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Abstract

A Kl-expansion consists of l vertex-disjoint trees, every two of which are joined by an edge. We
call such an expansion odd if its vertices can be two-coloured so that the edges of the trees are
bichromatic but the edges between trees are monochromatic. We show that, for every l, if a graph
contains no odd Kl-expansion then its chromatic number is O(l

√
log l). In doing so, we obtain a

characterization of graphs which contain no odd Kl-expansion which is of independent interest. We
also prove that given a graph and a subset S of its vertex set, either there are k vertex-disjoint odd
paths with endpoints in S, or there is a set X of at most 2k − 2 vertices such that every odd path
with both ends in S contains a vertex in X. Finally, we discuss the algorithmic implications of these
results.



1 The Main Results

All graphs in this paper are finite, and have no loops or parallel edges. Let H,G be graphs. An
H-expansion in G is a function η with domain V (H) ∪ E(H), satisfying:

• for each v ∈ V (H), η(v) is a subgraph of G that is a tree, and the trees η(v) (v ∈ V (H)) are
pairwise vertex-disjoint

• for each edge e = uv of H, η(e) is an edge f ∈ E(G), such that f is incident in G with a vertex
of η(u) and with a vertex in η(v).

Thus, G contains H as a minor if and only if there is an H-expansion in G. (We are mostly concerned
with H-expansions when H is a clique, and in this case we also call then clique-expansions.) We call
the trees η(v) (v ∈ V (H)) the nodes of the expansion, and denote by ∪η the subgraph of G consisting
of the union of all the nodes and all the edges η(e) (e ∈ E(H)). We say that an H-expansion η is
bipartite if ∪η is bipartite, and odd if for every cycle C of ∪η, the number of edges of C that belong
to nodes of the expansion is even. (This unexpected terminology is because it is often said in these
circumstances that G contains H as an “odd minor”.) Equivalently, an H-expansion η is odd if we
can partition the vertex set of ∪η into two subsets A,B such that every edge of each node has one
endpoint in A and the other in B, and every edge η(e) (e ∈ E(H)) has both endpoints in A or both
in B. We leave checking this equivalence to the reader.

Hadwiger’s conjecture [7] (see also [8]) states that if a graph contains no Kl-expansion then its
chromatic number is at most l − 1. This is perhaps the central open problem in graph colouring
theory. As shown by Wagner [17], the case l = 5 is equivalent to the celebrated four-colour theorem
of Appel and Haken [1]. The case l = 6 was also shown to follow from the four-colour theorem, by
Robertson, Seymour and Thomas [14]. Hadwiger’s conjecture remains open for all larger values of l.

Thomason [15] and Kostochka [9], improving on a result of Mader[11], proved the following:

Theorem 1 There is a constant c0 such that for all integers l ≥ 1, if a graph G has a nonnull
subgraph of average degree at least c0l

√
log l then G contains a Kl-expansion.

This has a bearing on Hadwiger’s conjecture because of the following well-known observation.

Observation 2 If d ≥ 0 is an integer, and every nonnull subgraph of G has average (and hence
minimum) degree at most d, then G is (d + 1)-colourable.

Proof. Let v be a vertex of minimum degree. Inductively there is a (d + 1)-colouring of G \ v;
we extend it to a (d + 1)-colouring of G by choosing a colour for v which appears on none of its
neighbours. 2

Thus, the following approximation to Hadwiger’s conjecture is true:

Theorem 3 If G contains no Kl-expansion then its chromatic number is O(l
√

log l). 2

In a similar fashion, we may also bound the chromatic number in terms of the largest bipartite
clique-expansion.
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Theorem 4 There is a constant c1 such that for every integer l ≥ 1, if G contains no bipartite
Kl-expansion, then its chromatic number is at most c1l

√
log l + 1.

To prove Theorem 4, we first need the following well-known result:

Theorem 5 If G contains a nonnull subgraph H of average degree at least 2l then it contains a
nonnull bipartite subgraph of average degree at least l.

Proof. Choose a two-colouring of H which maximizes the number of bicoloured edges. Let H ′ be
the subgraph of H consisting of all the vertices of H and the bicoloured edges. Clearly, for each
vertex v, the degree of v in H ′ is at least half its degree in H (for if not, then swapping its colour
would contradict our choice of bicolouring). 2

Every clique-expansion in a bipartite graph is a bipartite clique-expansion. So, Theorem 1 and
Theorem 5 imply:

Theorem 6 There is a constant c1(= 2c0) such that if G has a nonnull subgraph of average degree
at least c1l

√
log l then it contains a bipartite Kl-expansion.

