let η := 26−2`/K, and λ = λ′η/(k2k+11). We claim
that K,λ satisfy the theorem. Let G be a graph and let A be a blockade in G of length K, with
linkage at most λ, that is not (2−6−2`/K,K−K |G|−c)-divergent. Since 2−6−2`/K ≤ 2−8−`/(ρ3K) and
η ≤ 24−`/(ρ3K), and

λ ≤ 26−2`/(Kk2k+11) ≤ 2−2`−6/K ≤ 2−8−`/(ρ3K),

7.3 implies that there is anA-rainbow bi-levelling (L,M, C0) with lengthK0 and height `, such that C0
has A-size at least η, and hence has linkage at most λ/η. The theorem is invariant under re-indexing
A; and so we may assume that C0 is a contraction of a sub-blockade of A. Let A = (Ai : i ∈ I), and
let C0 = (C0

i : i ∈ I0), where I0 ⊆ I and C0
i ⊆ Ai for each i ∈ I0. Let M have height m, and let its

base be Mm.
Suppose inductively that we have defined i1, . . . , it ∈ I0, and I0, I1, . . . , It, and Di1 , . . . , Dit , and

Cji for 0 ≤ j ≤ t and each i ∈ Ij , with the following properties for 1 ≤ j ≤ t:

• Ij ⊆ Ij−1 with |Ij | = Kj , and ij ∈ Ij−1 \ Ij , and i > ij for all i ∈ Ij (and consequently
i1 < i2 < · · · < it);

• Cji ⊆ C
j−1
i and |Cji | ≥ |C

j−1
i |/2 for all i ∈ Ij ;

• Dij ⊆ C
j−1
ij

and has A-size at least 21−k−2`K−1−K |G|−d;

• there exists X ⊆Mm such that X covers Dij , and is anticomplete to Cji for all i ∈ Ij ;

• for all h ∈ {1, . . . , j − 1} the max-degree from Dij to Dih is at most λ′|Dih |/(4k);

• for all i ∈ Ij , the max-degree from Cji to Dij is at most λ′|Dij |/(4k).

If t = k the inductive definition is complete, so we assume that 0 ≤ t < k; and now we need to choose
it+1, It+1, Dit+1 , and Ct+1

i for each i ∈ It+1, so that the bullets are satisfied with t replaced by t+ 1.

(1) There exist it+1 ∈ It, and a subset It+1 ⊆ It with |It+1| = Kt+1, and a subset X ⊆ Mm,
and a subset Dit+1 ⊆ Cit+1 with A-size at least 21−k−2`K−1−K |G|−d, such that i > it+1 for each
i ∈ It+1, and X covers Dit+1 and is anticomplete to at least 3/4 of Cti for each i ∈ It+1.

For i ∈ It, the max-degree from Mm to Ai is at most

λ|Ai| ≤ λ|C0
i |/η ≤ λ2t|Cti |/η.

Since |It| = Kt ≥ (2 + 1/d)Kt+1, we can apply 7.1 to Mm and the blockade (Cti : i ∈ It), with
ε, c,K, k, α replaced by λ2t/η, d,Kt,Kt+1 + 1,K−K/8 respectively. We deduce that either:

• there is a partition P of Mm into at most KK sets, such that for each X ∈ P there exists
J ⊆ It with |J | = Kt+1 + 1 such that |N(X) ∩ Ctj | < |Ctj |/8 for each j ∈ J ; or
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• there exists X ⊆Mm and a subset J ⊆ It with |J | = Kt+1 + 1, such that

|G|−dK−K/8 ≤ |N(X) ∩ Cti |/|Cti | < 1/8 + λ2t/η

for each i ∈ J .

Suppose the first happens, and let P be such a partition. Let it+1 be the smallest member of It.
Since Mm covers Ctit+1

, there exists X ∈ P such that

|N(X) ∩ Ctit+1
| ≥ K−K |Ctit+1

|.

Define Dit+1 = N(X)∩Ctit+1
; thus Dit+1 has C0-size at least K−K2−t ≥ K−K21−k, and so has A-size

at least 21−k−2`K−1−K |G|−d, since 21−k−2`K−1−K |G|−d ≤ ηK−K21−k. There exists J ⊆ It with
|J | = Kt+1 + 1 such that |N(X) ∩ Ctj | < |Ctj |/8 for each j ∈ J ; choose It+1 ⊆ J \ {it+1} with
cardinality Kt+1. Since |N(X) ∩ Cti | < |Cti |/8 ≤ |Cti |/4 for each i ∈ It+1, in this case (1) holds.

