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Abstract

For k ≥ 1, the k-commodity flow problem is, we are given k pairs of vertices in a graph G, and we
ask whether there exist k flows in the graph, where

• the ith flow is between the ith pair of vertices, and has total value one; and

• for each edge e, the sum of absolute values of the flows along e is at most one.

We prove that for all k there exists n(k) such that if G is connected, and contraction-minimal such
that the k-commodity flow problem is infeasible (that is, minimal in the sense that contracting any
edge makes the problem feasible) then |V (G)| + |E(G)| ≤ n(k).

For integers k, p ≥ 1, the (k, p)-commodity flow problem is as above, with the extra requirement
that the flow value of each flow along each edge is a multiple of 1/p. We prove that if p > 1, and
G is connected, and contraction-minimal such that the (k, p)-commodity flow problem is infeasible,
then |V (G)| + |E(G)| ≤ n(k), with the same n(k) as before, independent of p. In contrast, when
p = 1 there are arbitrarily large contraction-minimal instances, even when k = 2.

We give some other corollaries of the same approach, including

• a proof that for all k ≥ 0 there exists p > 0 such that every feasible k-commodity flow problem
has a solution in which all flow values are multiples of 1/p, and

• a very simple polynomial-time algorithm to solve the (k, p) multicommodity flow problem when
p > 1.



1 Introduction

For integer k ≥ 0, the k-commodity flow problem is, we are given k pairs of vertices in a graph G,
and we ask whether there exist k flows in the graph, where

• the ith flow is between the ith pair of vertices, and has total value one; and

• for each edge e, the sum of the absolute values of the flows along e is at most one.

(All graphs in this paper are finite, and may have loops or parallel edges.) For convenience, let us
direct the edges of G, arbitrarily; then, given G and pairs (s1, t1), . . . , (sk, tk) of vertices, we are
looking for k maps φi (1 ≤ i ≤ k), where

• for 1 ≤ i ≤ k, φi is a map from E(G) to the set of real numbers R

• for 1 ≤ i ≤ k and each vertex v of G,

φi(δ
+(v)) − φi(δ

−(v)) =























0 if v 6= si, ti

1 if v = si 6= ti

−1 if v = ti 6= si

0 if v = si = ti,

where δ+(v), δ−(v) denote the sets of non-loop edges with tail v and head v respectively, and
for X ⊆ E(G), φi(X) denotes

∑

e∈X φi(e), and

• for every edge e,
∑

1≤i≤k |φi(e)| ≤ 1.

(We allow si = ti, for convenience when we contract edges, although then φi might as well be
identically zero.) If there is a solution we say the k-commodity flow problem is R–feasible. This is
a linear programme of polynomial size, and so we can check R–feasibility in polynomial time [4, 8],
independent of k.

In this paper we are interested in restricting the values φi(e). Let p ≥ 1 be an integer, and let
Z/p denote the set of all rationals q/p where q is an integer. If φ1, . . . , φk can be chosen as above so
that in addition

• φi(e) ∈ Z/p for 1 ≤ i ≤ k and for each edge e ∈ E(G)

we say the problem is Z/p–feasible (or Z–feasible if p = 1) and we call deciding Z/p–feasibility the
(k, p)-commodity flow problem. To include the original R–feasibility problem in this language, let us
set p = ∞; thus, Z/∞–feasibility means R–feasibility.

From the algorithmic point of view, checking Z–feasibility and checking Z/2–feasibility behave
similarly, in that both problems are solvable in polynomial time when k is fixed [17], and both are
NP-complete if k is not fixed [3, 12]. Nevertheless, there is a significant difference between the two
problems, as we shall see.

If a k-commodity flow problem is feasible, and we contract some edge, this results in a new k-
commodity flow problem that is also feasible. (Contraction may make loops or parallel edges.) Thus,
given G and s1, t1, . . . , sk, tk as before, let us say (G, s1, t1, . . . , sk, tk) is Z/p–critical if
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• the corresponding k-commodity flow problem is not Z/p–feasible;

• for every edge e, if we contract e then the k-commodity flow problem becomes Z/p–feasible;
and

• no vertex different from s1, t1, . . . , sk, tk has degree zero.

(Again, Z/∞–criticality and R–criticality mean the same thing.)
Consequently, a k-commodity flow problem is not Z/p–feasible if and only if it can be reduced

to a Z/p–critical instance by contracting edges and removing isolated vertices. The following is a
version of the main result of this paper:

1.1 For all integers k ≥ 0 there exists n(k) such that for all p > 1 (including p = ∞), if
(G, s1, t1, . . . , sk, tk) is a Z/p–critical instance, then |V (G)| + |E(G)| ≤ n(k).

This just says that n(k) exists, but the same methods could be used construct such a number n(k)
if desired. It would be large, of the order of

exp(exp(exp(exp(exp(kc)))))

for a constant c.
We cannot extend this to include p = 1, even when k = 2. For instance, let n ≥ 2, and let

G have vertex set {a1, . . . , an, b1, . . . , bn}, and edges aiai+1 and bibi+1 for 1 ≤ i < n, and aibi for
1 ≤ i ≤ n. (We call this graph the n-ladder.) Then (G, a1, bn, an, b1) is Z–critical; and yet |V (G)|
can be arbitrarily large.

Our result implies the following, which was known for k = 2 (when taking p = 2 works), but
seems to be new even for k = 3:

1.2 For all integers k ≥ 0 there exists p > 0 such that every k-commodity flow problem that is
R–feasible is also Z/p–feasible.

Proof (assuming 1.1.) Choose n(k) as in 1.1. Choose an integer p so large that p is a multiple
of the determinant of every nonsingular d × d matrix with all entries in {−1, 0, 1}, for all d with
1 ≤ d ≤ kn(k). We claim that p satisfies the theorem; so we need to show that if (G, s1, t1, . . . , sk, tk)
is R–feasible then it is Z/p–feasible. We prove this by induction on |V (G)| + |E(G)|, and therefore
may assume that no vertex v different from s1, t1, . . . , sk, tk has degree zero.

Suppose first that |V (G)| + |E(G)| ≤ n(k). We can write this R-feasibility problem as a linear
programme, where the constraint matrix has only k|E(G)| ≤ kn(k) columns; and since the entries
in the constraint matrix are all from {−1, 0, 1}, it follows that every nonsingular submatrix of the
contraint matrix has determinant that divides p. Since the instance is R–feasible, it follows from
Cramer’s rule that there is a solution in which all values are multiples of 1/p, that is, the instance is
Z/p–feasible, as required.

Thus we may assume that |V (G)|+ |E(G)| > n(k). For every edge e, the instance obtained from
(G, s1, t1, . . . , sk, tk) by contracting e is R–feasible, and therefore Z/p–feasible from the inductive
hypothesis. Since (G, s1, t1, . . . , sk, tk) is not Z/p–critical (because |V (G)| + |E(G)| > n(k)), we
deduce that it is Z/p–feasible. This proves 1.2.
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1.1 implies that:

1.3 For all integers k ≥ 0 there exists n(k) such that for all p > 1, a k-commodity flow problem
(G, s1, t1, . . . , sk, tk) is Z/p–feasible if and only if for every partition (X1, . . . ,Xm) of V (G) into non-
empty sets with m ≤ n(k), the k-commodity flow problem obtained by identifying the members of
each Xi to a single vertex is Z/p–feasible.

Taking m = 2 in the above is exactly the so-called “cut condition”, that

• for every X ⊆ V (G), the number of edges of G between X and V (G)\X is at least the number
of values of i ∈ {1, . . . , k} such that X contains exactly one of si, ti.

This is always necessary for Z/p–feasibility (and indeed for R–feasibility); and it is sufficient when all
the pairs (si, ti) are the same, and it was heavily investigated in early work on the multicommodity
flow problem. It turns out that the cut condition is not sufficient for Z–feasibility for any k > 1,
and not sufficient for R–feasibility for any k ≥ 3, and yet in some interesting circumstances the cut
condition is necessary and sufficient for Z/2–feasibility. For instance, this is the case when

• there are only two distinct pairs (si, ti) (this is Hu’s two-commodity flow theorem [6]), or more
generally, the set {s1, t1, . . . , sk, tk} has at most four elements [21]

• the graph obtained from G by adding edges to make all the pairs si, ti adjacent is planar [22],
or

• G is planar, and can be drawn so that s1, t1, . . . , sk, tk all belong to the infinite face [14],

and more (see [9]).
Our result 1.3 is a sort of generalization of these, and has the same complexity consequences. For

instance, to check if (G, s1, t1, . . . , sk, tk) is Z/p–feasible (where p > 1), it suffices to check if there is
some partition of V (G) into a bounded number of sets with the property that after identifying the
vertices in each set, the problem is not Z/p–feasible. We can do this in polynomial time; for let P
be the set of edges with ends in different sets of this partition. We may assume that |P | is bounded,
because if there are more than k edges between any two of the sets we could replace the two sets
by their union. So we can try all possibilities for P in polynomial time; and having selected P , we
contract all edges not in P , and then read off whether the desired partition exists. This is of no real
interest, because as we said before, for fixed k all these problems are polynomial-time solvable; but
this shows that there is a simple algorithm, not using the methods of Graph Minors.

Actually we can do much better than this. Our methods yield a simple and fast algorithm to test
Z/p–feasibility, for any fixed p > 1. We explain this in section 4, and use some of the same lemmas
to prove our main result in the remainder of the paper.

In particular, for fixed k and p there are only finitely many Z/p–critical k-commodity instances,
and for very small k it might be of interest to figure out what they are. For example, it is easy to
check that

1.4 For all p > 1, the only Z/p–critical 2-commodity flow problem with more than two vertices
is (G, s1, t1, s2, t2), where G is the four-vertex cycle, and {s1, t1} and {s2, t2} are its pairs of non-
adjacent vertices (and this is Z/p–critical only when p is finite and odd).

It is more difficult to prove the following (unpublished joint work with Katherine Edwards):
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1.5 If (G, s1, t2, s2, t2, s3, t3) is Z/3–critical and (s2, t2) = (s3, t3) then |V (G)| ≤ 6.

It turns out that there is one such instance with six vertices, two with four vertices, and one with
two.

Let us return to 1.1. This asserts the boundedness of the size of all Z/p–critical instances
(G, s1, t1, . . . , sk, tk), but only with k fixed. How much can we relax the hypotheses before the
result becomes false? Suppose then that p is fixed, and we have some class of (k, p)-commodity
flow problems defined by some restriction on permitted sequences (s1, t1, . . . , sk, tk), but with k
unbounded. (One could put restrictions on the graphs G instead, but that is not considered here.)
For instance, we might restrict the size of the set W = {s1, t1, . . . , sk, tk}, or the number k0 of distinct
pairs (si, ti). If |W | ≤ 2 this is just the Menger problem, and all critical instances have two vertices;
but even with |W | ≤ 3 we are in trouble; if p is odd there are arbitrarily large Z/3–critical instances
with |W | = 3. For instance, let n ≥ 0 be an integer, let G be the complete bipartite graph K3,9n+2,
and let u, v,w be its three vertices of degree 9n + 2. Let k = 12n + 3. For 1 ≤ i ≤ k, let

(si, ti) =











(u, v) if 1 ≤ i ≤ k/3

(v,w) if k/3 < i ≤ 2k/3

(w, u) if 2k/3 < i ≤ k;

then (G, s1, t1, . . . , sk, tk) is Z/3–critical. These can be converted to unbounded Z/3–critical instances
with k0 = 2, by adding a new vertex adjacent to u, v. There are similar examples for all odd p > 1.
(Incidentally, when |W | = 3, checking Z/p-feasibility is polynomial-time solvable [20] with no bound
on k.)

Let us try p = 2 instead; and in that case setting |W | ≤ 4 gives us no problem, as all critical
instances have two vertices [21]. But we cannot go much further. If we hope for boundedness of the
critical instances in the class, it is necessary that deciding Z/2-feasibility in the class is polynomially-
solvable; and Middendorf and Pfeiffer (published in [15]) showed that checking Z/2-feasibility is
NP-complete when k0 = 3.

Incidentally, a recent result of Moitra [13] implies that there are R–critical instances with an
unbounded number of vertices when k0 = 3, although R-feasibility is checkable in polynomial time
(even with k0 unbounded).

In summary:

Z Z/2 Z/3 R

k fixed P, unbounded P, bounded P, bounded P, bounded

|W | = 3 P, unbounded P, 2 P, unbounded P, 2

k0 = 2 NPC, unbounded P, 2 open, unbounded P, 2

k0 ≥ 3, fixed NPC, unbounded NPC, unbounded open, unbounded P, unbounded

k0 unrestricted NPC, unbounded NPC, unbounded open, unbounded P, unbounded

Table 1: Complexity, and largest critical instances

Let us say that (G, s1, t1, . . . , sk, tk) is eulerian if for each v ∈ V (G), the degree of v in G has the
same parity as the number of pairs (si, ti) where one of si, ti equals v. (In other words, if we add k
new “demand” edges joining the pairs si, ti, then all vertices have even degree in the new graph.) In
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all the theorems listed earlier where the cut condition is necessary and sufficient for Z/2–feasibility,
it is also true that when the input is eulerian, the cut condition is necessary and sufficient for Z–
feasibility. This phenomenon persists with criticality. Let the oddness of G be the number of vertices
with odd degree, and let the skewness of G be the number of non-loop edges not parallel to other
edges. We will show:

1.6 For all integers k, s ≥ 0 there exists n such that if (G, s1, t1, . . . , sk, tk) is Z–critical and G has
oddness or skewness at most s, then |V (G)| + |E(G)| ≤ n.

Thus, although for fixed k there are arbitrarily large Z–critical instances, these must have arbi-
trarily many vertices of odd degree and arbitrarily many edges that are not parallel to other edges.

Let (G, s1, t1, . . . , sk, tk) be Z–critical. Since oddness zero and skewness zero both imply that
G has no edge-cut of cardinality three (assuming that |E(G)| > 3), and much of the proof of
1.6 uses only that there are no edge-cuts of cardinality three, it is tempting to conjecture that if
(G, s1, t1, . . . , sk, tk) is Z–critical and G has no edge-cut of cardinality three then |V (G)| has size
bounded by a function of k; but that is false. Here is a counterexample: let n ≥ 2 be an integer, and
let G have 2n vertices x1, . . . , xn, y1, . . . , yn, and edges as follows:

• an edge between xi, yi for 1 ≤ i ≤ n;

• two edges between xi, xi+1 for 1 ≤ i < n;

• two edges between yi, yi+1 for 1 ≤ i < n.

