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LU-decomposition is a useful computational tool, but this does not work for
every matrix. Consider even the simple example

0 1
A= [1 0] .
Exercise. Prove that no unipotent lower trangular L and upper triangular U exist
such that LU = A in this case.

In general, we need to perform moves of type 2 (Rx — Ry + c¢Ry) AND moves of
type 1 (Rg +» Ry) when reducing A to echelon form by Guassian Elimination. This
is the motivation behind PLU-decomposition. Here P is a permutation matrix.
This may be interpretted in the following way:

Remark. Instead of permuting rows, eliminating entries by addition of rows, per-
muting rows again, eliminating by addition of rows, permuting rows ...we may
instead permute the rows once and then reduce our matrix only by type 2 moves.

We first point out some things about permutation matrices and how they interact
with other moves (see Section [I). We then sketch the idea of the proof of PLU-
decomposition (see Section .

1. PERMUTATIONS AND THEIR MATRICES

A permutation o is nothing more than a bijection on the set {1,...,n}. We
denote this as

o ={0(1),0(2),...,0(n)}
For example, the permutation o = {2,4,1, 3} satisfies 0(1) =2, 0(2) =4, 0(3) =1
and o(4) = 3. A permutation o on {1,...,n} has an associated permutation matrix

1, j=o0()

M, = [m;;], where m;; = { 0 otherwise

So if we look at our o = {2,4,1, 3}, we get matrix

0 0
M, =

—_ o O
o O =
= o O

1
0
0 0 0
and see that the associated linear transformation 7, : R* — R* is defined by
t t
Tg ([.1‘1 To I3 $4] ) = [322 Tg X1 .133}

(compare to see that this is consistent with the text).
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Now suppose o and p are both permutations on {1,...,n}. Then we may see
that

e oo pis also a permutation.
e We now show that

M,M, = M.,

Remark. Yes, the order on the right hand side is intentional. If this is
confusing, please at least remember that the product of two permutation
matrices is itself a permutation matrix and the new permutation is related
to the original two.

Proof. Let m;; denote the entries of M,,, mgj denote the entries of M, and
c;j denote the entris of M,M,. Then for each 7,5 € {1,...,n},

n
!/
Cij = Z MMy
(=1

By definition m;, = 1 if and only if £ = p(i). Likewise mj; =1 if and only
if j = o(f). So mymj; =1 (and not zero) if and only if j = o(¢) = o (p(i)).

So ¢;; will contain many zero elements in the sum and one ‘1’ element if
and only if j = o(p(7)). Therefore the product is the matrix for permutation
oo p. O

e The elementary matrix associated to the elementary operation of switch-
ing rows is a permutation matrix. Therefore, performing a series of row
switches may be represented as a permutation matrix, since it is a product
of permutation matrices.

We end with one more result. This concerns the relationship between moves of
type 2 and permuting of rows.

Proposition 1. Let E € M(m,m) be the elementary matriz that represents the
action Ry — Ry + cRy and let M, be the permutation matriz for o on {1,...,m}.
Then

EM, = M,E’
where E' is the elementary matrixz that represents the action
Rg(k) — Rg(k) + CRU(@.

Proof. Let E'M, = A = [a;;] and M,E = B = [b;;]. Each row of A is identical to
each row of M, except for the 0~ (k)* row. This has a ‘1’ in column o (o~ (k)) =
k, a ‘¢’ in column o(o~1(¢)) = fand ‘0’ in every other place. Likewise, each column
of B is the same as the column of M, except the £ column. This column has a ‘1’

in row o~1(¢), a ‘¢’ in row o1 (k) and each other entry is ‘0. It is left to the reader
to confirm that indeed A = B. g

Corollary 2. The same equation holds if E' represents the action Ry, — Ry + cRy
and E represents the action Ry-1(3y — Ry-1(x) + cRo-1(y)-

Proof. Exercise. If this is more than one sentence (or two), the proof is too long.
Note that you should directly use the previous proposition. (I
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2. PLU-DECOMPOSITION
We show this by induction on m, where A € M (m,n). The case m = 1 is trivial.

Exercise. Show that there exists a PLU-decomposition for any matriz in the case
m = 2.

Now we assume that any matrix with m > 2 rows has such a decomposition
and use this fact to prove that every matrix with m 4+ 1 rows also has one. Let ng
denote the first non-zero column of A € M(m + 1,n). If no such column exists,
we are done because A = 0 has the decomposition I-I- A. Then we may permute
our rows by matrix Q € M(m + 1,m + 1) so that the (1,ng)-entry in

QA

is non-zero. We then act by subtracting the first row from the ones below so that
each (i,ng)-entry is zero for ¢ > 1. These operations may be represented by a
matrix E = [e;;] which satisfies

1, 1=7
€5 = —Ci, Z>1,]:1
0, otherwise

where ¢; are the constants the correspond to the actions R; — R; — ¢;R; (recall
that these actions commute when they all use the same row). Call the resulting
matrix B = EQA and note that
e A=Q 'E"'B.
° Q := Q! is a permutation matrix and L := E~! is unipotent lower trian-
gular.
e If ng = n, then B = U is in echelon form (hence upper triangular), So we
have decomposed A, with P = Q and L = L.
e If ng < n then we may partition B into

0...0 bl,ng bl7n0+1 ~-~b1,n
0 ... 0

B=1. : A’/

0 ... O
Here, A’ € M(m,n — ng), so A’ = P'L'U’ for P', L' € M(m,m) by our
inductive hypothesis.

Exercise. We may now express B as

1 0...0][1 0...0] [0...0 bipy Brmgss---bin
0 0 0 ... 0

P/ : L/ : : U/ )

o
s}
e}
o

P// L// U
where P is a permutation matriz, L' is unipotent lower triangular and U is upper
triangular.

So
A = QLP'L"U
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Because of Proposition [I]
I:P// _ P”ﬁ
for some L, which has the same form as L with the constants reordered (the actions
of type Ry — Rk + ¢Ry commute, and the permutation associated to P” fixes 1).
Hence, if we let P = QP” (this is a product of permutation matrices) and L = LL”
(a product of lower triangular unipotent matrices), we finally conclude that
A = QLP"L"U = QP"LL"U = PLU.
—
* %
*
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