So we may assume the second happens, and so there exists X ⊆ Mm and a subset J ⊆ It with
|J | = Kt+1 + 1, such that

|G|−dK−K/8 ≤ |N(X) ∩ Cti |/|Cti | < 1/8 + λ2t/η

for each i ∈ J . Let it+1 be the smallest element of J , and define It+1 = J \ {it+1}. Define
Dit+1 = N(X) ∩ Ctit+1

; thus Dit+1 has C0-size at least |G|−dK−K2−t−3 ≥ |G|−dK−K2−k−2, and

hence has A-size at least 21−k−2`K−1−K |G|−d, since 21−k−2`K−1−K |G|−d ≤ η|G|−dK−K2−k−2. Since
1/8 + λ2t/η ≤ 1/4 it follows that again (1) holds. This proves (1).

Choose it+1, It+1, X and Dit+1 as in (1). We claim this satisfies the conditions for the inductive
definition. For each i ∈ It+1, since the max-degree from Dit+1 to Cti is at most 2t(λ/η)|Cti |, there are
at most |Cti |/4 vertices in Cti that have at least 2t+2(λ/η)|Dit+1 | neighbours in Dit+1 . Consequently,
at least half the vertices in Cti have fewer than 2t+2(λ/η)|Dit+1 | neighbours in Dit+1 and have no
neighbour in X. Define Ct+1

i to be the set of all such vertices. For 1 ≤ h ≤ t, the max-degree from
Dit+1 to Dih is at most the max-degree from Ctit+1

to Dih , and hence is at most λ′|Dih |/(4k). Thus,
this completes the inductive definition.

For 1 ≤ h ≤ k, let Bih be the set of all vertices in Dih that have at most (λ′/2)|Dij | neighbours
in Dij for all j with h < j ≤ k. Since every vertex in Dij has at most (λ′/(4k))|Dih | neighbours in
Dih , there are at most |Dih |/(2k) vertices in Dih that have at least (λ′/2)|Dij | neighbours in Dij ;
and so |Bih | ≥ |Dih |/2. Thus for all h, j ∈ {1, . . . , t} with h < j, the max-degree from Bih to Bij is
at most (λ′/2)|Dij | ≤ λ′|Bij |; and the max-degree from Bij to Bih is at most (λ′/4k)|Dih | ≤ λ′|Bih |.
This proves 9.1.

We recall that the shrinkage of a blockade B = (Bi : i ∈ I) is the number σ such that |G|1−σ is
the width of B. Let us recast 9.1 in terms of shrinkage.

9.2 Let ` be an integer, and let c, σ, σ′ > 0 with σ < σ′ and 1 ≥ c > 1/b(` − 1)/3c. Let K ′ > 0 be
an integer, and let λ′ > 0. Then there exist λ > 0 and integers N,K > 0 with the following property.
Let G be a graph with |G| ≥ N , and let A be a blockade in G of length K, with linkage at most λ
and shrinkage at most σ, such that A is not (|G|−c, |G|−c)-divergent. Then there is an A-rainbow
bi-grading (L,M,B) with height `, such that B has length K ′, linkage at most λ′ and shrinkage at
most σ′.
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Proof. Choose c′ with c > c′ > 1/b(` − 1)/3c. Choose d with 0 < d < σ′ − σ. Choose K,λ such
that 9.1 is satisfied with k replaced by K ′. Choose N ≥ 0 such that N c ≥ 26+2`K and N c−c′ ≥ KK

and Nσ′−σ−d ≥ 2K
′+2`K1+K . We claim that N,K, λ satisfy the theorem.

Let G be a graph with |G| ≥ N , and let A be a blockade in G of length K, with linkage at most
λ and shrinkage at most σ, such that A is not (|G|−c, |G|−c)-divergent. Since 2−6−2`/K ≥ |G|−c and
K−K |G|−c′ ≥ |G|−c, it follows that A is not (2−6−2`/K,K−K |G|−c′)-divergent.

By 9.1, there is an A-rainbow bi-grading (L,M,B) with length K ′ and height `, such that B has
A-size at least 2−K

′−2`K−1−K |G|−d and linkage at most λ′. Hence B has shrinkage at most σ′, since

|G|1−σ′ ≤ |G|1−σ2−K
′−2`K−1−K |G|−d

(because Nσ′−σ−d ≥ 2K
′+2`K1+K). This proves 9.2.