Let s1 = s2 = x1, s3 = s4 = y1, t1 = t3 = xn and t2 = t4 = yn. Then G has no edge-cut of cardinality
three, and it is easy to check that (G, s1, t1, . . . , s4, t4) is Z–critical.

One could formulate more complicated (and esoteric) versions of the multicommodity flow prob-
lem, and again ask whether there is a bound on the size of critical instances. For instance, currently
all edges have “capacity” one; what if we permit arbitrary capacities, all at least one? Or what if for
different si − ti pairs we ask for flows with values in Z/p for different integers pi? What if for each
pair si− ti we insist that all the flow between them travels on one path, but the demand between the
pair is at most 1/2? What if, instead of specifying pairs of vertices between which we require flow, we
specify sets of vertices, and try to pack edge-disjoint connected subgraphs each including one of the
sets? Our methods give a general approach to all of these; we prove that in every sufficiently large
graph, there is one of two kinds of subgraph, and, for the (k, p)-commodity flow problem examined
in this paper, there are edges of these subgraphs that can be contracted without changing feasibility,
and therefore the instance is not critical if it is sufficiently large. I expect that the same two kinds of
subgraph would serve to handle the other versions of multicommodity flow problem just mentioned
(or at least the ones that are true), but have not worked out the details.

Also, here is a counterexample that handles some of these extensions: let G be the n-ladder, with
notation as before, and let p, q ≥ 1 be integers, relatively prime. In G we cannot choose p paths
P1, . . . , Pp between a1, bn and q paths between an, b1, such that for every edge e, x(e)

p + y(e)
q ≤ 1,

where x(e) denotes the number of P1, . . . , Pp that contain e, and y(e) is defined similarly; yet if we
contract any edge then such a choice of paths exists.

Incidentally, let P be the set of integers p such that (G, s1, t1, . . . , sk, tk) is Z/p–feasible. What
can we say about P? Clearly if 1 ∈ P then P contains all positive integers, but there are other
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dependencies that are not so obvious; for instance, if 2, 3 ∈ P , then P contains all integers greater
than one. More generally, if p1, p2 ∈ P then p1+p2 ∈ P . (This can be shown be taking an appropriate
linear combination of the solutions for p1 and p2.) It is not easy to find instances with P 6= ∅ and
2 /∈ P . But for all p ≥ 1, there exist (G, s1, t1, . . . , sk, tk) where P consists of all positive multiples
of p (and indeed the solution is unique), as follows:

• take 2p + 1 disjoint sets of vertices A1, . . . , A2p+1, each of cardinality p + 2, and let Ai =
{a1

i , . . . , a
p
i , ui, vi} for 1 ≤ i ≤ 2p + 1;

• let aj
i be adjacent to aj

i+1 for all i, j (where aj
2p+2 means aj

1), and let ui, vi be adjacent to

a1
i , . . . , a

p
i for all i;

• let k = p(2p + 1), and let the list (s1, t1), . . . , (sk, tk) consist of (ui, vi+p) for 1 ≤ i ≤ 2p + 1
(reading subscripts modulo 2p + 1), together with p − 1 copies of (ui, vi) for 1 ≤ i ≤ 2p + 1.

A more complicated construction due to Lomonosov [10] (see [19] for a simplified version) shows
more-or-less the same thing, with k0 = 3 in addition.

Let us return to 1.1, and dispose of the case p = ∞ before we start on the serious proofs.

1.7 If (G, s1, t1, . . . , sk, tk) is R–critical, then there exists an integer p > 1 (depending on G) such
that (G, s1, t1, . . . , sk, tk) is Z/p–critical. Consequently, to prove 1.1 when p = ∞ it suffices to prove
1.1 for all finite p > 1.

Proof. Since (G, s1, t1, . . . , sk, tk) is R–critical, it follows that for every edge e of G, there are k
flows in G/e satisfying the requirements of the multicommodity flow problem. Since these flows are
the solution of a linear program with rational constraints, it follows that they can be chosen such
that the value of each flow on each edge is rational. Hence there is an integer p(e) ≥ 2 such that
the value of each flow on each edge belongs to Z/p(e). Let p be the least common multiple of all the
p(e)’s; then (G, s1, t1, . . . , sk, tk) is Z/p–critical. This proves the first assertion. For the second, note
that the value of n(k) in 1.1 does not depend on p, and the second assertion follows. This proves
1.7.

Our main result 1.1 has some resemblance to theorems about “mimicking networks”. Let
v1, . . . , vk be distinct vertices of a graph G, and let c : E(G) → R+ be a capacity function. A
mimicking network (for G, v1, . . . , vk and c) is a graph H, distinct vertices w1, . . . , wk of H, and a
map d : E(H) → R+, satisfying the following. For every I ⊆ {1, . . . , k} and every r ∈ R+ , there
exists A ⊆ V (G) satisfying

• for 1 ≤ i ≤ k, vi ∈ A if and only if i ∈ I

•
∑

e∈δG(A) c(e) ≤ r

if and only if there exists B ⊆ V (H) satisfying

• for 1 ≤ i ≤ k, wi ∈ B if and only if i ∈ I

•
∑

e∈δH(B) d(e) ≤ r.
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(δG(A) or δ(A) is the set of non-loop edges of G with exactly one end in A.) The objective is
to find mimicking networks with as few vertices as possible; and Hagerup, Katajainen, Nishimura,
and Ragde [5] showed that for every choice of G, v1, . . . , vk, c there is a mimicking network with

at most 22k

vertices. But the flow problem that mimicking networks handle is the one-commodity
multiterminal flow problem, not the multicommodity flow problem, so our result is different, and
more general (except that we do not permit capacities).

2 Demand systems

It is helpful to reformulate the various problems a little. First, let us add a new vertex v0 and 2k
new edges, each incident with v0, and respectively incident with s1, t1, . . . , sk, tk. (Thus if two of
s1, t1, . . . , sk, tk are equal we add two parallel edges.) These new edges come naturally in pairs (one
incident with si is paired with one incident with ti), and the multicommodity flow problem asks for
a flow of total value one between si and ti, which we can express in terms of this pair of edges. But
there is now no advantage in this pairing; we might as well be requesting flows between every pair
of vertices both adjacent to v0. And that being so, there is no reason to insist that v0 has even
degree. Thus, from now on v0 will have degree k instead of 2k. Furthermore, since from 1.7 we no
longer have to concern ourselves with the p = ∞ case, we might as well scale all the demands by p
to make them integers. Thus, now we are looking for integer-valued flows, summing to at most p on
each edge. And since every such flow dominates a sum of unit flows along paths, we can recast our
problem now as a search for paths of G \ v0 (or cycles through v0) with constraints on how many of
them can use any edge.

The following then becomes the situation. (We denote by δ(v) the set of edges incident with a
vertex v.)

• p ≥ 1 is a positive integer.

• v0 is a vertex of degree k of a graph G, and no loop is incident with v0.

• D is a symmetric matrix of non-negative integers, with rows and columns indexed by δ(v0),
with zero diagonal, and with all row and columns sums at most p.

We call D a demand matrix. Let us call (G, v0,D, p) a demand system of degree k. Let C denote
the set of cycles of G that contain v0. A demand system (with this notation) is feasible if there is a
map φ : C → Z+ (the set of non-negative integers) such that

• for all e, f ∈ δ(v0), De,f equals the sum of φ(C) over all cycles C containing e, f

• for every edge e of G, the sum of φ(C) over all C ∈ C containing e is at most p

and we call such a map φ a solution.
If e is an edge of G, G/e denotes the graph obtained by contracting e. A demand system

(G, v0,D, p) is critical if it is not feasible, but for every edge e of G not incident with v0, the demand
system (G/e, v0,D, p) is feasible, and no vertex of G different from v0 has degree zero. We will prove
the following, which implies 1.1 and 1.6.

2.1 For all integers k, s ≥ 0 there exists n ≥ 0 with the following property. Let (G, v0,D, p) be a
critical demand system of degree at most k, such that either
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• p ≥ 2 and s = 0, or

• p = 1 and G has oddness at most s, or

• p = 1 and G has skewness at most s.

Then |V (G)| + |E(G)| ≤ n.

It is tempting to try to prove the p > 1 case of 2.1 by replacing each edge by p parallel edges
and applying the p = 1 case when every edge is parallel to another. This does not work, because
then the number n provided by 2.1 would depend on p (because its input k would be scaled by p),
and it is important that the number n of 2.1 is independent of p. We have not been able to unify
these three alternate hypotheses, and we have to give them separate proofs. Nevertheless, the three
proofs have a great deal in common, and we will describe them simultaneously as far as we can.

We have stressed that the n provided by 2.1 is independent of p. Thus in any demand system
(G, v0,D, p) of degree at most k, if |V (G)|+|E(G)| > n then there is an edge e that can be contracted
without changing Z/p-feasiblity (or an isolated vertex). But more than that is true; the choice of
e also does not depend on p. The following is a strengthening of 2.1, and is the main result of the
paper:

2.2 For all integers k, s ≥ 0 there exists n ≥ 0 with the following property. Let G be a graph with
|V (G)| + |E(G)| > n, and let v0 be a vertex of degree at most k, such that no vertex different from
v0 has degree zero. Then there is an edge e of G, such that for every demand system (G, v0,D, p), if
either

• p ≥ 2 and s = 0, or

• p = 1 and G has oddness at most s, or

• p = 1 and G has skewness at most s,

and (G/e, v0,D, p) is feasible, then (G, v0,D, p) is feasible.

3 Porosity and contractibility

Let G be a graph and X ⊆ V (G), with X 6= V (G). Let H be the graph obtained from G by
identifying all vertices in V (G) \X into one vertex v (and deleting any loops that result). Let p ≥ 1
be an integer. We say that X is p-porous (in G) if every demand system (H, v,D, p) is feasible.

If (G, v0,D, p) is a demand system, we say a set F of edges of G is contractible if none of them
is incident with v0, and (G/F, v0,D, p) is feasible if and only if (G, v0,D, p) is feasible. Hence every
subset of a contractible set is also contractible.

We denote by G|Y the subgraph of G induced on Y , and remind the reader that δ(Y ) denotes
the set of edges of G with one end in Y and the other in V (G) \ Y .

3.1 Let (G, v0,D, p) be a demand system, and let Y ⊆ V (G) \ {v0}, such that Y is p-porous. Then
E(G|Y ) is contractible.
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Proof. Let F = E(G|Y ). Since contracting edges preserves feasibility, it suffices to show that if
(G/F, v0,D, p) is feasible then so is (G, v0,D, p). Thus, let φ′ be a solution for (G/F, v0,D, p). For
each pair of edges e, f of δ(Y ), let D′(e, f) be the sum of φ′(C) over all cycles C of G/F that contain
v0, e and f . Let H be obtained from G by identifying all vertices of V (G) \ Y into one vertex v.
Then (H, v,D′, p) is a demand system, and is therefore feasible since Y is p-porous. But the solution
for (H, v,D′, p) can be combined with φ′ in the natural way to yield a solution for (G, v0,D, p). This
proves 3.1.

We deduce:

3.2 Let (G, v0,D, p) be a demand system, and let v ∈ V (G) \ {v0}. Choose Y ⊆ V (G) containing
v and not v0, with |δ(Y )| minimum. Then Y is p-porous in G, and hence E(G|Y ) is contractible.
Moreover if |δ(Y )| = |δ(v0)|, then (G, v0,D, p) is feasible.

Proof. Let |δ(Y )| = t say. Note that the minimality of |δ(Y )| implies that there are t edge-disjoint
paths in G between v0 and v, each with exactly one edge in δ(Y ); and in particular, t ≤ |δ(v0)|, |δ(v)|.
It follows that there are edge-disjoint paths P1, . . . , Pt, each with first vertex v, and each with last
vertex in V (G) \Y , and every interior vertex in Y . Hence Y is p-porous, and the result follows from
3.1. This proves 3.2.

4 An algorithm for Z/p–feasibility with p > 1

The idea of the proof of 2.2 is as follows. It is easy, using 3.2, to find the required contractible edge if
some vertex has degree larger than k, so we may assume that all vertices have degree at most k. We
prove that in every graph G with sufficiently many vertices, with maximum degree k, and for every
vertex v0 of G with degree k, there is a subset X ⊆ V (G) not containing v0 of one of two special types
(let us call them types 1 and 2 for the moment). Then we observe that if (G, v0,D, p) is a demand
system and X ⊆ V (G) \ {v0} is of one of these two types, then X is p-porous, and consequently the
set of edges with both ends in X is contractible (and there are such edges), as required.

There is a useful byproduct of this, giving a simple algorithm to check Z/p–feasibility with p > 1.
There is a third type of subset (let us call them type 3). Since the set of edges within a type 1
subset is contractible, we deduce that the set within a type 3 subset is also contractible (since every
type 3 subset is in fact a subset of a type 1 subset). And there is a simple algorithm that, given
(G, v0,D, p), finds either a type 3 subset, or find a kind of tree-decomposition of bounded width (but
using edge-cutsets instead of the usual vertex-cutsets), and this leads to a simple algorithm to check
Z/p–feasibility with p > 1. We present the algorithm first, before the more complicated material
about subsets of type 1 and 2; and so we will assume for the moment that type 3 subsets have the
property that we just said.

The existence of a polynomial-time algorithm for this is not new; what is new is the simplicity of
the algorithm. The result of [17] gives a polynomial-time algorithm to solve the k edge-disjoint paths
problem for fixed k, but it is very complicated. It breaks into three parts (actually the algorithm is
for vertex-disjoint paths, but we apply it in the line graph):

• what to do if the tree-width (of the line graph) is small
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• what to do if we have found a large clique minor (of the line graph), and

• what to do if, in the line graph, the tree-width is big but we have not found a large clique
minor.

These are in increasing order of complication; the third part in particular is very tricky. But for our
problem we only need the first part, as we shall see. Independently, Kawarabayashi and Kobayashi [7]
also have an algorithm to check Z/p–feasibility for p = 2, certainly much simpler than the algorithm
from [17], eliminating the third part above but using the first and second.

If X,Y ⊆ V (G) are disjoint, δ(X,Y ) denotes the set of edges with an end in X and an end in Y .
We say Z ⊆ V (G) is robust if

|δ(X,Y )| ≥ min(|δ(X,V (G) \ Z)|, |δ(Y, V (G) \ Z)|)

for every partition (X,Y ) of Z. (Robust sets Z with |δ(Z)| large are what we were calling type 3 at
the start of this section.) Both the algorithm of this section, and our main result 2.2, rely on the
following lemma.