Theorem 4 then follows from this and Observation 2. In this paper we show that an analogous result
holds with respect to the largest odd clique-expansion; that is, we show:

Theorem 7 If G contains no odd Kl-expansion then its chromatic number is O(l
√

log l).

We remark that Thomassen [16] and Geelen and Hyung [6] proved weaker versions of this theo-
rem, which bound the chromatic number of graphs containing no odd Kl-expansion by exponential
functions of l.

This result provides evidence for a conjecture of Gerards and Seymour (see [8] page 115) who
conjectured that every l-chromatic graph contains an odd Kl-expansion. The key to the proof of
Theorem 7 is the following result, which seems to be of independent interest:

Theorem 8 If G contains a bipartite K12l-expansion η then either G contains an odd Kl-expansion,
or for some set X of vertices with |X| ≤ 8l − 2, the (unique) block of G \ X that intersects three
nodes of η that are disjoint from X is bipartite.

(A “block” of a graph means a subgraph maximal with the property that it is either 2-connected
or a 1- or 2-vertex complete graph.) Note that there is a block U that intersects three nodes of η
disjoint from X, because X is disjoint from three of its nodes and there is a cycle in their union.
Moreover, U is unique because every pair of nodes of η are joined by an edge. The latter fact also
implies that U intersects all of the nodes of η that are disjoint from X. We will prove Theorem 8 in
Section 3.

Combining this with Theorem 8 and Theorem 4, we obtain:

Corollary 9 If G contains no odd Kl-expansion then either its chromatic number is at most

12c1l
√

log 12l + 1

or there exists X ⊆ V (G) with |X| ≤ 8l − 2 such that some block of G \ X is bipartite and contains
at least 8l + 2 vertices.
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(To see this, note that for every bipartite K4l+2-expansion, the block meeting all its nodes has
at least 8l + 2 vertices.) It is now an easy matter to deduce Theorem 7 from this corollary. In fact,
we have the following strengthening of Theorem 7.

Theorem 10 Let c1 be as in Corollary 9, with c1 ≥ 1, and let c = ⌈12c1l
√

log 12l + 16l⌉. If G has
no odd Kl-expansion then for all Z ⊆ V (G) with |Z| ≤ 16l − 1, then any c-colouring of the subgraph
of G induced on Z can be extended to a c-colouring of G.

Proof. Let G be a graph with no odd Kl-expansion, and let Z ⊆ V (G) with |Z| ≤ 16l− 1; we prove
the assertion of the theorem by induction on |V (G)|. If G is (c− 16l + 1)-colourable then we simply
colour G\Z with c−16l+1 colours different from those used on Z. Otherwise, by Corollary 9, there
is a set X of vertices of G with |X| ≤ 8l − 2, and a bipartite block U of G \ X with |U | ≥ 8l + 2.

For each component K of G\ (X ∪U), there is at most one vertex of U that has neighbours in K,
since U is a block of G \ X. Let SK be the set containing only this vertex if it exists and be empty
otherwise, and let Z ′

K = (Z ∩ K) ∪ X ∪ SK .
Suppose first that there is no component K of G \ (X ∪ U) containing at least 8l − 1 vertices of

Z. Since c ≥ 24l (because c1 ≥ 1), we can extend our colouring of Z to a colouring of Z ∪ X using
|X| colours not used on Z. Since U is bipartite, we can colour U \ Z with two of our c colours that
are not used on Z ∪ X. The colouring of Z ∪ X ∪ U yields a colouring of Z ′

K , for each component
K of G \ (X ∪U). Moreover, |Z ′

K | ≤ 16l − 1, and so by the inductive hypothesis, we can extend the
colouring of Z ′

K to a c-colouring of the subgraph induced by K ∪ X ∪ SK . Since there are no edges
between K and G \ (X ∪ SK), we can combine these colourings (for each K) with our colouring of
Z ∪ X ∪ U to give the desired c-colouring of G.