10 Enforcement

Let B = (Bi : i ∈ I) be a blockade in G, and let H be a graph such that there is a B-rainbow copy J
of H. Since each vertex of J belongs to some block of B, all different, and the blocks are numbered
by integers, this defines an order on the vertices of J , and hence, via the isomorphism, an order on
the vertices of H. We cared about this order in [5], but here the order does not concern us. What
does concern us are the first and last vertices of J , and correspondingly of H.

Let J be B-rainbow, let u ∈ V (J), and let i ∈ I such that u ∈ Bi; we say that u ∈ V (J) is the
B-first vertex of J if there is no h ∈ I with h < i such that Bh ∩ V (J) 6= ∅. We define the B-last
vertex of J similarly.

Now let H be a graph, let v ∈ V (H) and B be a blockade in G. We say that a B-rainbow copy
J of H is v-first if there is an isomorphism φ from H to J , such that φ(v) is the B-first vertex of J .
We define v-last similarly.

Now let H be a graph, let K,N > 0 be integers, and let 0 < λ, σ, c ≤ 1. We recall that
(N,K, σ, λ, c) forces H if for every (|G|1−c, |G|1−c)-coherent graph G with |G| ≥ N , and for every
blockade A in G of length K, shrinkage at most σ, and linkage at most λ, there is an A-rainbow
copy of H. Similarly if v ∈ V (H), we say that (N,K, σ, λ, c) forces H v-first if the same statement
holds where the A-rainbow copy of H is v-first. We define forces H v-last, and forces H u-first and
v-last similarly.

From 9.2 we deduce:

10.1 Let H be a graph, obtained from a graph H ′ by adding a handle of length ` with ends u, v.
Let N ′,K ′ ≥ 1 be integers, and let 0 < c, σ, σ′, λ′ ≤ 1, such that σ < σ′ and c − σ > 1/b(` − 1)/3c,
and (N ′,K ′, σ′, λ′, c) forces H ′ u-first and v-last. Then exist λ > 0 and integers N,K > 0 such that
(N,K, σ, λ, c) forces H.

Proof. Since c − σ > 1/b(` − 1)/3c, we can apply 9.2 with c replaced by c − σ; let N,K, λ satisfy
9.2 with c replaced by c− σ. We may choose N ≥ N ′. We claim that N,K, λ satisfy the theorem.

Let G be a (|G|1−c, |G|1−c)-coherent graph with |G| ≥ N , and let A = (Ai : i ∈ I) be a blockade
in G of length K, shrinkage at most σ and linkage at most λ. We must show that there is an A-
rainbow copy of H. Since A has shrinkage at most σ, and G is (|G|1−c, |G|1−c)-coherent, it follows
that A is not (|G|σ−c, |G|σ−c)-divergent. Since N,K, λ satisfy 9.2 with c replaced by c− σ, there is
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an A-rainbow bi-grading (L,M,B) with height `, such that B has length K ′, linkage at most λ′ and
shrinkage at most σ′. Let B = (Bi : i ∈ I ′). Since (N ′,K ′, σ′, λ′, c) forces H ′ u-first and v-last in G,
there is a u-first v-last B-rainbow copy J of H ′. Let φ be the corresponding isomorphism from H to
J , and let φ(u) ∈ Bh and φ(v) ∈ Bk, where h, k ∈ I ′. Thus for every w ∈ V (H) \ {u, v}, there exists
i ∈ I with φ(w) ∈ Bi and h < i < k.

Since L grades B forwards, there exists a subset Y of the base of L that covers Bk and is
anticomplete to V (J) \Bk; and in particular, there exists a vertex y in the base of L that is adjacent
to φ(v) and nonadjacent to all other vertices of J . SinceM grades B backwards, similarly there is a
vertex x in the base ofM that is adjacent to φ(u) and nonadjacent to all other vertices of J . By 6.2,
there is an induced path P between x, y, of length `, with interior disjoint from and anticomplete to
V (J) \ {φ(u), φ(v)}, and adding P to J gives an A-rainbow copy of H. This proves 10.1.

11 Covering by leaves

We need to apply a theorem of [5], the following:

11.1 Let K ′ ≥ 0 be an integer, and let 0 < c, σ, σ′, λ′ ≤ 1 with σ < σ′ < c. Then there exist λ > 0
and integers K,N > 0 with the following property. Let G be a (|G|1−c, |G|1−c)-coherent graph with
|G| ≥ N , and let A = (Ai : i ∈ I) be a blockade of length K in G, with shrinkage at most σ and
linkage at most λ. Then there exists I ′ ⊆ I with |I ′| = K ′, such that for every partition (H,J) of I ′,
there exists Bh ⊆ Ah for each h ∈ H, where

• (Bh : h ∈ H) has shrinkage at most σ′ and linkage at most λ′; and

• for all h ∈ H and all j ∈ J there exists X ⊆ Aj that covers Bh and is anticomplete to⋃
i∈H\{h}Bi.