4.1 For all k, s ≥ 0 there exists K with the following property. Let (G, v0,D, p) be a demand system
of degree at most k, such that either

• p ≥ 2 and s = 0, or

• p = 1 and G has oddness at most s, or

• p = 1 and G has skewness at most s.

Let Y ⊆ V (G) \ {v0}, where Y is robust and |δ(Y )| ≥ K. Then E(G|Y ) is contractible.

We prove 4.1 later in the paper, but for the moment, we assume its correctness, and deduce the
correctness of the algorithm. Let T be a tree, in which every vertex has degree one or three, and
let L(T ) denote the set of leaves of T . (A leaf is a vertex of degree one.) Let G be a graph, let
v0 ∈ V (G), and let φ be a surjective map from V (G) to L(T ), such that for some t0 ∈ L(T ) and
for all v ∈ V (G), φ(v) = t0 if and only if v = v0. We call t0 the root (it is unique). We call (T, φ)
a partial carving of (G, v0). For t ∈ L(T ), φ−1(t) denotes the set of v ∈ V (G) with φ(v) = t. If
|φ−1(t)| = 1 for every t ∈ L(T ) \ {t0}, we call (T, φ) an carving. For each edge f ∈ E(T ), let n(f)
be the number of edges uv ∈ E(G) such that φ(u), φ(v) belong to different components of T \ f ; the
width of a partial carving (T, φ) is the maximum of n(f) over all edges f ∈ E(T ).

We denote by ∆(G) the maximum degree of the vertices of G. Now let 0 ≤ k ≤ K, and let G
be a graph with ∆(G) ≤ k, and let v0 ∈ V (G). A partial carving (T, φ) with root t0 of (G, v0) is
(k,K)-optimal if

• (T, φ) has width at most K,

• for every t ∈ L(T ) \ {t0}, φ−1(t) is robust, and

• for every t ∈ L(T ) \ {t0}, if |φ−1(t)| ≥ 2 then |δ(φ−1(t))| > K − k.

We need to show that any fixed sufficiently large K, a (k,K)-optimal partial carving always exists,
and that we can find one efficiently. Both are implied by the following.
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4.2 For all integers 0 ≤ k ≤ K, there is an algorithm as follows:

• Input: A graph G with |V (G)| ≥ 2 and with ∆(G) ≤ k, and a vertex v0 ⊆ V (G).

• Output: A (k,K)-optimal partial carving of (G, v0).

• Running time: O(|V (G)|2).

Proof. Let (T1, φ1) be the partial carving where T1 has two vertices t0, t1 and φ−1(t0) = {v0}. This
has width at most k ≤ K, since |δ(v0)| ≤ k; and |L(T1)| = 2. Now, for i ≥ 1, suppose we have some
partial carving (Ti, φi) of (G, v0), of width at most K, with |L(Ti)| = i + 1. Let t0 be the root.

For each t ∈ L(Ti) \ {t0}, let Zt = φ−1(t); we check whether Zt is robust, and if not, find some
partition (X,Y ) of Zt not satisfying the corresponding inequality. For each t, this takes time O(|Zt|).
To show this, we proceed as follows. Since |δ(Zt)| ≤ K, and K is a constant, we can enumerate all
partitions (P,Q) of δ(Zt) in constant time. For each such (P,Q), let X0, Y0 be the sets of ends in Zt

of the edges in P,Q respectively; then we test whether there is a partition (X,Y ) of V (G) such that
X0 ⊆ X and Y0 ⊆ Y , with |δ(X,Y )| ≤ min(|P |, |Q|). (This is a max-flow problem solvable in time
O(|Zt|).) If there is a such a partition, we find one, and otherwise Zt is robust.

The total running time for this step is the sum, over all t, of the running time for the algorithm
applied to Zt, and since the sets Zt are pairwise disjoint and non-empty, it follows that the total
running time for this step is O(|V (G)|).

Suppose that for some t we find a partition (X,Y ) of Zt with

|δ(X,Y )| ≤ min(|δ(X,V (G) \ Zt)|, |δ(Y, V (G) \ Zt)|).

It follows that X,Y 6= ∅. Let Ti+1 be obtained from Ti by adding two new vertices t1, t2 to Ti, both
adjacent to t. For v ∈ V (G), define

φi+1(v) =











t1 if v ∈ X

t2 if v ∈ Y

φi(v) if v /∈ Zt.

Then (Ti+1, φi+1) is a partial carving. Moreover, its width is at most K; because

|δ(X)| = |δ(X,Y )| + |δ(X,V (G) \ Zi| ≤ |δ(Y, V (G) \ Zi)| + |δ(X,V (G) \ Zi)| = |δ(Zt)| ≤ K,

and similarly |δ(Y )| ≤ K. Moreover, |L(Ti+1)| = i + 2, and the iteration is complete.
Thus we may assume that each Zt is robust. Next we check whether for every t ∈ L(T ) \ {t0}, if

|Zt| ≥ 2 then |δ(Zt)| > K − k. (This takes linear time.) Suppose that this is false for some t; thus
t ∈ L(T ) \ {t0}, |Zt| ≥ 2 and |δ(Zt)| ≤ K − k. Choose z ∈ Zt, arbitrarily. Let Ti+1 be obtained from
Ti by adding two new vertices t1, t2 to Ti, both adjacent to t. For v ∈ V (G), define

φi+1(v) =











t1 if v = z

t2 if v ∈ Zt \ {z}

φi(v) if v /∈ Zt.
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Then (Ti+1, φi+1) is a partial carving. Moreover, its width is at most K; for |δ(z)| ≤ ∆(G) ≤ k ≤ K,
and

|δ(Zt \ {z})| = |δ(Zt \ {z}, V (G) \ Zt)| + |δ(Zt \ {z}, {z})| ≤ |δ(Zt)| + |δ(z)| ≤ |δ(Zt)| + k ≤ K.

Thus again the iteration is complete.
Finally, if there is no such t then (Ti, φi) is (k,K)-optimal and we output it. Note that this must

happen within at most |V (G)| iterations, since every partial carving (T, φ) satisfies |L(T )| ≤ |V (G)|
(because φ is a surjection). Consequently the total running time is O(|V (G)|2). This proves 4.2.

The main result of this section is the following.

4.3 For all integers k ≥ 0, there is an algorithm as follows:

• Input: A demand system (G, v0,D, p) of degree at most k, such that either

– p ≥ 2 and s = 0, or

– p = 1 and G has oddness at most s, or

– p = 1 and G has skewness at most s.

• Output: Decides whether the demand system is feasible.

• Running time: O(|V (G)|2).

Proof. Here is the algorithm. If there is a vertex v 6= v0 with degree larger than k, we choose
X ⊆ V (G) containing v and not v0, with |δ(X)| minimum. (This is a max-flow problem, solvable in
linear time.) We contract all edges with both ends in X. (By 3.2 this does not change feasibility.)
We repeat until every vertex in Y has degree at most k. (This takes total time O(|V (G)|2).)

Let K be as in 4.1, and let K ′ = K + k. Now we find a (k,K ′)-optimal partial carving (T, φ)
with respect to v0, using 4.2; this takes time O(|V (G)|2). For each t ∈ L(T ) \ {t0} (where t0 is the
root) we contract all edges with both ends in φ−1(t). (We show below that this does not change
feasibility.) This results in a carving (not partial any more) of width at most K ′, and so the problem
can now be solved by standard dynamic programming methods.

We must show that contracting edges with both ends in φ−1(t) does not change feasibility. Let
Zt = φ−1(t). If |Zt| = 1 then this contraction has no effect, and if |Zt| > 1 then by the definition of
(k,K ′)-optimal, |δ(Zt)| ≥ K ′ − k = K, and 4.1 implies that E(G|Zt) is contractible; and the claim
follows. (Note that the robustness of Zt is not changed by contracting the edges with both ends in
other Zj’s.) This proves 4.3.

5 Porous subsets from robustness

Now we return to the proof of our main result 2.2. We need to do three things:

• explain what we mean by subsets of types 1 and 2 (used at the start of the previous section)

• prove that subsets of type 1 and 2 are p-porous
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• prove that there is a subset of type 1 or 2 in every sufficiently large graph.

In this section, we prove that subsets of type 1 are p-porous (for all p > 1). Let K ≥ 0 be an integer.
We say a subset X ⊆ V (G) is K-supported if there exists Y ⊆ X such that Y is robust, |δ(Y )| ≥ K,
and |δ(Z)| ≥ |δ(X)| for every Z with Y ⊆ Z ⊆ X. For K sufficiently large, the K-supported sets X
with |δ(X)| ≤ k are what we were calling subsets of type 1. We will prove the following.

5.1 For all k, s ≥ 0 there exists K such that, if either

• p ≥ 2 and s = 0, or

• p = 1 and G has oddness at most s, or

• p = 1 and G has skewness at most s

and X ⊆ V (G) is K-supported with |δ(X)| ≤ k, then X is p-porous.

First, we observe that this will imply 4.1.
Proof of 4.1, assuming 5.1. Let k ≥ 0, and let K be as in the first statement of 5.1. We claim
that K satisfies 4.1. For let (G, v0,D, p) be a demand system of degree at most k, with p > 1, and let
Y ⊆ V (G)\{v0}, where Y is robust and |δ(Y )| ≥ K. Choose X ⊆ V (G) with Y ⊆ X ⊆ V (G)\{v0},
with δ(X) minimum. Then X is K-supported, and hence p-porous by 5.1. But then E(G|X) is
contractible by 3.1, and hence so is E(G|Y ). This proves 4.1.

There are three alternative hypotheses in 5.1, and the first is handled by applying a lemma proved
in [11]. The second is handled by another method, using a lemma from [1] (and the third could be
done either way, and we choose to use the second method for it). We begin with the first method.
A separation of order k in a graph G is a pair (A,B) of subgraphs of G such that A ∪ B = G,
E(A ∩ B) = ∅, and |V (A ∩ B)| = k.

If θ ≥ 1 is an integer, a tangle of order θ in a graph G is a set T of separations of G, each of
order less than θ, such that

• for every separation (A,B) of order less than θ, T contains at least one of (A,B), (B,A)

• if (Ai, Bi) ∈ T for i = 1, 2, 3, then A1 ∪ A2 ∪ A3 6= G

• if (A,B) ∈ T then V (A) 6= V (G).

Let G,H be graphs, where H is simple. A model of H in G is a map η with domain V (H)∪E(H),
where

• for every v ∈ V (H), η(v) is a non-null connected subgraph of G, all pairwise vertex-disjoint

• for every edge e = uv of H, η(e) is an edge of G with one end in V (η(u)) and the other in
V (η(v)).

The following is the main result of [11]:
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5.2 Let H be a planar graph, drawn in the plane, and let u1, . . . , um be distinct vertices of H, each
incident with the infinite region. Then there exists K with the following property. Let T be a tangle
of order at least K/3 in a graph G, and let F ⊆ V (G) with |F | = m such that there is no separation
(A,B) ∈ T of order less than m with F ⊆ V (A). Then there is a model η of H in G such that for
1 ≤ i ≤ m, η(ui) contains a vertex of F .

We deduce one third of 5.1, the following:

5.3 For all k ≥ 0 there exists K such that, if G is a graph and p ≥ 2, and X ⊆ V (G) is K-supported
with |δ(X)| ≤ k, then X is p-porous.

Proof. For 0 ≤ m ≤ k, let Hm be the graph with vertex set

{u1, . . . , um} ∪ {vij : 1 ≤ i ≤ 6m, 1 ≤ j ≤ 3m2}

and edge set as follows:

• for 1 ≤ i ≤ m, ui is adjacent to v6i−5,1, v6i−4,1, . . . , v6i,1

• for 1 ≤ i, i′ ≤ 6m and 1 ≤ j, j′ ≤ 3m2, vij is adjacent to vi′j′ if |i′ − i| + |j′ − j| = 1.

This graph Hm is planar, and can be drawn in the plane such that u1, . . . , um are incident with the
infinite region. Choose K to satisfy 5.2 (with Hm for H) for all choices of m with 0 ≤ m ≤ k. We
claim this satisfies 5.3.

For let G be a graph, let p ≥ 2, and let X ⊆ V (G) be K-supported, with |δ(X)| ≤ k. Thus, there
exists Y ⊆ X such that

• Y is robust,

• |δ(Y )| ≥ K, and

• there is no subset Z with Y ⊆ Z ⊆ X with |δ(Z)| < |δ(X)|.

We may assume that X 6= V (G), for otherwise the result is trivial; and we may assume that there
is a unique vertex v0 in V (G) \ X and δG(X) = δG(v0), by identifying all vertices in this set and
deleting any loops we create. Let (G, v0,D, p) be a demand system; we must show that it is feasible.

Let L be the graph with vertex set E(G), setting e, f adjacent in L if some vertex v ∈ X is
incident with both e, f . Let F = δG(X), m = |F | and W = δG(Y ). Then

• there is no separation (A,B) of L of order less than min(|V (A) ∩ W |, |V (B) ∩ W |),

• the set of all separations (A,B) of L of order less than K/3 such that |V (A)∩W | ≤ |V (A∩B)|
is a tangle of order ⌈K/3⌉, and

• there is no separation (A,B) of L of order less than |F | with F ⊆ V (A) and |V (B)∩W | ≥ |F |.

(The first assertion follows since Y is robust in G; the second is an easy exercise that we leave to the
reader, and the third holds because there is no Z ⊆ X with Y ⊆ Z and with |δG(Z)| < |δG(X)| = |F |.)
From 5.2, there is a model η of Hm in L such that for 1 ≤ i ≤ m, η(ui) contains a vertex of F . We
deduce that there is a map ζ with domain V (Hm), such that
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• for each v ∈ V (Hm), ζ(v) is a nonempty set of edges of G, with ζ(v) ⊆ V (L) and inducing a
connected subgraph of L,

• for all distinct u, v ∈ V (Hm), ζ(u) ∩ ζ(v) = ∅

• for all u, v ∈ V (Hm) adjacent in Hm, some vertex in X is incident with an edge in ζ(u) and
with an edge in ζ(v)

• F can be numbered {f1, . . . , fm} such that for 1 ≤ i ≤ m, fi ∈ ζ(ui).