Finally, suppose that some component K of G\(X∪U) contains at least 8l−1 vertices of Z. Note
that |K ∪Z ∪X ∪ SK | < |V (G)|, since |U \ SK | ≥ 8l + 1 > |Z \K|. So, by the inductive hypothesis,
we can extend the colouring of Z to a c-colouring of the subgraph of G induced by K ∪Z ∪X ∪ SK .
Let f ′ be the restriction of this colouring to X ∪ (Z \K)∪SK . The inductive hypothesis also proves
there exists a c-colouring of G \ K extending f ′. Again, since there are no edges between K and
G \ (X ∪ SK), combining these two colourings yields the desired c-colouring of G. 2

So it remains to prove Theorem 8. We define a parity-breaking path with respect to a bipartite
H-expansion η to be a path whose endpoints are in ∪η and whose parity differs from the parity of
the paths in ∪η between them. To transform a bipartite H-expansion into an odd H-expansion we
will need many vertex-disjoint parity-breaking paths. Thus, it is not surprising that the following
lemma is the crux of the proof of Theorem 8.

Lemma 11 Let k ≥ 0 be an integer. For any set S of vertices of a graph G, either

(i) there are k vertex-disjoint paths each of which has an odd number of edges and both its endpoints
in S, or

(ii) there is a set X of at most 2k − 2 vertices such that G \ X contains no such path.

This lemma is of considerable interest in its own right. We prove it in Section 2 and then show
that it implies Theorem 8 in Section 3. For a generalization, see [5]. Actually, Theorem 8 has
another corollary (Theorem 13 below) which has many important applications. We discuss this
result in Section 3; there, by using the proof of Theorem 5 and then applying Theorem 1, we also
obtain:
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Theorem 12 There exists a constant c2 such that every graph containing a Kt-expansion with t ≥
c2l

√
log l also contains a bipartite Kl-expansion.

Of course, the analogous result with “bipartite” replaced by “odd” cannot hold, because bipartite
graphs do not contain an odd K3-expansion, since the latter requires an odd cycle, and yet there are
bipartite graphs containing Kl-expansions for arbitrarily large l. However, combining Theorem 12
with Theorem 8 yields the following result.

Theorem 13 There is a constant c3 = 12c2 such that if G contains a Kt-expansion η where t =
⌈c3l

√
log 12l⌉ then either G contains an odd Kl-expansion, or for some set X of vertices with |X| <

8l, the (unique) block U of G \ X that intersects all the nodes of η disjoint from X is bipartite.

Finally we discuss some applications of Theorem 13 in Section 4.

2 The Key Lemma

Before proving Lemma 11, we remark that the bound of 2k − 2 on the size of X is tight. To see
this consider the graph formed by a clique C with 2k − 1 vertices and a stable set S with many
more than 2k vertices, by adding all possible edges between S and C. Then every odd path with
both endpoints in S uses an edge of C, so there do not exist k such paths, vertex-disjoint. On the
other hand, every two vertices of S can be combined with every two vertices of C to obtain a path
of length three with both endpoints in S. So clearly, a minimum hitting set for this set of odd paths
consists of a subset of C of size |C| − 1.

We also remark that the proof of Lemma 11 was based on Edmonds’ elegant algorithm for
determining if there is an odd s-t path in a graph G via testing if an auxiliary graph has a perfect
matching.

Proof of Lemma 11. We will construct an auxiliary graph H such that if H has a sufficiently
large matching then G has k vertex-disjoint odd paths with their endpoints in S. The Tutte-Berge
formula ([2], or [10] Section 3.1) tells us that if a maximum matching in H misses d vertices then
there is a set W of vertices of H such that H \ W has |W | + d odd components. We will use this
structural characterization to find the desired set X if a maximum matching in H is too small to
guarantee the existence of k disjoint odd paths with their endpoints in S.

We construct H as follows. For each v ∈ V \ S, let v′ be a new vertex; let

V (H) = V (G) ∪ {v′ | v ∈ V \ S},

and
E(H) = E(G) ∪ {u′v′ | uv ∈ E(G \ S)} ∪ {vv′ | v ∈ V \ S}.

In other words, we take the disjoint union of G and a copy of G \ S, and add an edge between
between v and its copy, for each v ∈ V (G) \ S. Let M be the matching formed by the latter edges.
By an M -augmenting path we mean an odd length path in H with end-points in S, and such that
its edges alternately belong to E(H) \ M and to M . Clearly, the M -augmenting paths in H are in
1-1 correspondence with the odd paths of G that have both their endpoints in S.
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By considering the components of M ∪ M ′ for a maximum matching M ′ of H, we see that if
H has a matching of size |V (G)| − |S| + k then G contains k vertex-disjoint odd paths with their
endpoints in S.