11.2 Let H be a graph, and let u, v be distinct nonadjacent vertices of H, both with degree one in H.
Let H ′ := H \{u, v}. Let K ′, N ′ ≥ 1 be integers, and let 0 < σ, σ′, λ′, c ≤ 1 with σ < σ′ < c, such that
(N ′,K ′, σ′, λ′, c) forces H ′. Then there exist integers N,K ≥ 1 and λ > 0 such that (N,K, σ, λ, c)
forces H u-first and v-last.

Proof. Choose σ′′ with σ < σ′′ < σ′. Choose λ′′ > 0 and integers K ′′, N ′′ > 0 such that 11.1
is satisfied with σ, λ,K,K ′, N replaced by σ′′, λ′′,K ′′,K ′ + 1, N ′′ respectively. Choose λ > 0 and
K,N > 0 such that 11.1 is satisfied with σ′, λ′,K ′ replaced by σ′′, λ′′,K ′′ + 1 respectively. We may
choose N ≥ N ′, N ′′. We claim that N,K, σ, λ satisfy the theorem.

Let G be a (|G|1−c, |G|1−c)-coherent graph with |G| ≥ N , and let A = (Ai : i ∈ I) be a blockade
in G of length K, with shrinkage at most σ and linkage at most λ. We must show that there is a u-
first and v-last A-rainbow copy of H. Since 11.1 is satisfied with σ′, λ′,K ′ replaced by σ′′, λ′′,K ′′+ 1
respectively, it follows that there exists I ′′ ⊆ I with |I ′′| = K ′′ + 1, such that for every partition
(P,Q) of I ′′, there exists Bh ⊆ Ah for each h ∈ P , where

• (Bh : h ∈ P ) has shrinkage at most σ′′ and linkage at most λ′′; and

• for all h ∈ P and all j ∈ Q there exists X ⊆ Aj that covers Bh and is anticomplete to Bi for
all i ∈ P \ {h}.
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Let i1 be the smallest member of I ′′, and let I1 := {i1}, and I2 := I ′′ \ I1. Choose Bh ⊆ Ah for each
h ∈ I2 as above.

The blockade (Bh : h ∈ I2) has length K ′′, and shrinkage at most σ′′ and linkage at most λ′′.
Since 11.1 is satisfied with σ, λ,K,K ′, N replaced by σ′′, λ′′,K ′′,K ′ + 1, N ′′ respectively, it follows
that there exists I3 ⊆ I2 with |I3| = K ′ + 1, such that for every partition (I4, I5) of I3, there exists
Ch ⊆ Bh for each h ∈ I4, where

• (Ch : h ∈ I4) has shrinkage at most σ′ and linkage at most λ′; and

• for all h ∈ I4 and all j ∈ I5 there exists X ⊆ Bj that covers Ch and is anticomplete to Ci for
all i ∈ I4 \ {h}.

Let i5 be the largest member of I3, and let I5 := {i5} and I4 := I3 \ {i5}; and choose (Ch : h ∈ I4)
as above.

Since C = (Ch : h ∈ I4) has length K ′, and shrinkage at most σ′ and linkage at most λ′, and
(N ′,K ′, σ′, λ′, c) forces H ′ in G, there is a C-rainbow copy J of H ′.

Let φ be an isomorphism from H ′ to J . Let u′, v′ be the neighbours in H of u, v respectively.
Thus φ(u′), φ(v′) ∈ V (J). Let h ∈ I4 such that φ(u′) ∈ Ch, and let k ∈ I4 such that φ(v′) ∈ Ck.
There exists Y ⊆ Bi5 that covers Ck and is anticomplete to Ci for all i ∈ I4 \ {k}, and in particular
Y is anticomplete to V (J) \ {φ(v′)}. Choose y ∈ Y adjacent to φ(v′). There exists X ⊆ Ai1
that covers Bh and is anticomplete to Bi for all i ∈ I2 \ {h}, and in particular X is anticomplete to
(V (J)\{φ(v′)})∪{y}. Choose x ∈ X adjacent to φ(u′). Then the subgraph induced on V (J)∪{x, y}
is a u-first, v-last A-rainbow copy of H. This proves 11.2.