Now D is a demand matrix (dij 1 ≤ i, j ≤ m), say, and each dij is a non-negative integer. More-
over, each row sum

∑

1≤j≤m dij is at most p.

(1) We can write D = D1 + D2 + D3 where D1,D2,D3 are all m × m matrices of non-negative
integers, and for n = 1, 2, 3 the row sums and the column sums of Dn are at most p/2. (We do not
require that D1,D2,D3 are symmetric.)

Let J be the bipartite graph with vertex set {(i, r) : 1 ≤ i ≤ m, 1 ≤ r ≤ 2}, in which there are dij

edges between (i, 1) and (j, 2) (and therefore also between (j, 1) and (i, 2)) for 1 ≤ i, j ≤ m. This
graph has maximum degree at most p, and so can be p-edge-coloured; let M1, . . . ,Mp be matchings
of J , pairwise disjoint and with union E(J). For 1 ≤ n ≤ 3 and 1 ≤ i, j ≤ m, we define Dn = (dn

ij)

as follows. If p is even, for 1 ≤ i, j ≤ m, let d1
ij be the number of edges between (i, 1) and (j, 2) in

M1 ∪ · · · ∪ Mp/2, let d2
ij be the number of edges between (i, 1) and (j, 2) in Mp/2+1 ∪ · · · ∪ Mp, and

let d3
ij = 0. If p is odd, say p = 2q + 1, let d1

ij be the number of edges between (i, 1) and (j, 2) in

M1 ∪ · · · ∪Mq, let d2
ij be the number of edges between (i, 1) and (j, 2) in Mq+2 ∪ · · · ∪M2q+1, and let

d3
ij be the number of edges between (i, 1) and (j, 2) in Mq+1. Evidently

∑

j d1
ij,

∑

j d2
ij ≤ p/2; and

∑

j d3
ij ≤ p/2 since

∑

j d3
ij ≤ 1. Thus all row sums of D1,D2,D3 are at most p/2, and similarly so

are the column sums. (This is the only place in the proof we use that p > 1.) This proves (1).

For 1 ≤ i ≤ m and 1 ≤ n ≤ 6 let Rn
i be the path of Hm with vertices

ui, v6i−6+n,1, v6i−6+n,2, . . . , v6i−6+n,3m2

in order. For 1 ≤ r ≤ m2 and 1 ≤ n ≤ 3, let Cn
r be the path of Hm with vertices

v1,3r−3+n, v2,3r−3+n, v3m,3r−3+n

in order. For 1 ≤ n ≤ 3 and 1 ≤ i < j ≤ m, let Pn
ij be the path of Hm between ui and uj included

in Rn+3
i ∪ Rn

j ∪ Cn
m(i−1)+j .

Let 1 ≤ n ≤ 3 and 1 ≤ i < j ≤ m, and let Pn
ij have vertices a1, . . . , at in order. Each of the sets

ζ(as) (for 1 ≤ s ≤ t) is a non-empty subset of E(G), inducing a connected subgraph of L; and since
for 1 ≤ s < t some vertex of X is incident in G with an edge in ζ(as) and with an edge in ζ(as+1),
it follows that the union ζ(Pn

ij) say of the sets ζ(as) (1 ≤ s ≤ t) also induces a connected subgraph
of L. Since this set includes the edges fi, fj of G, it follows that there is a path of G|X between the
end of fi in X and the end of Fj in X, and all edges of this path belong to ζ(Pn

ij). Together with
the edges fi, fj , this forms a cycle of G, Qn

ij say, containing v0.
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For every cycle C of G containing v0, let fi, fj be the edges of C incident with v0 where i < j,
and define φn(C) = dn

ij if C = Qn
ij , and otherwise φn(C) = 0. Let φ(C) = φ1(C) + φ2(C) + φ3(C);

we claim that φ is a solution for the demand system (G, v0,D, p).
We must check that

• for all e, f ∈ δ(v0), Def equals the sum of φ(C) over all cycles C containing e, f

• for every edge e of G, the sum of φ(C) over all C ∈ C containing e is at most p.

For the first assertion, let 1 ≤ i < j ≤ m. We must show that dij equals the sum of φ(C) over all
cycles C containing e, f . But the latter is d1

ij + d2
ij + d3

ij = dij as required.
For the second assertion, let e ∈ E(G). If e belongs to none of the sets ζ(v) (v ∈ V (Hm)) then

e belongs to none of the cycles Qn
ij and the claim holds. Thus we may assume that e ∈ ζ(v) for

some (necessarily unique) v ∈ V (Hm). First suppose that v = uh for some h with 1 ≤ h ≤ m. For
1 ≤ i < j ≤ m and 1 ≤ n ≤ 3, if e belongs to Qn

ij then uh belongs to Pn
ij , and so one of i, j equals h;

and so either h = i < j, or i < j = h. We must check then that

∑

1≤n≤3

∑

h<j≤m

dn
hj +

∑

1≤n≤3

∑

1≤i<h

dn
ih ≤ p.

But the first sum equals
∑

h<j≤m

dhj =
∑

h<j≤m

djh

since D is symmetric, and the second sum is
∑

1≤i<h dih, so together they add to
∑

1≤i<m dih and
hence to at most p, as required.

We may therefore assume that v = v6r−6+a,3s−3+b for some r, s, a, b with 1 ≤ r ≤ m and 1 ≤ s ≤
m2 and 1 ≤ a ≤ 6 and 1 ≤ b ≤ 3. Now for 1 ≤ i < j ≤ m and 1 ≤ n ≤ 3, e belongs to Qn

ij for some

n, i, j only if v belongs to Pn
ij , and so v ∈ V (Rn+3

i ∪ Rn
j ∪ Cn

m(i−1)+j). Thus, either

• i = r, n = a − 3 and r < j ≤ m, or

• j = r, n = a and 1 ≤ i < r, or

• n = b, and (i, j) satisfy m(i − 1) + j = s and 1 ≤ i < j ≤ m (and hence i, j are unique, say
(i, j) = (i′, j′)).

The first can only occur if a > 3, and the second only if a ≤ 3, and so it is enough to check that if
a ≤ 3 then

∑

1≤i<r

da
ir + db

i′j′ ≤ p

and if a > 3 then
∑

r<j≤m

da−3
rj + db

i′j′ ≤ p.

But
∑

1≤i<r da
ir is at most the rth column sum of Da and hence at most p/2; and db

i′j′ is at most the

i′th row sum of Db and hence at most p/2, so the first inequality holds. The second follows similarly.
This proves that φ is indeed a solution, and so X is p-porous. This proves 5.3.
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Now we turn to the proof of the remaining two-thirds of 5.1. First, we observe the following.

5.4 Let Y ⊆ V (G) be robust, and let W ⊆ V (G). Then one of |δ(W ∪ Y )|, |δ(W \ Y )| ≤ |δ(W )|.

Proof. Let U = V (G) \ W . We must show that min(|δ(U ∩ Y )|, |δ(W ∩ Y )|) ≤ |δ(W )|, so there is
symmetry between U,W . Since Y is robust, it follows that

|δ(W ∩ Y,U ∩ Y )| ≥ min(|δ(W ∩ Y, V (G) \ Y )|, |δ(U ∩ Y, V (G) \ Y )|),

and by exchanging U,W if necessary we may assume that |δ(W ∩Y,U ∩Y )| ≥ |δ(W ∩Y, V (G) \Y )|.
Since every edge in δ(W \Y )\δ(W ) belongs to δ(W ∩Y, V (G)\Y ), and every edge in δ(W ∩Y,U ∩Y )
belongs to δ(W ) \ δ(W \ Y ), it follows that |δ(W \ Y )| ≤ |δ(W )|. This proves 5.4.

We need the following, a special case of theorem 5.3 of [17]:

5.5 Let G be a graph and let Z ⊆ V (G) with |Z| = 2p. Let t ≥ 8p, and let G1, . . . , Gt be subgraphs
of G, mutually vertex-disjoint, such that

• for 1 ≤ i ≤ t, Gi is connected;

• for 1 ≤ i < j ≤ t, there is an edge of G between Gi and Gj ; and

• for 1 ≤ i ≤ t, there is no separation (A,B) of G of order less than 2p, such that Z ⊆ V (A)
and A ∩ Gi is null.

Let Z = {a1, b1, . . . , ap, bp}. Then there are p paths P1, . . . , Pp of G, pairwise vertex-disjoint, such
that Pi has ends ai, bi for 1 ≤ i ≤ p.

Let h ≥ 2 be even. An elementary wall of height h is a graph whose vertex set can be numbered

{vij ; 1 ≤ i ≤ h + 1, 1 ≤ j ≤ 2h + 2, (i, j) 6= (1, 2h + 2), (h + 1, 1)}

where distinct vertices vij, vi′j′ are adjacent if either

• i = i′ and |j′ − j| = 1, or

• j = j′ and |i′ − i| = 1 and min(i, i′) + j is even.

For 1 ≤ i ≤ h + 1, we call the path with vertex set

{vij ; 1 ≤ j ≤ 2h + 2, (i, j) 6= (1, 2h + 2), (h + 1, 1)}

a row of the elementary wall, and the vertices vi,2i (2 ≤ i ≤ h) are its diagonal vertices. A wall of
height h is a subdivision of an elementary wall of height h. We define its rows and diagonal vertices
analogously. For g ≥ 2, the g × g grid Gg is a graph with vertex set {vij : 1 ≤ i, j ≤ g}, where vij is
adjacent to vi′j′ if |i − i′| + |j − j′| = 1.

An immersion of a loopless graph H in G is a map η, with domain V (H)∪E(H), mapping each
vertex of H to a vertex of G, and each edge of H to a path of G, satisfying the following:

• η(u) 6= η(v) for all distinct u, v ∈ V (H)
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• for each e ∈ E(H) with distinct ends u, v, η(e) is a path of G with ends η(u), η(v)

• for v ∈ V (H) and e ∈ E(H), if e is not incident with v in H then η(v) /∈ V (η(e))

• for all distinct e, f ∈ E(H), E(η(e) ∩ η(f)) = ∅.

We also need the main theorem of [1], the following:

5.6 For all g > 1 there exists b ≥ 0, with the following property. Let W be a wall in a graph G,
and let S be a set of diagonal vertices of W , pairwise 4-edge-connected in G, and with |S| ≥ b. Then
there is an immersion η of Gg in G such that η(v) ∈ S for each v ∈ V (Gg).

The next result will complete the proof of 5.1.

5.7 For all k, s ≥ 0 there exists K such that, if either

• G has oddness at most s, or

• G has skewness at most s,

and X ⊆ V (G) is K-supported with |δ(X)| ≤ k, then X is 1-porous.

Proof. We may assume that k ≥ 1. Let g = 5k, and let b be as in 5.6. Let K = 6k · 2064(b+s+1)5 .
Now let G,X be as in the theorem. We proceed by induction on |V (G)| + |E(G)|. Consequently we
may assume that there is a unique vertex v0 say not in X (by identifying all vertices of G not in X),
and no loop is incident with v0. Since G is K-supported, there exists Y ⊆ X such that

• Y is robust,

• |δ(Y )| ≥ K, and

• there is no subset Z with Y ⊆ Z ⊆ X such that |δ(Z)| < |δ(X)|.

Let (G, v0,D, 1) be a demand system; we must show it is feasible. Suppose then that it is not.

(1) For every edge e of G not incident with v0, either e ∈ δ(Y ), or (G/e, v0,D, 1) is feasible.

For suppose that e /∈ δ(Y ). The oddness of G/e is at most that of G, and the same holds for
skewness. Moreover, Y (or Y/e, if e has both ends in Y ) is robust in G/e; so by the inductive
hypothesis, (G/e, v0,D, 1) is feasible. This proves (1).

(2) Every vertex has degree at most 2k.

For let v ∈ V (G), and suppose that v has degree larger than 2k. Certainly v0 has degree at most
k, so v 6= v0. Choose W ⊆ V (G) with v ∈ W and v0 /∈ W , with |δ(W )| minimum. Let |δ(W )| = k′

say. Thus k′ ≤ |δ(X)| ≤ k. Since (G, v0,D, 1) is not feasible, 3.2 implies that k′ < |δ(X)|. By
3.2, E(G|W ) is contractible. By (1), every edge of G|W belongs to δ(Y ), for every such choice of
W . Since Y ⊆ Y ∪ W ∪ X, and X is K-supported, there is no Z with Y ⊆ Z ⊆ X such that
|δ(Z)| < |δ(X)|, it follows that |δ(Y ∪W )| > k′. Since Y is robust, 5.4 implies that |δ(W \ Y )| ≤ k′.
Suppose that v ∈ W \ Y ; then W \ Y is an alternative choice of W , and so no edge has both ends
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in W \ Y . In particular, every edge incident with v belongs to δ(W \ Y ), and so there are at most
k′ ≤ k such edges, a contradiction. Thus v ∈ Y . Now every edge e of G incident with v has its
second end not in Y ∩W , since δ(Y ) contains every edge of G with both ends in W . But at most k′

such edges have second end not in W , since |δ(W )| = k′; and at most k′ have second end in W \ Y ,
since |δ(W \ Y )| ≤ k′ as we already saw. Consequently there are at most 2k′ edges incident with v,
a contradiction. This proves (2).

Let W = δG(Y ). Thus |W | ≥ K. Let T be the set of all separations (A,B) of G of order less
than K/(6k) such that |E(B) ∩ W |) ≥ |W |/2.

(3) T is a tangle of order K/(6k).

To check the first of the three tangle axioms, we observe that if (A,B) is a separation of G of
order less than K/(6k) then since every member of W belongs to one of E(A), E(B), it follows that
one of (A,B), (B,A) ∈ T .

For the second, we claim that if (A,B) ∈ T then |E(A) ∩ W | < |W |/3. For suppose not. Let
P = V (A) ∩ Y and Q = Y \ V (A). Let there be w1 edges in E(B) ∩ W incident with a vertex in
Y ∩V (A∩B), and w2 edges in E(B)∩W incident with a vertex in Q. Thus w1 +w2 ≥ |W |/2. Since
Y is robust, it follows that

|δ(P,Q)| ≥ min(|δ(P, V (G) \ Y )|, |δ(Q,V (G) \ Y )|) ≥ min(|W |/3, w2).

But since every vertex in A ∩ B has degree at most 2k, and every edge in δ(P,Q) is incident with
such a vertex, and so is every edge in E(B) ∩ W incident with a vertex in Y ∩ V (A ∩ B), it follows
that

|δ(P,Q)| + w1 ≤ 2k|V (A ∩ B)|.