Thus, it remains to show that if H has no matching of size |V (G)| − |S| + k then there is a set
X ⊆ V (G) of size at most 2k − 2 such that there is no odd path of G \X with both endpoints in S.
Therefore suppose that H has no matching of size |V (G)| − |S| + k. Since |V (H)| = 2|V (G)| − |S|,
the Tutte-Berge formula implies that there is a set W of vertices of H such that the number, oc(W ),
of odd components of H \ W is at least |W |+ |S| − 2k + 2. Choose W maximal with this property;
then every component of H \ W is odd, as otherwise we could add a vertex in an even component
to W . Let U be the set of all components of H \ W . Let Y be the set of vertices of V (G) \ S such
that both v and v′ are in W . Let W ′ be the set of vertices of H \ W joined to W by an edge of M ;
so |W ′| = |W | − 2|Y | − |W ∩ S|.

Parity considerations ensure that each U ∈ U contains a vertex of S ∪W ′; let z(U) be some such
vertex. Let Z = {z(U) | U ∈ U}, and let

X ′ = (S ∪ W ′) \ Z.

Now |X ′| = |S| + |W | − 2|Y | − |W ∩ S| − oc(W ), and so |X ′| ≤ 2k − 2 − 2|Y | − |W ∩ S|. Let

X = (X ′ ∩ V (G)) ∪ {v ∈ V (G) \ S | v′ ∈ X ′} ∪ (W ∩ S) ∪ Y.

Thus, X ⊆ V (G) and |X| ≤ 2k − 2 − |Y | ≤ 2k − 2. We claim that there are no odd paths of
G \ X with both endpoints in S. It is enough to show that there is no M -augmenting path in
G∗ = H \ (X ∪ {v′ | v ∈ X \ S}).

Let v ∈ V (G) \S; we say that v′ is the mate of v and vice versa if one of them belongs to Z (and
therefore the other is in W ).

(1) V (G∗) ∩ S = S ∩ Z, and V (G∗) \ S is the union of all pairs {v, v′} with v ∈ V (G) \ S such
that either v, v′ /∈ W , or v′ is the mate of v. Consequently, every vertex in V (G∗) ∩ W has a mate
in Z.

The first assertion follows from the definitions of X and G∗. For the second, note that no ver-
tex of V (G∗)∩W belongs to S, since W ∩S ⊆ X, and so the second statement follows from the first.

(2) Z and V (G∗) ∩ W are stable sets in G∗.

The set Z is stable since its members all belong to different components of H \ W . But by (1),
every vertex in V (G∗) ∩W has a mate in Z. Since z(U1) and z(U2) are non-adjacent for all distinct
U1, U2 ∈ U , so are the corresponding two vertices of W . This proves (2).

(3) Every M -augmenting path of G∗ is contained in (V (G∗) ∩ W ) ∪ Z.

Let U ∈ U . If z(U) /∈ S, let C = {z(U), w}, where w is the mate of z(U), and otherwise let
C = {z(U)}. Let A = U ∩ V (G∗) \ {z(U)}, and B = V (G∗) \ (A ∪ C). We claim that C is a cutset
separating A and B in G∗. By (1), A is disjoint from S, and so A is paired by edges of M . Let
v ∈ V (G) \ S with v, v′ ∈ U ∩ V (G∗) \ {z(U)}, and suppose that one of v, v′ is adjacent in G∗ to

5



some b ∈ B. Since b /∈ A and b 6= z(U), it follows that b /∈ U , and so b ∈ W . By (1), b has a mate
in Z, say z(U∗). Since v, v′ ∈ U , it follows that U∗ = U , and so b is the mate of z(U); and therefore
z(U) /∈ S and b = w ∈ C, contradicting that b ∈ B. Thus there is no such b. This proves our claim
that C is a cutset separating A and B in G∗.

Now suppose that P is an M -augmenting path in G∗ that contains a vertex of U \ {z(U)}. Since
S ⊆ B ∪ C, it follows that |C| = 2 and both vertices in C belong to P ; and so z(U) /∈ S, and the
edge of M containing z(U) is a chord of P . But an M -augmenting path cannot have an edge of M
as a chord. Hence every M -augmenting path in G∗ is disjoint from U \ {z(U)}. This proves (3).