By combining this with 10.1, we obtain:

11.3 Let H be a graph, obtained from a graph H ′ by adding a handle P of length ` + 2. Let
K ′, N ′ ≥ 1 be integers, and let 1 ≥ c, σ, σ′, λ > 0, such that σ < σ′ and c − σ > 1/b(` − 1)/3c, and
(N ′,K ′, σ′, λ′, c) forces H ′. Then there exist integers N,K > 0 and λ > 0 such that (N,K, σ, λ, c)
forces H.

Proof. Let P have ends u′, v′, and let u, v be the neighbours of u′, v′ respectively in P . Let H ′′

be obtained from H by deleting all vertices of P except u, v, u′, v′. Thus u, v are both leaves of H ′′.
Choose σ′′ with σ′ > σ′′ > σ. Choose integers N ′′,K ′′ ≥ 1 and λ′′ > 0 such that 11.2 is satisfied with
N,K, σ, λ replaced by N ′′,K ′′, σ′′, λ′′ respectively. Now H is obtained from H ′′ by adding a handle
of length ` with ends u, v. Choose N,K, λ such that 10.1 is satisfied with N ′,K ′, σ′, λ′ replaced
by N ′′,K ′′, σ′′, λ′′ respectively. We may assume that N ≥ N ′′. We claim that N,K, λ satisfy the
theorem.

Since 11.2 is satisfied with N,K, σ, λ replaced by N ′′,K ′′, σ′′, λ′′ respectively, and (N ′,K ′, σ′, λ′, c)
forces H ′, it follows that (N ′′,K ′′, σ′′, λ′′, c) forces H u-first and v-last. Since 10.1 is satisfied with
N ′,K ′, σ′, λ′ replaced by N ′′,K ′′, σ′′, λ′′ respectively, it follows that (N,K, σ, λ, c) forces H. This
proves 11.3.

12 β-buildable graphs

By applying 11.3 to β-buildable graphs, we obtain:
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12.1 Let β ≥ 2 be an integer, and let 1 ≥ c > 1/b(β−3)/3c. For every β-buildable graph H, and all
σ > 0 with c− σ > 1/b(β − 3)/3c. there exist integers K,N > 0, and λ > 0 such that (N,K, σ, λ, c)
forces H.

Proof. We proceed by induction on |H|. If |H| ≤ 2 the result is true, so we may assume that H is
obtained from a smaller β-buildable graph H ′ by adding a handle of length at least β. Let ` := β−2;
then c−σ > 1/b(`−1)/3c. Choose σ′ with σ < σ′ < c−1/b(`−1)/3c. From the inductive hypothesis
there exist integers K ′, N ′ > 0, and λ′ > 0 such that (N ′,K ′, σ′, λ′, c) forces H ′. By 11.3, there exist
integers N,K > 0 and λ > 0 such that (N,K, σ, λ, c) forces H. This proves 12.1.

Now we can prove 3.3, which we restate:

12.2 Let β ≥ 2 be an integer, let H be a β-buildable graph, and let 1 ≥ c > 1/b(β − 3)/3c. There
exists ε > 0 such that every ε-sparse (ε|G|1−c, ε|G|1−c)-coherent graph G with |G| > 1 contains H.

Proof. Choose σ > 0 with c − σ > 1/b(β − 3)/3c; then by 12.1 we can choose K,N, λ such that
(N,K, σ, λ, c) forces H. Choose ε > 0 such that ε ≤ 1/K, ε ≤ 1/N , εσ ≤ 1/(2K), and ε ≤ λ/(2K).
We claim that ε satisfies 12.2.

Let G be an ε-sparse (ε|G|1−c, ε|G|1−c)-coherent graph with |G| > 1. By 2.1, |G| > 1/ε ≥ K, and
so b|G|/Kc ≥ |G|/(2K). Consequently there is a blockade B in G of length K and width at least
|G|/(2K), and therefore with shrinkage at most σ, since |G| > 1/ε and 1/(2K) ≥ εσ ≥ |G|−σ.

If B has linkage at least λ, there exist distinct h, j ∈ I, and v ∈ Ah, such that v has at least λ|Aj |
neighbours in Aj . But λ|Aj | ≥ λ|G|/(2K) ≥ ε|G|, contradicting that G is ε-sparse. Hence B has
length K, shrinkage at most σ and linkage at most λ; and since |G| > 1/ε ≥ N , and (N,K, σ, λ, c)
forces H, there is a B-rainbow copy of H. Consequently G contains H. This proves 12.2.
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