Consequently
2k|V (A ∩ B)| ≥ w1 + min(|W |/3, w2) ≥ |W |/3

since w1 + w2 ≥ |W |/2. It follows that |V (A ∩ B)| ≥ |W |/(6k) ≥ K/(6k), a contradiction. This
proves our claim that if (A,B) ∈ T then |E(A) ∩W | < |W |/3, and the second tangle axiom follows.

For the third, let (A,B) ∈ T , and suppose that V (A) = V (G). Since |E(B) ∩ W | ≥ |W |/2, it
follows that at least |W |/2 edges have both ends in V (A∩B); but there are at most k|V (A∩B)| such
edges since every vertex has degree at most 2k, and so k|V (A∩B)| ≥ |W |/2 ≥ K/2, a contradiction.
This proves (3).

Since K/(6k) = 2064(b+s+1)5 , (3) and the main theorem of [18] imply that there is a wall M of
height b + s + 1 in G, such that for every (A,B) ∈ T of order at most b + s + 1, B includes a row of
the wall. (The theorem of [23] gives a grid minor rather than a wall subgraph, so we adjusted the
numbers to get a 2(b + s + 3)× 2(b + s + 3) grid minor, which gives a wall of height b + s + 1.) This
wall has b + s diagonal vertices.

(4) There are at least b diagonal vertices of M that are pairwise four-edge-connected.

We recall that by hypothesis, either there are at most s edges of G that are not parallel to other
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edges, or there are at most s vertices in G that have odd degree. Let us say a branch of M is a path
P of M with distinct ends, both of degree three in M , and such that every internal vertex of P has
degree two in M . If v is a diagonal vertex of M , let NM (v) denote the set of vertices u of M such
that either u = v or u is an internal vertex of a branch of M incident with v. A vertex w of G is
local to a diagonal vertex v if either

• w ∈ NM (v) or

• w /∈ V (M), and if C denotes the component of G \ V (M) containing w, then some vertex in
NM (v) has a neighbour in V (C), but no vertex in V (M) \ NM (v) has a neighbour in V (C).

Let us say a diagonal vertex v is bad if there are edges e1, e2, e3 of M , one from each of the three
branches of M incident with v, such that

• for each branch of M incident with v, one of its edges is not parallel to any other edge in G,
and

• there is a vertex w with odd degree in G that is local to v.

It follows that there are at most s bad diagonal vertices, and so at least b that are not bad.
Next, we claim that if u, v are diagonal vertices that are not bad, then u, v are 4-edge-connected

to one another in G. For suppose not; then there exists L ⊆ V (G) with v ∈ L and u /∈ L such
that δG(L) ≤ 3, and with G|L connected. Since u, v are three-edge-connected in M , it follows that
δG(L) ⊆ E(M). Since the only three-edge cuts of M separating u and v consist of either one edge
from each of the three branches incident with v, or the same for u, we may assume the former from
the symmetry. In particular, each of the three edges of δG(L) is not parallel in G to another edge,
and so each branch of M incident with v has an edge not parallel to another edge in G. But also,
since |δG(L)| is odd, it follows that some vertex w ∈ L has odd degree in G, and w is local to v since
δG(L) ⊆ E(M). But then v is bad, a contradiction. This proves that u, v are four-edge-connected,
and hence completes the proof of (4).

By (4) and 5.6, there is an immersion η of the g× g grid Gg in G, such that each vertex η(v) (v ∈
V (Gg)) belongs to a distinct row of M . Consequently there are g connected subgraphs C1, . . . , Cg of
G, pairwise edge-disjoint and each with at least one edge, such that every pair of them have a vertex
in common, and such that each Ci has non-empty intersection with at least g rows of M . At most
k of them contain v0, since v0 has degree at most k and C1, . . . , Cg are pairwise edge-disjoint; so we
may assume that C1, . . . , C4k do not contain v0.

Let L be as in the proof of 5.3; that is, its vertex set is E(G), and two edges are adjacent in L
if some vertex in X is incident with them both. We see that the edge sets of C1, . . . , Cg form the
vertex sets of g pairwise disjoint connected subgraphs of L, and for every two of them, some edge of
L has ends in both.

(5) There is no separation (A,B) of L of order less than |δ(X)|, such that δ(X) ⊆ V (A), and
E(Ci) ⊆ V (B) \ V (A) for some i ∈ {1, . . . , 4k}.

For suppose that there is such a separation (A,B), and E(C1) ⊆ V (B) \ V (A), say. Let Q be
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the set of vertices of G incident with an edge of G in V (B) \V (A), and P = V (G) \Q. Thus v0 ∈ P ,
and C1 is a subgraph of G|Q, and δ(P ) ⊆ V (A ∩ B). In particular

|δ(P )| ≤ |V (A ∩ B)| < |δ(X)| ≤ k.

Since C1 has non-empty intersection with at least g rows of M , and g > k > |δ(P )|, it follows that
some row of M is a subgraph of G|Q. Hence, since there are b+3 vertex-disjoint paths between every
two rows of M , no row of M is a subgraph of G|P . Let D be the set of vertices in P incident with
an edge in δG(P ); thus |D| ≤ |δ(Q)|. Let (A′, B′) be the separation of G with V (A′ ∩ B′) = D and
A′ = G|P and V (B′) = Q ∪ D. Thus (A′, B′) has order |D| ≤ |δ(Q)|, and so (B′, A′) /∈ T since A′

includes no row of M . Consequently (A′, B′) ∈ T , and so there are at least |W |/2 edges of δ(Y ) in
E(B′), and hence with at least one end in Q. Now |δ(Y ∪ Q)| ≥ |δ(X)| > |δ(Q)| by hypothesis, and
so 5.4 implies that |δ(Q \ Y )| ≤ |δ(Q)|. But every edge in δ(Y ) with at least one end in Q belongs
to one of δ(Q), δ(Q \ Y ), and so |W |/2 ≤ |δ(Q)| + |δ(Q \ Y )| ≤ 2k, a contradiction. This proves (5).

From (5) and 5.5 applied to L, it follows that (G, v0,D, 1) is feasible. This proves 5.7.

6 Routing in a tree

Next we move on to subsets of type 2, and for that we first need a lemma that we prove in this
section. Let T be a tree with vertex set {1, . . . , t} say, fixed throughout this section. Let d be a
2t × 2t symmetric matrix of non-negative integers, with dii = 0 for 1 ≤ i ≤ 2t and dij = 0 if i, j > t.
We call such a matrix d a stage.

To explain what is going on, let G be a graph which is the cartesian product of T with an n-vertex
path P . Thus H consists of n copies of T , with a matching between each copy and the next making
copies of the same vertex adjacent. Let us add a new vertex v0 adjacent to every vertex of the first
copy T1 and last copy Tn of T , forming G. We need to prove that if n is large enough then V (G)\{v0}
is p-porous. Thus, suppose that (G, v0,D, p) is a demand system. The pairs of edges in δ(v0) are of
three kinds; both with ends in T1, both with ends in Tn, and the pairs of edges one with an end in
T1 and the other with an end in Tn. It turns out to suffice to show feasibility if there are no pairs of
the second type; so every pair has at least one edge with an end in T1. To show this is feasible, we
use the many copies of T to do a little bit of the routing at a time; from each copy of T we will only
use one edge. Thus, we can achieve some small step towards the desired demand matrix using T1,
and then we have a slightly simpler demand matrix that is passed on to the second copy, and so on
until it becomes trivial. These successive demand matrices are what we call the sequence of stages
below, and the simplications we make using one copy of T are the “moves” described below.

Now let p ≥ 0 be an integer. A stage d is p-bounded if
∑

1≤j≤2t dij ≤ p for 1 ≤ i ≤ 2t. A final
stage is a stage d with dij = 0 for all i, j ∈ {1, . . . , 2t} with |j − i| 6= t.

Given an initial stage, we wish to transform it to a final stage by means of a sequence of inter-
mediate stages, each obtained from the previous by a “move”, and all of them p-bounded. Let d be
a p-bounded stage. There are three moves, leading from d to a stage d′, described next. In each case
we choose h, i ∈ {1, . . . , t}, adjacent in T .
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• Exchange: Choose distinct j, k ∈ {1, . . . , 2t}\{h, i}, and choose an integer r > 0 with dhj ≥ r
and dik ≥ r. Let d′ = d except that

d′hj = d′jh = dhj − r

d′ij = d′ji = dij + r

d′ik = d′ki = dik − r

d′hk = d′kh = dhk + r.

We call this an (h, i, j, k)-exchange move with value r.

• Extension: Choose j ∈ {1, . . . , 2t}, such that j 6= h, i. Choose an integer r > 0, with dhj ≥ r.
Let d′ = d except that d′hj = d′jh = dhj − r and d′ij = d′ji = dij + r. Choose r such that d′ is
p-bounded (equivalently, such that

∑

1≤k≤2t d′ik ≤ p). We call this an (h, i, j)-extension move
with value r.

• Delivery: Define d′ = d except that d′hi = d′ih = 0.

Under the first and third moves, the outcome d′ is automatically p-bounded. It is easy to see
(and not needed) that some sequence of moves will transform any initial stage to a final stage; but
we care that the total number of moves is at most some function of t = |V (T )|, independent of p.
(We will prove that 4t3 moves is enough.) Our method is, first we eliminate all the demands dij with
i, j < t, paying no regard to the demands dij with j > t; and then we eliminate the latter demands,
being careful not to reintroduce the former.

Let d be a p-bounded stage. We denote by Bd the set of i ∈ {1, . . . , t} such that dij > 0 for some
j ∈ {1, . . . , t}. We denote by Sd the minimal subtree of T including every vertex of Bd (or the null
graph if Bd = ∅.) If i ∈ Bd, we denote by Sd(i) the subtree of Sd formed by the union of the paths
between vi, vj , for all j ∈ {1, . . . , t} with dij > 0. We begin with:

6.1 Let d be a p-bounded stage, and let i ∈ Bd. Then there is a sequence of at most 2t moves that
transforms d to a stage d′ with Sd′ ⊆ Sd, and such that either i /∈ Bd′ or Sd′(i) is a proper subtree of
Sd(i).

Proof. Let us assume i = 1 for definiteness. Since 1 ∈ Bd, there exists j ∈ {2, . . . , t} such that
dij > 0; choose j such that the path of T between 1 and j is maximal, and let j = 2 say. If 1, 2 are
adjacent in T , then one delivery move achieves the desired outcome. Thus we assume that 1, 2 are
not adjacent; let 3 (say) be the vertex of T on the path between 1, 2 adjacent to 2. Let there be x(d)
values of j ∈ {2, . . . , 2t} such that d3,j > 0. We prove by induction on x(d) that the desired stage d′

can be achieved in at most 1 + x(d) moves.
Suppose that there exists j ∈ {2, . . . , 2t} with d3,j > 0. Thus j 6= 3, and if j = 2 then a

delivery move reduces x(d) by one and the result follows. Thus we may assume that j 6= 1, 2, 3. Let
r = min(d1,2, d3,j). Let d′ be obtained by applying a (2, 3, 1, j)-exchange move with value r. Now
if j ≤ t then j ∈ Bd, and if j > t then j /∈ Bd′ , so Bd′ ⊆ Bd ∪ {3}; and since 3 lies on the path
between 1, 2 and hence is a vertex of Sd, it follows that Sd′ is a subtree of Sd. Moreover, Sd′(1) is a
subtree of Sd(1), for the same reason. If r = d1,2, then 2 belongs to Sd(1) and not to Sd′(1) (because
of the maximality of the path between 1, 2), and so Sd′(1) is a proper subtree of Sd(1) as required.
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If r = d3,j < d1,2, then x(d) is reduced by one and the result follows from the inductive hypothesis
on x(d).

Thus we may assume that x(d) = 0. Let d′ be obtained by applying a (2, 3, 1)-extension move
with value d1,2. We must check that d′ is p-bounded, and it suffices to show that

∑

1≤j≤2t d′3,j ≤ p.
But x(d) = 0, so

∑

1≤j≤2t

d′3,j = d′3,1 = d3,1 + d2,1 ≤
∑

1≤j≤2t

dj,1 ≤ p.

Thus d′ is p-bounded. But Sd′ is a subtree of Sd, and Sd′(1) is a subtree of Sd(1), for the same reasons
as before. Moreover 2 is not a vertex of Sd′(1), so Sd′(1) is a proper subtree of Sd(1) as required.

This completes the inductive proof that x(d) + 1 moves suffice. Since x(d) ≤ 2t − 1, it follows
that 2t moves suffice. This proves 6.1.

We deduce:

6.2 Let d be a p-bounded stage. If Bd 6= ∅, there is a sequence of at most 2t2 moves that transforms
d to a stage d′ with |V (Sd′)| < |V (Sd)|.

Proof. Since Bd 6= ∅, it follows that |Bd| > 1 and hence there is a vertex (i say) in Bd with a unique
neighbour in Sd. Since |V (Sd)| ≤ t, it follows by at most t applications of 6.1 that there is a sequence
of at most 2t2 moves that transforms d to a stage d′ with Sd′ ⊆ Sd and i /∈ Bd′ . From the choice of
i it follows that i /∈ V (Sd′), and so |V (Sd′)| < |V (Sd)|. This proves 6.2.

Let us say that a stage d is semifinal if dij = 0 for all i, j with 1 ≤ i, j ≤ t. By at most t
applications of 6.2, we deduce:

6.3 Let d be a p-bounded stage. There is a sequence of at most 2t3 moves that transforms d to a
semifinal stage.

A semifinal stage is p-packed if
∑

1≤j≤2t dij = p for 1 ≤ i ≤ 2t. Starting from a semifinal stage
and finding a sequence of moves to a final stage is technically easier if we start from a p-packed
stage, though in principle it contains the whole problem, since every p-bounded semifinal stage is
“dominated” (defined below) by a p-packed stage. So we do p-packed stages first, and then reduce
the general question to the p-packed case.

Given a p-packed semifinal stage d, let Ad be the set of all i ∈ {1, . . . , t} such that di,i+t < p.
Thus, i ∈ Ad if and only if di,j+t > 0 for some j ∈ {1, . . . , t}, and also if and only if dj,i+t > 0 for
some j ∈ {1, . . . , t}. We denote by Rd the minimal subtree of T with vertex set including Ad (or the
null graph if Ad = ∅); and for i ∈ Ad we denote by Rd(i) the minimal subtree of T that contains i
and all j ∈ {1, . . . , t} \ {i} such that dj,i+t > 0.