Combining (2) and (3), we see that every M -augmenting path in G∗ is contained in a bipartite
graph with bipartition (V (G∗)∩W,Z). But V (G∗)∩W is disjoint from S, so there is no M -augmenting
(odd) path in G∗. 2

3 The Proof of Theorem 8

We begin with the following observation.

Observation 14 Let H be a clique of order 2l, with vertex set {a1, b1, . . . , al, bl}. Suppose that η is
a bipartite H-expansion in a graph G, and there are l vertex-disjoint parity-breaking paths P1, ..., Pl

(with respect to η) such that Pi has one endpoint in V (η(ai)) and the other in V (η(bi)) and is
otherwise disjoint from ∪η. Then G contains an odd Kl-expansion.

Proof. Let H ′ be the clique in H induced on {a1, . . . , al}. We define an H ′-expansion in G as
follows. For 1 ≤ i ≤ l, let

η′(ai) = η(ai) ∪ Pi ∪ η(bi),

and for 1 ≤ i < j ≤ l, let
η′(aiaj) = η(biaj).

Now ∪η is bipartite; fix a proper two-colouring of it. For 1 ≤ i ≤ l, we convert this to a proper two-
colouring of η′(ai) by colouring η(ai) as before and extending this to a proper two-colouring of η′(ai).
Our choice of Pi ensures that the vertices of η(bi) have swapped colours. For 1 ≤ i < j ≤ l, the edge
η′(aiaj) = η(biaj) is bichromatic in the old two-colouring of ∪η, and is therefore monochromatic in
the new colouring. Hence η′ is an odd H ′-expansion. 2

Given this observation, we can prove the theorem via two applications of Lemma 11. First,
however, we need a definition. Let η be an H-expansion in G, and let v ∈ V (H). A centre for η(v)
is a vertex t ∈ V (η(v)) such that for each component T of η(v) \ {t}, the number of edges e ∈ E(H)
such that η(e) is incident in G with a vertex of T is at most half the number of edges in H incident
with v. It is not hard to see that every node η(v) has a centre (perhaps more than one). In what
follows we assume that for each node, one of its centres has been selected, and we often speak of the
centre of a node without further explanation.

In particular, the following two lemmas taken together prove Theorem 8.

Lemma 15 Let η be a bipartite K8l+1-expansion in G. Then at least one of the following holds:

6



1. there exists X ⊆ V (G) with |X| ≤ 8l − 2, such that the block of G \ X that intersects all the
nodes of η disjoint from X is bipartite;

2. there exist 4l vertex-disjoint parity-breaking paths with respect to η such that the 8l endpoints
of these paths are the centres of distinct nodes of η.

Lemma 16 Let η be a bipartite K12l-expansion in G. If there exist 4l vertex-disjoint parity-breaking
paths with respect to η such that the 8l endpoints of these paths are the centres of distinct nodes of
η, then G contains an odd Kl-expansion.

Proof of Lemma 15. Let H = K8l+1, and let η be a bipartite H-expansion in G. Let V (H) =
{h1, . . . , h8l+1}, and let (A,B) be a bipartition of ∪η. For 1 ≤ i ≤ 8l + 1, we choose si to be the
centre of η(hi) if this is in A, and to be a new vertex adjacent only to the centre if the centre is in
B, thereby constructing an auxiliary graph G∗. We apply Lemma 11 to the set S = {s1, ..., s8l+1}
in G∗, and find either a set of 4l vertex-disjoint odd paths with endpoints in S, or a set X ⊆ V (G∗)
with |X| ≤ 8l− 2 such that there are no odd paths in G∗ \X with both endpoints in S. Suppose the
first, and let us choose the paths to be minimal; then they have no internal vertices in S. Thus each
of these paths, between si and sj say, consists of a parity-breaking path of G between the centres of
η(hi) and η(hj) and perhaps a vertex of V (G∗)\V (G) at either end. So in the first case we are done.