6.4 Let d be a p-packed semifinal stage, and let i ∈ Ad. Then there is a sequence of at most t
exchange moves that transforms d to a p-packed semifinal stage d′ with Rd′ a subtree of Rd, and such
that either i /∈ Ad′ or Rd′(i) is a proper subtree of Rd(i).

Let us assume i = 1 for definiteness. Since 1 ∈ Ad, there exists j ∈ {2, . . . , t} such that dj,1+t > 0;
choose j such that the path in T between 1 and j is maximal, and let j = 2 say. Since d2,1+t > 0, it
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follows that d2,2+t < p and so 2 ∈ Ad. Let h be the vertex of T on the path between 1, 2 adjacent
to 2 (possibly h = 1). It follows that h is a vertex of Rd. Let there be x(d) values of k ∈ {2, . . . , t}
such that dh,k+t > 0. We prove by induction on x(d) that the desired stage d′ can be achieved in at
most x(d) + 1 moves.

Suppose first that x(d) = 0. Since d is p-packed, it follows that

p =
∑

1≤j≤t

dh,j+t = dh,1+t < dh,1+t + d2,1+t ≤
∑

1≤j≤t

dj,1+t = p,

a contradiction. Thus x(d) > 0, and so there exists k ∈ {2, . . . , t} such that dh,k+t > 0. Thus
2, h, 1 + t, k + t are all different; let d′ be obtained from d by applying a (2, h, 1 + t, k + t)-exchange
move with value r = min(dh,k+t, d2,1+t). Then d′ is p-packed semifinal, and Ad′ ⊆ Ad ∪ {h}, and so
Rd′ is a subtree of Rd. Moreover, Rd′(1) is a subtree of Rd(1), since h lies on the path of T between
1 and 2. If r = d2,1+t, then 2 belongs to Rd(1) and not to Rd′(1), because of the maximality of the
path between 1 and 2, so d′ is the desired stage; while if r = dh,k+t < d2,1+t, then x(d′) = x(d) − 1
and the result follows by induction.

This proves our claim that x(d) moves suffice. Since x(d) ≤ t − 1, this proves 6.4.

From 6.4 and the analogues of 6.2 and 6.3 we deduce:

6.5 Let d be a p-packed semifinal stage. There is a sequence of at most t3 moves that transforms d
to a p-packed final stage.

Now we use 6.5 to deduce a similar statement for p-bounded semifinal stages. If d, d′ are stages,
we say d dominates d′ if dij ≥ d′ij for all i, j ∈ {1, . . . , 2t}. We need the following lemma.

6.6 Let a, a′ be p-packed semifinal stages, such that a′ is obtained from a by an exchange move. For
every semifinal stage d dominated by a, there is a semifinal stage d′ dominated by a′, such that d′

can be obtained from d by a sequence of at most two moves.

Proof. From the definition of exchange move, and since a is semifinal, there exist adjacent h, i ∈
{1, . . . , t} and distinct j, k ∈ {t+1, . . . , 2t}, and an integer r > 0 with ahj ≥ r and aik ≥ r, such that

a′hj = a′jh = ahj − r

a′ij = a′ji = aij + r

a′ik = a′ki = aik − r

a′hk = a′kh = ahk + r.

and otherwise a′ = a. By exchanging h with i and j with k if necessary, we may assume that
dik ≤ dhj . Let r′ = min(r, dik); if r′ > 0 let c be obtained from d by an (h, i, j, k)-exchange move of
value r′, and if r′ = 0 let c = d.

We may assume that a′ does not dominate c, for otherwise we may take d′ = c; and consequently
a′uv < cuv, where uv is one of the pairs hj, ij, ik, hk. Now a′ij = aij + r ≥ dij + r′ = cij , so uv is not
ij and similarly not hk. Consequently a′uv = auv − r, and cuv = duv − r′, and so auv − r < duv − r′.
Since auv ≥ duv, it follows that r′ < r, and so

r′ = dik.
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We deduce that cik = 0, and therefore uv is not ik; and so uv is hj, and

ahj − r = a′hj < chj = dhj − r′.

Consequently r′′ > 0, where
r′′ = dhj − r′ − ahj + r.

Now chj = dhj − r′ ≥ r′′; let d′ be obtained from c by an (h, i, j)-extension move of value r′′.
We claim that a′ dominates d′. (We also have to show that d′ is p-bounded, to check that it was
constructed by a valid extension move; but this will follow if we show it is dominated by a′, since a′

is p-packed.) To show this it suffices to check that d′xy ≤ a′xy for all pairs xy ∈ {hj, ij, ik, hk}. The
arguments are:

• d′hj = chj − r′′ = dhj − r′ − r′′ = ahj − r = a′hj.

• d′hk = chk = dhk + r′ ≤ ahk + r = a′hk.

• d′ij = cij + r′′ = dij + r′ + r′′ = dij + dhj − ahj + r ≤ aij + r = a′ij.

• d′ik = cik = dik − r′ = 0 ≤ a′ik.

Thus a′ dominates d′, and this proves 6.6.

We deduce:

6.7 Let d be a p-bounded semifinal stage. There is a sequence of at most 2t3 moves that transforms
d to a final stage.

Proof. Choose a p-packed semifinal stage that dominates d, say a(1). (It is easy to see that this
exists.) By 6.5 there is a sequence a(1), a(2), . . . , a(n) for some n ≤ t3 + 1 of p-packed semifinal
stages, each obtained from its predecessor by an exchange move, where a(n) is final. Let d(1) = d.
By 6.6, we may inductively define d(2), . . . , d(n), such that for each i, d(i) is a p-bounded semifinal
stage, d(i) is dominated by a(i), and d(i) can be obtained from d(i−1) by a sequence of at most two
moves. In particular, d(n) is final, since it is dominated by the final stage a(n). This proves 6.7.

Combining 6.3 and 6.7 yields the main result of this section:

6.8 Let d be a p-bounded stage. Then there is a sequence of at most 4t3 moves that transforms d to
a final stage.

In the definition of an exchange move, we choose an integer r with certain properties. Let us call
such a move a small exchange move if either p = 1 or r ≤ p/2. Any exchange move can be replaced
by a sequence of at most three small exchange moves; because if p > 1 then any number r with
1 ≤ r ≤ p is the sum of at most three numbers each between 1 and p/2. Let us say a small move is
either an extension or delivery move, or a small exchange move. From 6.8 we deduce

6.9 Let d be a p-bounded stage. Then there is a sequence of at most 12t3 small moves that transforms
d to a final stage.

Let the (T, p)-height of a p-bounded stage d be the minimum number of small moves that trans-
form d to a final stage.
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7 Bangles and porosity

So far, our demand systems have been based on one vertex v0, and sometimes we obtain this vertex by
identifying a set of vertices. In this section it becomes more convenient not to make the identification.
Thus we would like to be able to speak of the subgraphs that would become cycles through v0 if we
identified into v0 all the vertices in some subset, and that motivates the following definition.

Let G be a graph and X ⊆ V (G). An X-route is a subgraph P of G such that either

• P is a path of G with at least two edges, its ends are in V (G) \X and every internal vertex is
in X; or

• P is a cycle of G with at least two edges, and with exactly one vertex not in X.

A pseudo-X-route is a subgraph P of G such that P |X is connected and non-null, and P is connected,
and there are exactly two edges of P in δG(X). Thus every pseudo-X-route includes an X-route.
The vertices of P not in X are called its end(s), and the two edges of P in δG(X) are its end-edges.

If X ⊆ V (G), an X-demand system is a pair (D, p), where D is a symmetric matrix of non-
negative integers, with rows and columns indexed by δ(X), with zero diagonal, and with all row and
columns sums at most p. Let C be the set of all X-routes. We say the X-demand system is feasible
if there is a map φ : C → Z+ such that

• for all e, f ∈ δ(X), De,f equals the sum of φ(C) over all C ∈ C containing e, f

• for every edge e of G, the sum of φ(C) over all C ∈ C containing e is at most p

and we call such a map φ a solution. If instead we set C be to the set of all pseudo-X-routes,
and φ satisfies the same conditions, we call φ a pseudo-solution. It is easy to see that there is a
solution if and only if there is a pseudo-solution, since every pseudo-X-route includes an X-route,
but sometimes it is easier to work with a pseudo-solution.

Let t ≥ 0 and n ≥ 1 be integers. A t-bangle in a graph G of length n is a sequence

(X0,X1, . . . ,Xn,Xn+1)

of subsets of V (G), together with a set {P1, . . . , Pt} of paths of G, with the following properties:

• X0,X1, . . . ,Xn,Xn+1 are pairwise disjoint nonempty subsets of V (G) with union V (G)

• for 1 ≤ m ≤ n, G|Xm is connected

• for 0 ≤ m ≤ n, |δ(Xm,Xm+1)| = t

• for 0 ≤ m < m′ ≤ n + 1, if δ(Xm,Xm′) 6= ∅ then either m′ = m + 1 or (m,m′) = (0, n + 1)

• P1, . . . , Pt are pairwise edge-disjoint

• for 1 ≤ i ≤ t, Pi has one end in X0 and the other in Xn+1, and has at least two edges, and all
its internal vertices are in X1 ∪ · · · ∪ Xn.

We call X1 ∪ · · · ∪ Xn the interior of the t-bangle. It follows that each Pi uses exactly one edge
in δ(Xm,Xm+1) for 0 ≤ m ≤ n. In this section we prove the following.
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7.1 For all s, t ≥ 0 and p ≥ 1, if B is a t-bangle of length at least 24(s + 1)tt+1 in a graph G, with
interior W , and either

• p ≥ 2 and s = 0, or

• p = 1 and at most s vertices in W have odd degree, or

• p = 1 and at most s edges of G|W are not parallel to other edges,

then W is p-porous.

Before we prove this we prove a weaker statement, and before that we need a few definitions. Let
(X0,X1, . . . ,Xn,Xn+1) and {P1, . . . , Pt} form a t-bangle in a graph G. For 1 ≤ m ≤ n, let Tm be
the graph with vertex set {1, . . . , t}, in which distinct i, j are adjacent if there is a path P of G|Xm,
with first vertex in V (Pi) and last vertex in V (Pj), such that for 1 ≤ h ≤ t, at most one vertex of P
is in Ph and no internal vertex of P is in Ph. (We accept the one-vertex path P , so i, j are adjacent if
some vertex of Xm belongs to both Pi and Pj.) We call Tm the graph of jumps at Xm. Since G|Xm

is connected it follows easily that Tm is connected.
Up to this point in the paper, we have followed the convention that the entries in our matrix D

are called dij . This not going to be true in what follows.
Again, let (X0,X1, . . . ,Xn,Xn+1) and {P1, . . . , Pt} form a t-bangle in a graph G, with inte-

rior W . Let δ(W,X0 ∪ Xn+1) = {e1, . . . , e2t}, where δ(X0,X1) = {e1, . . . , et} and δ(Xn,Xn+1) =
{et+1, . . . , e2t}, numbered such that for 1 ≤ i ≤ t, ei and et+i are the first and last edges of Pi. Let
dij = Dei,ej

for 1 ≤ i, j ≤ 2t. (Thus the matrix D is a function with domain δ(W ) × δ(W ), and the
matrix d with entries dij for i, j ∈ {1, . . . , 2t} has domain {1, . . . , 2t} × {1, . . . , 2t}.) If in addition
dij = 0 for all i, j > t, then d is a p-bounded stage, and hence has a (T, p)-height, for any choice of
tree T with V (T ) = {1, . . . , t} and any integer p ≥ 1.

7.2 Let k ≥ 0, and let (X0,X1, . . . ,Xn,Xn+1) and {P1, . . . , Pt} form a t-bangle in a graph G. Let
W be its interior, and let (D, p) be a W -demand system. Define the matrix d as above. Suppose that

• there is a tree T with vertex set {1, . . . , t} such that T is a subgraph of the graph of jumps at
Xm for all m ∈ {1, . . . , n};

• if p = 1 then either every vertex in W has even degree, or every edge of G|W is parallel to
another edge;

• De,f = 0 for all e, f ∈ δ(Xn,Xn+1)

• n is at least the (T, p)-height of the p-bounded stage d.

Then (D, p) is feasible.

Proof. We prove the result by induction on the (T, p)-height of d. Let e1, . . . , e2t be defined as
above. If the height is zero, and d is therefore a final stage, then for 1 ≤ i, j ≤ 2t, dij is nonzero
only if |j − i| = t and so a solution φ is given by defining φ(Pi) = di,i+t for 1 ≤ i ≤ t, and φ(P ) = 0
for all other W -routes P . Thus we may assume that d has positive (T, p)-height. Hence there is a
p-bounded stage d′, obtained from d by one small move, with (T, p)-height smaller than that of d.
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For 1 ≤ i ≤ t, let fi be the edge of Pi in δ(X1,X2), and let P ′
i be the minimal subpath of Pi

between X1 and Xn+1. Thus P ′
i has first edge fi and last edge et+i. Let W ′ = X2 ∪ · · · ∪ Xn. For

1 ≤ i, j ≤ 2t, let a = fi if i ≤ t, and ei otherwise, and b = fj if j ≤ t, and ej otherwise, and let
D′

ab = d′ij . Thus (D′, p) is a W ′-demand system. Now

(X0 ∪ X1,X2, . . . ,Xn,Xn+1)

and the paths {P ′
1, . . . , P

′
t} form a k-bangle of length n − 1, unless n = 1. From the inductive

hypothesis if n > 1, and trivially if n = 1, it follows that the p-bounded W ′-demand system (D′, p)
is feasible. Let φ′ be a solution. Extending this solution to a solution for (D, p) depends on the small
move that takes d to d′. We do the three possible small moves in reverse order, which is the order of
increasing difficulty. For 1 ≤ i ≤ t, let P ′′

i be the minimal subpath of Pi between X0 and X2.
For each small move, there are h, i ∈ {1, . . . , t}, adjacent in T , and to save on variables let us

assume that h = 1 and i = 2. So there is a path Q of G|X1, with first vertex a in V (P1) and last
vertex b in V (P2), with no other vertices in P1 ∪ P2, and with no internal vertex and at most one
end-vertex in Pi for 1 ≤ i ≤ t. Let K1, L1 denote the minimal subpaths of P1 between X0 and a,
and between a and X2, respectively; and define K2, L2 similarly. Thus P ′′

i = Ki ∪ Li, for i = 1, 2.
If P ′ is a W ′-route, its natural extension is the pseudo-W -route P obtained as follows: P is the

union of P ′ and P ′′
i for each i ∈ {1, . . . , t} such that fi is an end-edge of P ′. (Note that this is only

a pseudo-W -route since possibly both end-edges of P ′ lie in {f1, . . . , ft}, say fi, fj, and P ′′
i and P ′′

j

may not be vertex-disjoint.)
Case 1: delivery move. Thus d′1,2 = d′2,1 = 0, and otherwise d′ = d. For each W ′-route P ′

let P be its natural extension, and define φ(P ) = φ′(P ′). For the W -route P = K1 ∪ Q ∪ K2 define
φ(P ) = d1,2, and for all other pseudo-W -routes P let φ(P ) = 0. Then φ is a pseudo-solution.