We may assume therefore that the second holds; that is, there exists X ⊆ V (G∗) with |X| ≤ 8l−2
such that there are no odd paths in G∗ \ X with both endpoints in S. Let I be the set of all i with
1 ≤ i ≤ 8l + 1 such that X is disjoint from {si} ∪ V (η(hi)). Thus |I| ≥ 8l + 1− |X| ≥ 3, and we may
assume that 1, 2, 3 ∈ I. Let U be the block of G\X that intersects all the nodes of η disjoint from X.
For i = 1, 2, let ci be the centre of η(hi). For i = 1, 2, since U intersects η(hi) and X ∩V (η(hi)) = ∅,
there is a (minimal) path Pi of η(hi) between ci and U ; let its ends be ci, ui say. Thus P1, P2 are
disjoint, and each Pi has no vertex in U except its end di. Suppose that U is not bipartite. Since
U is 2-connected, there are paths of U of both parities between d1, d2 (since in U we can link these
vertices to an odd cycle by two vertex-disjoint paths). Consequently there is a parity-breaking path
(with respect to η) in G between c1, c2 disjoint from X. But possibly adding a vertex of V (G∗)\V (G)
at either end of this path in the obvious way yields an odd path of G∗ \ X with both endpoints in
S, a contradiction. Hence U is bipartite. 2

Proof of Lemma 16. Let η be an H-expansion where H is a complete graph with vertex set
{h1, . . . , h12l} say, and for 1 ≤ i ≤ 12l let Ni = V (η(hi)). Let (A,B) be a bipartition of ∪η. Let
P1, . . . , P4l be vertex-disjoint parity-breaking paths with respect to η, such that the 8l endpoints
of these paths are the centres of distinct nodes of η; and let us choose P1, . . . , P4l to minimize the
number of edges in their union that are not edges of nodes of η.

(1) Every node of η that contains no endpoint of any of P1, . . . , P4l is vertex-disjoint from all of
P1, . . . , P4l.

For suppose that some node does not satisfy this, and let c be its centre. There is a path Q of
this node, from c to a vertex x in some Pi, such that Q \ x is disjoint from P1, . . . , P4l. Now there
is a parity-breaking path obtained by following Q from c to x and then following Pi from x to one
endpoint of Pi. Replacing Pi by this new path contradicts the minimality of our choice. This proves
(1).
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We relabel so that for 1 ≤ i ≤ 4l, Pi has endpoints in N2i−1 and N2i and is disjoint from Nj for
j > 8l. Let J be the subgraph of G induced on

V (P1) ∪ · · · ∪ V (P4l) ∪ N1 ∪ · · · ∪ N8l.

For 1 ≤ i ≤ 4l, let Ai be the set of vertices in V (J) ∩ A with a neighbour in N8l+i ∩ B, and let
Bi be the set of vertices in V (J) ∩ B with a neighbour in N8l+i ∩ A. Construct an auxiliary graph
J∗ as follows. Add new vertices s1, . . . , s4l to J , such that for 1 ≤ i ≤ 4l, si has neighbour set Ai.
Then for 1 ≤ i ≤ 4l and each b ∈ Bi, add a new vertex v(b, i) with neighbour set {b, si}, and let
B′

i = {v(b, i) | b ∈ Bi}. Let S = {s1, . . . , s4l}.

(2) For every X ⊆ V (J∗) with |X| < 2l, there is an odd length path in J∗ \ X with endpoints
in S.

For each vertex of X is in at most one Pi and at most one Nj. So there is at least one value
of i ≤ 4l such that X is disjoint from V (Pi) ∪ N2i−1 ∪ N2i, say i = 1. Let c1, c2 be the centres of
η(h1) and η(h2) respectively. We claim that c1, c2 lie in the same block of J∗ \ X. To show this,
let I be the set of all i with 3 ≤ i ≤ 8l such that X ∩ Ni = ∅; then |I| ≥ 8l − 2 − |X| ≥ 6l − 1.
For each i ∈ I, let ui be the vertex of N1 incident in G with η(h1hi), and let vi be the vertex of N2

incident in G with η(h2hi). Also, let u0v0 = η(h1h2), where u0 ∈ N1 and v0 ∈ N2. If there exist
distinct i, j ∈ I ∪{0} such that no component of η(h1)\c1 contains both ui, uj , and no component of
η(h2)\c2 contains both vi, vj , then there is a cycle of G with vertex set in the union of N1, N2, Ni, Nj

containing c1, c2, (where N0 = ∅) and since this cycle is disjoint from X it follows that c1, c2 belong to
the same block of J∗ \X. Thus we suppose that there are no such i, j. In particular, since |I|+1 ≥ 2,
there is no i ∈ I ∪ {0} such that ui = c1 and vi = c2. If some ui = c1, let T be the component of
η(h2) \ c2 containing vi; then vj ∈ V (T ) for all j ∈ I ∪ {0}, contrary to the definition of a centre,
since |I ∪ {0}| ≥ 6l. Thus ui 6= c1 and similarly vi 6= c2 for all i ∈ I ∪ {0}. Let H be the bipartite
graph with vertex set the union of the set of components of η(h1) \ c1 and the set of components of
η(h2) \ c2, with edge set I ∪ {0}, and the natural incidence relation; then H has no matching with
cardinality two, and so by König’s theorem, some vertex of H is incident with all edges of H. But
this is again contrary to the definition of a centre, since |I ∪ {0}| ≥ 6l. This proves our claim that
c1, c2 lie in the same block U of J∗ \ X.

Since there is a parity-breaking path between them which is also disjoint from X, U is non-
bipartite. There also must be j, k with 1 ≤ j < k ≤ 4l such that X is disjoint from {sj} ∪ B′

j and
{sk}∪B′

k. Since there is an edge of G between N8l+j and N1, there is an edge of J∗ between {sj}∪B′
j

and N1; and similarly there is an edge of J∗ between {sk} ∪ B′
k and N2. Consequently there is a

path of J∗ \ X between sj and c1, consisting of sj , possibly a vertex of B′
j , and a subpath of η(h1);

and similarly there is a path between sk and c2. These two paths are disjoint, and the two centres
both belong to U , and since U is not bipartite, it follows that there is an odd length path in J∗ \ X
between sj and sk. This proves (2).

By (2) and Lemma 11, we see that J∗ contains l vertex-disjoint odd paths with their endpoints
in S. By choosing these paths minimal we can ensure that they are internally disjoint from S. By
dropping one or two auxiliary vertices at each end of each path, we obtain vertex-disjoint parity-
breaking paths of J . Furthermore, if one of the original paths joined say sj to sk, then one endpoint
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x of the corresponding new subpath has a neighbour y in Nj such that xy is bichromatic, and the
other endpoint u has a neighbour v in Nk such that uv is bichromatic.

Adding these 2l edges yields a set of l vertex-disjoint parity-breaking paths which have their
endpoints in distinct elements of {N8l+1, ..., N12l} but which are otherwise disjoint from these nodes.
But now applying Observation 14 to the clique-expansion obtained by taking the restriction of η to
those nodes which contain endpoints of these paths, we see that G contains an odd clique-expansion
of order l, as claimed. 2

Proof of Theorem 12. We remark that for any three graphs A,B,C, if A contains a B-expansion
and B contains a C-expansion, then A contains a C-expansion. Similarily, if A contains a bipartite
B-expansion, and B contains a C-expansion, then A contains a bipartite C-expansion.

Let c0 be as in Theorem 1, and let c2 = 2c0. Let H be a complete graph of order at least
c2l

√
log l, and let η be an H-expansion in G. Using some two fixed colours, there are exactly two

bicolourings of each node of η. Choose a bicolouring of each node so as to maximize E(H ′), where H ′

is the subgraph of H with V (H ′) = V (H) and E(H ′) the set of edges e ∈ E(H) such that the ends
of η(e) have different colours. Each vertex of H ′ has degree at least c2/2 = c0, and so H ′ contains
a Kl-expansion, by 1. But G contains a bipartite H ′-expansion, namely the restriction of η to H ′;
and so by the remark above, it follows that G contains a bipartite Kl-expansion. 2.

4 Algorithms and Applications

The authors began their study of graphs without large odd clique-expansions, in an attempt to find
efficient algorithms for the following decision problems:

1. k Odd Disjoint Paths: Given vertices s, t of a graph G, determine whether there are k
internally vertex-disjoint odd length s-t paths in G.

2. k Odd Disjoint Rooted Paths: Given vertices {s1, . . . , sk, t1, . . . , tk} of a graph G, determine
whether there are internally vertex-disjoint odd length paths P1, . . . , Pk such that Pi has si and
ti as endpoints.

3. k Odd Disjoint Cycles: Determine whether there are k vertex-disjoint odd cycles in a graph
G.

4. Odd H-Expansion: Determine whether G contains an odd H-expansion.

We remark that the variants of these problems in which we drop the parity condition are all
solvable in polynomial time (with the parameters k,H fixed). The k Disjoint Paths problem can be
solved efficiently even if k is part of the input. In contrast k Disjoint Rooted Paths is NP-complete
unless k is fixed, in which case it can be solved in polynomial time. The algorithm required the
development of a complicated structure theorem characterizing graphs without large clique minors
(see [13]). H-Minor Containment is also NP-complete if H is part of the input, as the Hamilton
Cycle problem is a special case. However, the techniques of Robertson and Seymour can be used
to solve this problem efficiently for fixed H. The k Disjoint Cycles problem is also NP-complete
as it contains the Vertex Cover by Triangles problem as a special case. However, it is solvable in
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linear time for fixed k because the Erdös-Posa property holds for cycles and it follows that graphs
without k vertex-disjoint cycles have tree-width bounded by a function of k (see [4] for details and
extensions).