Case 2: extension move. Thus there exist j ∈ {3, . . . , 2t} and an integer r > 0, with d1,j ≥ r.
We have d′1,j = d′j,1 = d1,j − r and d′2,j = d′j,2 = d2,j + r, and otherwise d′ = d.

Let g = fj if j ≤ t, and g = ej if j > t. Thus, g 6= f1, f2. For each W ′-route P ′ with an end-edge
different from f2, g, let P be its natural extension and define φ(P ) = φ′(P ′). Let C be the set of
W ′-routes containing f2 and g. Since d′2,j ≥ r and therefore

∑

P ′∈C φ′(P ′) ≥ r, it follows that we
may choose non-negative maps φ1, ρ : C → Z+ such that φ1(P

′) + ρ(P ′) = φ′(P ′) for each P ′ ∈ C,
and

∑

P ′∈C ρ(P ′) = r. For each P ′ ∈ C, let φ(P ) = ρ(P ′), where P = K1 ∪ Q ∪ L2 ∪ P ′, and let
φ(P ) = φ1(P

′) where P is the natural extension of P ′. Let φ(P ) = 0 for all other pseudo-W -routes
P . Then this is a pseudo-solution.

Case 3: small exchange move. Thus there exist distinct j, k ∈ {3, . . . , 2t}, and an integer
r > 0, with r ≤ p/2 if p > 1, such that

d′1,j = d′j,1 = d1,j − r

d′2,j = d′j,2 = d2,j + r

d′2,k = d′k,2 = d2,k − r

d′1,k = d′k,1 = d1,k + r,

and otherwise d′ = d. Let g1 = fk if k ≤ t, and g1 = ek otherwise; and g2 = fj if j ≤ t, and g2 = ej

otherwise. For i = 1, 2, let Ci be the set of all W ′-routes with end-edges fi, gi. As in case two, for
i = 1, 2 there exist φi, ρi such that φi(P

′) + ρi(P
′) = φ′(P ′) for each P ′ ∈ Ci, and

∑

P ′∈Ci
ρi(P

′) = r.
For i = 1, 2 and each P ′ ∈ Ci, let φ(P ) = φi(P

′) where P is the natural extension of P ′.
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We claim that there is a path Q′ of G|X1 between the ends a, b of Q, edge-disjoint from P1, . . . , Pt,
and edge-disjoint from Q if p = 1. If p > 1 or a = b we may take Q′ = Q, so we assume that p = 1
and a 6= b. Consequently either every vertex in W has even degree, or every edge of G|W is parallel
to another edge. If every edge of G|X1 is parallel to another edge the claim is clear (because none
of P1, . . . , Pt has two vertices in Q), so we assume that every vertex in X1 has even degree. Let
H be the subgraph of G with vertex set X1 and edge set all edges of G|X1 that are not in any of
P1, . . . , Pk, Q. Then every vertex of H has even degree except a, b, and so there is a path Q′ of H
between a, b. This proves our claim that Q′ exists.

For each P ′ ∈ C1 let φ(P ) = ρ1(P
′) where P = K1 ∪ Q ∪ L2 ∪ P ′, and φ(P ) = φ1(P

′) where P is
the natural extension of P ′; and for each P ′ ∈ C2 let φ(P ) = ρ1(P

′) where P = K2∪Q′∪L1∪P ′, and
φ(P ) = φ2(P

′) where P is the natural extension of P ′. Let φ(P ) = 0 for all other pseudo-W -routes
P . Then this is a pseudo-solution.

We have omitted the proofs that these maps φ are indeed pseudo-solutions, and perhaps it would
help if we give some hints. We need to check that

• for all e, f ∈ δ(W ), De,f equals the sum of φ(C) over all C ∈ C containing e, f

• for every edge e of G, the sum of φ(C) over all C ∈ C containing e is at most p

where C is the set of all pseudo-W -routes. The first is easy, but the second is a little less obvious.
(Let us call it the “capacity condition”.) Nothing is changing for the edges in G|W ′ and for the
edges in δ(X1,X2); and for the edges in δ(X0,X1), they obey the capacity condition since (D, p) is a
W -demand system. The edges in P ′′

i are, in all cases, used at most as much as the edges ei, fi, and
so obey the capacity condition. (Note that in case 3, we were careful that all the edges in P ′′

i are
used exactly the same number of times for i = 1, 2.) Finally, we have to check the edges of Q, and
of the path Q′ in case 3; but these obey the capacity condition because r ≤ p/2 when Q,Q′ are not
edge-disjoint. This proves 7.2.

Now we strengthen this to:

7.3 Let k ≥ 0, and let (X0,X1, . . . ,Xn,Xn+1) and {P1, . . . , Pt} form a t-bangle in a graph G, with
interior W . Suppose that

• there is a tree T with vertex set {1, . . . , t} such that T is a subgraph of the graph of jumps at
Xm for all m ∈ {1, . . . , n};

• if p = 1 then either every vertex in W has even degree, or every edge of G|W is parallel to
another edge;

• n ≥ 24t3.

Then W is p-porous.

Proof. Let (D, p) be a W -demand system; we must show that it is feasible. Let m = 12t3, let
δ(X0,X1) = {e1, . . . , et}, let δ(Xm,Xm+1) = {f1, . . . , ft}, and let δ(Xn,Xn+1) = {et+1, . . . , e2t},
where ei, fi, and et+i belong to Pi for 1 ≤ i ≤ t. Let W1 = X1∪· · ·∪Xm, and W2 = Xm+1∪· · ·∪Xn.
For 1 ≤ i ≤ t, let ri =

∑

t+1≤j≤2t Dei,ej
. Let A be the symmetric δ(W1) × δ(W1) matrix defined by:
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• for e, f ∈ δ(X0,X1), Aef = Def

• for e, f ∈ δ(Xm,Xm+1), Aef = 0

• for 1 ≤ i, j ≤ t, Aei,fj
= ri if i = j, and otherwise Aei,fj

= 0

and let B be the symmetric δ(W2) × δ(W2) matrix defined by:

• for e, f ∈ δ(Xn,Xn+1), Bef = Def

• for e, f ∈ δ(Xm,Xm+1), Bef = 0

• for 1 ≤ i ≤ t and t + 1 ≤ j ≤ 2t, Bfi,ej
= Dei,ej

.

Then (A, p) is a W1-demand system, and (B, p) is a W2-demand system. Since

(X0,X1, . . . ,Xm,W2 ∪ Xn+1)

and the appropriate subpaths of P1, . . . , Pt form a t-bangle of length 12t3, 6.9 and 7.2 imply that it
is feasible. Similarly so is the W2-demand system (B, p), using

(Xn+1,Xn, . . . ,Xm+1,W1 ∪ X0).

Combining the solutions in the natural way yields a solution for (D, p). This proves 7.3.

Let (X0,X1, . . . ,Xn,Xn+1) and {P1, . . . , Pt} form a t-bangle B in G, with n ≥ 2. Let 0 ≤ k ≤ n,
and for 0 ≤ m ≤ n let

Ym =











Xm if m < k

Xm ∪ Xm+1 if m = k

Xm+1 if m > k.

For 1 ≤ i ≤ t, let P ′
i be the minimal subpath of Pi between Y0 and Yn. (Thus P ′

i = Pi unless k = 0
or k = n.) Then (Y0, . . . , Yn) and {P ′

1, . . . , P
′
k) form a t-bangle. Any t-bangle obtained by repeating

this process is called a compression of B.
Now we can prove the main result of this section, 7.1, which we restate:

7.4 For all t, s ≥ 0 and p ≥ 1, if B is a t-bangle of length at least 24(s + 1)tt+1 in a graph G, with
interior W , and either

• p ≥ 2 and s = 0, or

• p = 1 and at most s vertices in W have odd degree, or

• p = 1 and at most s edges of G|W are not parallel to other edges,

then W is p-porous.
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Proof. We observe, first, that

(1) There is a compression B1 of B of length at least 24(s + 1)t3, and a tree T with vertex set
{1, . . . , t}, such that T is a subgraph of each graph of jumps of B1.

Since each G|Xm is connected, its graph of jumps has a spanning tree, with vertex set {1, . . . , t};
and since there are only tt−2 such trees, there is a tree T such that it is a spanning tree of the graph
of jumps at Xm, for at least 24(s + 1)t3 values of m with 1 ≤ m ≤ n. But then (1) follows.

(2) There is a compression B2 of B of length at least 24t3, with interior W2 say, such that if p = 1
then either every vertex in W2 has even degree, or every edge in G|W2 is parallel to another edge.

If p 6= 1 the result is trivial, so we assume that p = 1. Let B1 be (X0,X1, . . . ,Xn,Xn+1) and
{P1, . . . , Pk} say. For 1 ≤ m ≤ n, let us say m is exceptional if some vertex in Xm has odd degree
and some edge e is not parallel to another edge, where either e has both ends in Xm or e belongs to
δ(Xm,Xm+1). By hypothesis since p = 1, there are at most s exceptional values of m; and so there
are at least (n − s)/(s + 1) ≥ 24t3 consecutive values of m that are not exceptional. But then the
claim follows.

From 7.3, it follows that W2 is p-porous. But then W is also p-porous (because there are 2t
edge-disjoint paths between δ(W ) and δ(W2)). This proves 7.4.

8 Unavoidability

The t-bangles of the previous section will provide the promised subsets of type 2. It remains to prove
that in every sufficiently large graph there is a subset of type 1 or 2, and thereby finish the proof
of 2.2. The idea is, if the graph does not admit a carving of bounded width, we can easily obtain the
appropriate robust subset, and if it does admit such a carving, and the graph is large enough, then
the tree of the carving has a long path, which corresponds to a nested sequence of edge-cutsets of
the graph, all of bounded cardinality and all different. We need to show that such a nested sequence
of edge-cutsets always gives us a (sufficiently long) t-bangle with some bounded t.

Thus, if n ≥ 1, a chain of length n in a graph G is a sequence (X1, . . . ,Xn) of subsets of V (G),
such that:

• X1, . . . ,Xn are pairwise disjoint and nonempty; and

• for 2 ≤ m ≤ n − 1, δ(X0,Xm) = ∅, where X0 denotes V (G) \ (X1 ∪ · · · ∪ Xn).

We call X1 ∪ · · · ∪ Xn the support of the chain, and X2 ∪ · · · ∪ Xn−1 is its interior. If in addition
t ≥ 0 is an integer and

• for 1 ≤ m < n, |δ(X1 ∪ · · · ∪ Xm,Xm+1 ∪ · · · ∪ Xn)| ≤ t

we call the chain a t-chain.
This differs significantly from a t-bangle. Not all the edge-cutsets are the same size, but more

importantly, there may be edges between any pairs of terms Xi,Xj . We need to clean it up. Let us
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say a chain encloses another if the support of the second is a subset of the support of the first, and
the interior of the second is a subset of the interior of the first. For s ≥ 2, a t-chain is s-strong if it
does not enclose any (t− 1)-chain of length at least s. (Thus every 0-chain is s-strong, for all s ≥ 2.)

First we observe that if we have a long enough t-chain, we can get a long s-strong t′-chain for
some t′ ≤ t, with s as large as we like.

8.1 Let t ≥ 0, and for 0 ≤ i ≤ t let ni ≥ 2. Let n−1 = 2. Let (X1, . . . ,Xn) be a t-chain of length
at least nt in a graph G. Then there exists i with 0 ≤ i ≤ t, such that (X1, . . . ,Xn) encloses an
ni−1-strong i-chain of length at least ni.

Proof. We proceed by induction on t. Let (X1, . . . ,Xn) be a t-chain of length at least nt. If it is
nt−1-strong then the result holds. If not, then t > 0, and it encloses a (t− 1)-chain of length at least
nt−1, and the result follows by induction. This proves 8.1.

We need several lemmas about s-strong t-chains. If (X1, . . . ,Xn) is a t-chain, we say that i ∈
{1, . . . , n − 1} is t-thin if

|δ(X1 ∪ · · · ∪ Xi,Xi+1 ∪ · · · ∪ Xn)| < t

and the number of such values of i is the t-thinness of the chain. If (X1, . . . ,Xn) is a chain and
1 ≤ i < n, for 1 ≤ m ≤ n − 1, let

Ym =











Xm if m < i

Xi ∪ Xi+1 if m = i

Xm+1 if m > i.

Then (Y1, . . . , Yn−1) is a t-chain enclosed by (X1, . . . ,Xn), and we say it is obtained by merging Xi

and Xi+1.

8.2 Every s-strong t-chain has t-thinness at most s − 2.

Proof. Suppose not, and choose an s-strong t-chain with t-thinness at least s − 1, with minimum
length, say (X1, . . . ,Xn). Thus n ≥ s ≥ 2. If some i ∈ {1, . . . , n − 1} is not t-thin, then merging
Xi and Xi+1 yields an s-strong t-chain with length n − 1, still with t-thinness at least s − 1, a
contradiction. Thus every i ∈ {1, . . . , n−1} is t-thin, and so (X1, . . . ,Xn) is a (t−1)-chain of length
n ≥ s, contradicting that it is an s-strong t-chain. This proves 8.2.

A chain (X1, . . . ,Xn) is t-linked if

• it is a t-chain, and has t-thinness zero

• for 2 ≤ i ≤ n− 1 there are t edge-disjoint paths of G from X1 ∪ · · · ∪Xi−1 to Xi+1 ∪ · · · ∪Xn,
each with all internal vertices in Xi.

8.3 Every s-strong t-chain of length n encloses a t-linked chain of length at least n/(s − 1).

32



Proof. Let us say a t-chain (X1, . . . ,Xn) is refined if for 2 ≤ i ≤ n − 1, there is no partition of Xi

into two nonempty sets Y, Y ′ such that

(X1,X2, . . . ,Xi−1, Y, Y ′,Xi+1, . . . ,Xn)

is a t-chain. Evidently every t-chain encloses a refined t-chain with length at least as great. Thus it
suffices to show that if (X1, . . . ,Xn) is a refined t-chain then it encloses a t-linked chain of length at
least n/(s − 1). Let W be the support of this chain.

(1) For 2 ≤ i ≤ n − 1, if i − 1 and i are not t-thin, then there are t edge-disjoint paths of G
from X1 ∪ · · · ∪ Xi−1 to Xi+1 ∪ · · · ∪ Xn, each with all internal vertices in Xi.

For if not, then by Menger’s theorem there is a partition (A,B) of W with X1, . . . ,Xi−1 ⊆ A
and Xi+1, . . . ,Xn ⊆ B, such that |δ(A,B)| < t. Since i − 1 is not t-thin it follows that A ∩ Xi 6= ∅,
and similarly B ∩ Xi 6= ∅, contradicting that (X1, . . . ,Xn) is refined. This proves (1).

By 8.2, there are at most s − 2 t-thin values of i ∈ {1, . . . , n − 1}; and so there are at least
(n − s + 1)/(s − 1) consecutive values of i ∈ {1, . . . , n − 1} that are not t-thin, say i, i + 1, . . . , i + r
where r = ⌈(n − s + 1)/(s − 1)⌉ - 1. But then

(X1 ∪ · · · ∪ Xi,Xi+1, . . . ,Xi+r,Xi+r+1 ∪ · · · ∪ Xn)

is a t-chain enclosed by (X1, . . . ,Xn), and we claim it is t-linked. It has t-thinness zero, from the
choice of i, . . . , i+r. Moreover if j ∈ {i+1, . . . , i+r}, (1) implies that there are t edge-disjoint paths
of G from X1 ∪ · · · ∪ Xj−1 to Xj+1 ∪ · · · ∪ Xn, each with all internal vertices in Xj. Consequently
this t-chain is t-linked. But it has length r + 2 ≥ n/(s − 1). This proves 8.3.

8.4 Let (X1, . . . ,Xn) be an s-strong t-chain. If 1 ≤ h < j ≤ n, and δ(Xh,Xj) 6= ∅, then j − h ≤ s.

Proof. Choose e ∈ δ(Xh,Xj). The sequence (Xh,Xh+1, . . . ,Xj−1) is a chain of length j−h enclosed
by (X1, . . . ,Xn). Moreover, for h ≤ m ≤ j − 2,

δ(Xh ∪ · · · ∪ Xm,Xm+1 ∪ · · · ∪ Xj−1) ⊆ δ(X1 ∪ · · · ∪ Xm,Xm+1 ∪ · · · ∪ Xn);

and the inclusion is proper since e belongs to the set on the right of the inclusion and not to the one
on the left. We deduce that the set on the left side has cardinality at most t− 1, for all such m, and
so (Xh,Xh+1, . . . ,Xj−1) is a (t− 1)-chain. Since (X1, . . . ,Xn) is s-strong, we deduce that j − h < s.
This proves 8.4.

8.5 Let (X1, . . . ,Xn) be an s-strong t-linked chain. Let 2 ≤ h < j ≤ n− 1 with j −h ≥ 2s− 2; then
there is a component D of G|(Xh ∪· · · ∪Xj) such that every edge in δ(X1 ∪· · · ∪Xh−1,Xh ∪· · ·∪Xn)
has an end in V (D), and so does every edge in δ(X1 ∪ · · · ∪ Xj,Xj+1 ∪ · · · ∪ Xn).
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Proof. Let A = X1 ∪ · · · ∪Xh−1, B = Xh ∪ · · · ∪Xj, and C = Xj+1 ∪ · · · ∪Xn. By 8.4, δ(A,C) = ∅,
since j−h > s−2. Thus we must show that there is a component D of G|B such that δ(V (D)) = δ(B).
Since (X1, . . . ,Xn) is t-linked, there are t edge-disjoint paths P1, . . . , Pt of G from A to C, such that
each has all internal vertices in B. Since δ(A,C) = ∅, P1, . . . , Pt each have an internal vertex in B.
Since every edge of δ(A,B) and δ(B,C) belongs to one of P1, . . . , Pt, it suffices to show that the
internal vertices of P1, . . . , Pt all belong to the same component of G|B. Suppose not, and take a
partition of B into two nonempty sets Y,Z, such that δ(Y,Z) = ∅, and one of P1, . . . , Pt has internal
vertices in Y , and one of them has internal vertices in Z. For h ≤ i ≤ j, let Yi = Y ∩ Xi and
Zi = Z ∩ Xi. Now the sequence (Yh, Yh+1, . . . , Yj) has j − h + 1 terms but it may not be a chain,
since some of its terms may be empty. Let Y be the sequence obtained from (Yh, Yh+1, . . . , Yj) by
removing the empty terms, and define Z similarly from (Zh, . . . , Zj). Since for h ≤ i ≤ j, one of
Yi, Zi is nonempty, it follows that the sum of the lengths of Y, Z is at least j − h + 1, and so one
of them has length at least ⌈(j − h + 1)/2⌉ ≥ s, and from the symmetry we may assume that Y
has length at least s. Choose k ∈ {1, . . . , t} such that some internal vertex of Pk is in Z. It follows
that no internal vertex of Pk belongs to Y . Now let h ≤ i < j, and let e be the edge of Pk in
δ(X1 ∪ · · · ∪ Xi,Xi+1 ∪ · · · ∪ Xn). Since neither end of e is in Y (because any end of e in B is an
internal vertex of Pk and hence belongs to Z), it follows that e /∈ δ(Yh ∪ · · · ∪ Yi, Yi+1 ∪ · · · ∪ Yj).
Thus δ(Yh ∪ · · · ∪ Yi, Yi+1 ∪ Yj) is a proper subset of δ(X1 ∪ · · · ∪Xi,Xi+1 ∪ · · · ∪Xn); and hence has
cardinality at most t − 1. This proves that Y is a (t − 1)-chain of length at least s, a contradiction
since (X1, . . . ,Xn) is s-strong. This proves 8.5.

A chain (X1, . . . ,Xn) is taut if δ(Xi,Xj) = ∅ for all i, j ∈ {1, . . . , n} with j ≥ i + 2, and G|Xi is
connected for 2 ≤ i ≤ n − 1.

8.6 Let (X1, . . . ,Xn) be an s-strong t-linked chain. Then it encloses a taut t-linked chain of length
at least ⌊(n − 2)/(2s)⌋.

Proof. Let n′ = ⌊(n − 2)/(2s)⌋. For 1 ≤ i ≤ n′, let

Yi = ∪(Xm : 1 + 2s(i − 1) < m ≤ 1 + 2si).

Then (Y1, . . . , Yn′) is a t-chain enclosed by (X1, . . . ,Xn). Moreover, 8.5 implies that for 1 ≤ i ≤ n′,
there is a component Di of G|Yi such that δ(V (Di)) = δ(Yi). But then (V (D1), . . . , V (Dn′)) is a
taut t-linked chain enclosed by (X1, . . . ,Xn). This proves 8.6.

But a taut t-linked chain is almost the same as a t-bangle. Putting these results together, we
deduce:

8.7 For all s ≥ 2 and t ≥ 0 and m ≥ 1, if (X1, . . . ,Xn) is an s-strong t-chain in G, with n ≥
2(s − 1)(s(m + 2) + 1), then there is a t-bangle (Y0, Y1, . . . , Ym, Ym+1) in G with interior a subset of
the support of (X1, . . . ,Xn).

Proof. By 8.3, (X1, . . . ,Xn) encloses a t-linked chain of length at least n/(s − 1) ≥ 2s(m + 2) + 2,
which is therefore also s-strong. By 8.6, the latter chain encloses a taut t-linked chain of length
m+2, say (Y1, . . . , Ym+2). Let this have support W . Let P1, . . . , Pt be edge-disjoint paths of G from
Y1 to Ym+2, each with every internal vertex in Y2 ∪ · · · ∪Ym+1; then (Y1 ∪ (V (G) \W ), Y2, . . . , Ym+2)
together with {P1, . . . , Pt} form a t-bangle of length m. This proves 8.7.
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Combining this with 8.1, we have:

8.8 Let t ≥ 0, and for 0 ≤ i ≤ t let mi ≥ 1. Then there exists nt with the following property. Let
(X1, . . . ,Xn) be a t-chain of length at least nt in a graph G. Then there exists i with 0 ≤ i ≤ t, such
that there is an i-bangle of length mi with interior a subset of the support of (X1, . . . ,Xn).

Proof. For 0 ≤ i ≤ t, let ni = 2(ni−1 − 1)(ni−1(mi + 2) + 1), where n−1 = 2. Now let (X1, . . . ,Xn)
be a t-chain of length at least nt in a graph G. By 8.1, there exists i with 0 ≤ i ≤ t such that
(X1, . . . ,Xn) encloses an ni−1-strong i-chain (Y1, . . . , Yni

) say, of length ni. By 8.7, there is an i-
bangle with length mi in G with interior a subset of the support of (Y1, . . . , Yni

), and hence of the
support of (X1, . . . ,Xn). This proves 8.8.

Now back to critical demand systems. We have two kinds of contractible subsets: the edges
within a robust set Y with |δ(Y )| sufficiently large (by 4.1), and the edges within the support of a
t-bangle of sufficient length (by 7.1). We need to prove that one of them must be present in every
sufficiently large graph. More precisely, we show the following:

8.9 Let 0 ≤ k ≤ K, and for 0 ≤ i ≤ K + k let mi ≥ 1. Then there exists N such that if G is a
graph with at least N vertices, with ∆(G) ≤ k, and v0 ∈ V (G), then either

• there is a robust set Y ⊆ V (G) \ {v0} with |δ(Y )| ≥ K, or

• for some i with 0 ≤ i ≤ K + k there is an i-bangle in G with length mi, such that v0 is not in
its interior.

Proof. Let t = K + k. By 8.8, there exists M such that for every t-chain (X1, . . . ,Xn) of length
at least M , there exists i with 0 ≤ i ≤ t, such that there is an i-bangle of length mi with interior a
subset of the support of (X1, . . . ,Xn). Let N = 2M−1 +1, and we claim that N satisfies the theorem.

For let G be a graph with at least N vertices and ∆(G) ≤ k. By 4.2, there is a (k, t)-optimal
partial carving (T, φ) of (G, v0), with root t0 say. If there exists v ∈ L(T ) \ {t0} with |φ−1(v)| ≥ 2,
then |δ(φ−1(v))| > t − k = K and setting Y = δ(φ−1(v)) satisfies the first outcome of the theorem.
Thus we may assume that (T, φ) is a carving of width at most t.

Since φ is a bijection, it follows that T has |V (G)| leaves. Since every internal vertex of T has
degree three, there is a path P of T with one end t0 and with n edges, where 2n−1 ≥ |V (G)| − 1 ≥
N − 1 = 2M−1, and so n ≥ M . Let t0, t1, . . . , tn be the vertices of P in order. For 0 ≤ i ≤ n, let Ti

be the component containing ti of the forest obtained from T by deleting all the edges of P ; and let
Xi = φ−1(V (Ti)).

Then each of the sets X1, . . . ,Xn is nonempty, since T1, . . . , Tn each contain a leaf of T (because
t1, . . . , tn−1 all have degree three in T , and so does tn unless it is a leaf). Consequently (X1, . . . ,Xn)
is a chain of length n; it is a t-chain since (T, φ) has width at most t; and v0 is not in its support
since v0 ∈ X0. Since n ≥ M , the choice of M implies that there exists i with 0 ≤ i ≤ t, such that
there is an i-bangle of length mi with interior a subset of the support of (X1, . . . ,Xn). But then the
second outcome of the theorem holds. This proves 8.9.
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Now at last we can prove our main result 2.2, which we restate, slightly modified:

8.10 For all integers k, s ≥ 0 there exists N ≥ 0 with the following property. Let G be a graph with
either |V (G)| > N and |E(G)| > k|V (G)|/2, and let v0 be a vertex of degree at most k, such that no
vertex different from v0 has degree zero. Then there is an edge e of G, such that for every demand
system (G, v0,D, p), if either

• p ≥ 2 and s = 0, or

• p = 1 and G has oddness at most s, or

• p = 1 and G has skewness at most s,

and (G/e, v0,D, p) is feasible, then (G, v0,D, p) is feasible.

Proof. Choose K > k to satisfy 4.1. Let t = K + k, let m0 = 1, and for 1 ≤ i ≤ t let mi =
24(s+1)ii+2. Now let N satisfy 8.9; and we claim that it satisfies the theorem. For let G, v0 be as in
the theorem. If some vertex v of G has degree more than k, choose Y ⊆ V (G) containing v and not
v0, with |δ(Y )| minimum. Since v0 has degree at most k, it follows that |δ(Y )| ≤ k. By 3.2 E(G|Y )
is contractible (for all choices of D, p to make a demand system (G, v0,D, p)), and it is non-empty
since there are more than k edges incident with v, and not all of them belong to δ(Y ). Any edge in
E(G|Y ) satisfies the theorem.

We may therefore assume that ∆(G) ≤ k, and so |E(G)| ≤ k|V (G)|/2, and hence |V (G)| > N .
By 8.9, one of the two outcomes of 8.9 holds.

If there is a robust set Y ⊆ V (G)\{v0} with |δ(Y )| ≥ K, then E(G|Y ) is nonempty (since K > k
and ∆(G) ≤ k), and contractible by 4.1 (for all choices of D, p), and again the theorem holds.

Thus we may assume that for some i with 0 ≤ i ≤ K + k there is a i-bangle in G with length
mi, such that v0 is not in its support. Suppose first that i > 0. Then for all p ≥ 2 its support is
p-porous by 7.1, and hence is contractible (for all choices of D, p); and since some edge has both ends
in this support (since i > 0) the theorem holds. Thus we may assume that i = 0, and so there is a
0-bangle, say (X0, . . . ,Xr+1), with v0 not in its interior. Now r ≥ 1 from the definition of a t-bangle,
and δ(X1) = 0, and so X1 is contractible (for all choices of D, p). But G has no vertex of degree zero
different from v0, and therefore G|X1 has an edge, and the theorem holds. This proves 8.10.
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