The odd variants of the last three of these problems are also NP-complete if k or H is part of
the input. Hamilton Cycle is the special case of Odd H-Expansion where H is a cycle with the same
number of vertices as G; Vertex Cover by Triangles is the special case of k Odd Disjoint Cycles where
n = 3k. Finally, it is easy to transform an instance of k-Disjoint Rooted Paths to an instance of
k Odd Disjoint Rooted Paths. We simply add, for each edge, a path of length two connecting its
endpoints. We do not know if k Odd Disjoint Paths is NP-complete if k is part of the input.

We have an efficient algorithm to solve the k Disjoint Odd Cycles problem for fixed k, which we
are currently writing up. We believe that we can efficiently solve the other three problems. However,
in doing so we have to rework much of the structure theory for graphs with no large clique minor.
This is a daunting but doable task, which we have begun.

To this end, we note that our proof of Lemma 11 is algorithmic. That is, it provides an algorithm
for the following problem (where k is part of the input and need not be fixed):

5. Odd Disjoint S-Paths: Given a set S of vertices in a graph G and an integer k find either k
vertex-disjoint odd paths with their endpoints in S or a set X of at most 2k− 2 vertices which
meet all such paths.

In our proof, we built an auxiliary graph and determined whether or not the desired paths exist by
solving the maximum matching problem on this auxiliary graph. The rest of the proof is clearly
algorithmic. In order to choose X so that all its components are odd, we may need to add O(|V (G)|)
vertices to X, and after each addition it takes O(|E(G)|) time to recompute the components. The
rest of the proof can easily be implemented in O(|E(G)|) time. So, the total time complexity is
O(|V (G)||E(G)|) + MM) where MM is the time taken to solve maximum matching on a graph with
at most 2|V (G)|) vertices and 2|E(G)| + |V (G)| edges. Actually we can do slightly better than this
because we can start with the matching M , so if our maximum matching algorithm is an iterative
augmenting algorithm than we need only perform k augmenting steps.

The proof of Theorem 8 can also be made constructive, that is we can provide an efficient
algorithm which given a bipartite K12l-expansion, either finds a odd Kl-expansion or the set X
with the properties specified in the statement of the theorem. A glance at the proof shows that
we essentially apply Lemma 11 twice to two auxiliary graphs as well as doing some straightforward
cleanup operations so this algorithm has the same time complexity as our algorithm for Odd Disjoint
S-Paths.

Finally, there is a polynomial-time algorithm to obtain the colouring extensions guaranteed by
Theorem 10. We first repeatedly remove a minimum degree vertex from G \ Z as long as its degree
is at most c − 16l. If we remove the entire graph then G \ Z is greedily c − 16l + 1 colourable so we
colour it using colours which do not appear on Z. Otherwise, we find a subgraph of G with minimum
degree at least c − 16l + 1. We find a bipartite subgraph within this subgraph of average degree at
least c/2 − 8l (this is easy to do greedily; we colour the vertices in arbitrary order, always colouring
a vertex so as to maximize the number of bichromatic edges out of it and into some already coloured
vertex). Next, we find a (bipartite) K12l-expansion within this bipartite graph using an algorithmic
version of Theorem 1. Now, we apply our algorithmic version of Theorem 8 to find a set X as in the
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statement of that theorem (we assume our input has no odd Kl-expansion so this is the only possible
output).

At this point in the proof of Theorem 10, we show that solutions to some subproblems can be
combined to obtain solutions to our original problem. So our algorithm will recurse at this point,
solving the specific subproblems. We note that the sum over all subproblems (G′, Z ′) of |V (G′)|−|Z ′|
is at most |V | − |Z| because no vertex is freely colourable in two distinct subproblems. It follows
trivially by induction that we perform at most 2(|V | − |Z|) − 1 iterations when solving an instance
provided |V | > |Z|. Thus, we perform a polynomial number of iterations each of which takes
polynomial time and so the algorithm is polynomial. We make no attempt to optimize it.
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