
MATH 204 C03 – PLU-DECOMPOSITION

JON FICKENSCHER

LU-decomposition is a useful computational tool, but this does not work for
every matrix. Consider even the simple example

A =

[
0 1
1 0

]
.

Exercise. Prove that no unipotent lower trangular L and upper triangular U exist
such that LU = A in this case.

In general, we need to perform moves of type 2 (Rk → Rk + cR`) AND moves of
type 1 (Rk ↔ R`) when reducing A to echelon form by Guassian Elimination. This
is the motivation behind PLU-decomposition. Here P is a permutation matrix.
This may be interpretted in the following way:

Remark. Instead of permuting rows, eliminating entries by addition of rows, per-
muting rows again, eliminating by addition of rows, permuting rows . . . we may
instead permute the rows once and then reduce our matrix only by type 2 moves.

We first point out some things about permutation matrices and how they interact
with other moves (see Section 1). We then sketch the idea of the proof of PLU-
decomposition (see Section 2).

1. Permutations and Their Matrices

A permutation σ is nothing more than a bijection on the set {1, . . . , n}. We
denote this as

σ = {σ(1), σ(2), . . . , σ(n)}
For example, the permutation σ = {2, 4, 1, 3} satisfies σ(1) = 2, σ(2) = 4, σ(3) = 1
and σ(4) = 3. A permutation σ on {1, . . . , n} has an associated permutation matrix

Mσ = [mij ], where mij =

{
1, j = σ(i)
0 otherwise

So if we look at our σ = {2, 4, 1, 3}, we get matrix

Mσ =


0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0


and see that the associated linear transformation Tσ : R4 → R4 is defined by

Tσ

([
x1 x2 x3 x4

]t)
=
[
x2 x4 x1 x3

]t
(compare to see that this is consistent with the text).
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Now suppose σ and ρ are both permutations on {1, . . . , n}. Then we may see
that

• σ ◦ ρ is also a permutation.
• We now show that

MρMσ = Mσ◦ρ

Remark. Yes, the order on the right hand side is intentional. If this is
confusing, please at least remember that the product of two permutation
matrices is itself a permutation matrix and the new permutation is related
to the original two.

Proof. Let mij denote the entries of Mρ, m
′
ij denote the entries of Mσ and

cij denote the entris of MρMσ. Then for each i, j ∈ {1, . . . , n},

cij =

n∑
`=1

mi`m
′
`j

By definition mi` = 1 if and only if ` = ρ(i). Likewise m′`j = 1 if and only

if j = σ(`). So mi`m
′
`j = 1 (and not zero) if and only if j = σ(`) = σ(ρ(i)).

So cij will contain many zero elements in the sum and one ‘1’ element if
and only if j = σ(ρ(i)). Therefore the product is the matrix for permutation
σ ◦ ρ. �

• The elementary matrix associated to the elementary operation of switch-
ing rows is a permutation matrix. Therefore, performing a series of row
switches may be represented as a permutation matrix, since it is a product
of permutation matrices.

We end with one more result. This concerns the relationship between moves of
type 2 and permuting of rows.

Proposition 1. Let E ∈ M(m,m) be the elementary matrix that represents the
action Rk → Rk + cR` and let Mσ be the permutation matrix for σ on {1, . . . ,m}.
Then

EMσ = MσE
′

where E′ is the elementary matrix that represents the action

Rσ(k) → Rσ(k) + cRσ(`).

Proof. Let E′Mσ = A = [aij ] and MσE = B = [bij ]. Each row of A is identical to
each row of Mσ except for the σ−1(k)th row. This has a ‘1’ in column σ(σ−1(k)) =
k, a ‘c’ in column σ(σ−1(`)) = `and ‘0’ in every other place. Likewise, each column
of B is the same as the column of Mσ except the ` column. This column has a ‘1’
in row σ−1(`), a ‘c’ in row σ−1(k) and each other entry is ‘0.’ It is left to the reader
to confirm that indeed A = B. �

Corollary 2. The same equation holds if E′ represents the action Rk → Rk + cR`
and E represents the action Rσ−1(k) → Rσ−1(k) + cRσ−1(`).

Proof. Exercise. If this is more than one sentence (or two), the proof is too long.
Note that you should directly use the previous proposition. �
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2. PLU-Decomposition

We show this by induction on m, where A ∈M(m,n). The case m = 1 is trivial.

Exercise. Show that there exists a PLU-decomposition for any matrix in the case
m = 2.

Now we assume that any matrix with m ≥ 2 rows has such a decomposition
and use this fact to prove that every matrix with m+ 1 rows also has one. Let n0
denote the first non-zero column of A ∈ M(m + 1, n). If no such column exists,
we are done because A = 0 has the decomposition I · I ·A. Then we may permute
our rows by matrix Q ∈M(m+ 1,m+ 1) so that the (1, n0)-entry in

QA

is non-zero. We then act by subtracting the first row from the ones below so that
each (i, n0)-entry is zero for i > 1. These operations may be represented by a
matrix E = [eij ] which satisfies

eij =

 1, i = j
−ci, i > 1, j = 1
0, otherwise

where ci are the constants the correspond to the actions Ri → Ri − ciR1 (recall
that these actions commute when they all use the same row). Call the resulting
matrix B = EQA and note that

• A = Q−1E−1B.
• Q̃ := Q−1 is a permutation matrix and L̃ := E−1 is unipotent lower trian-

gular.
• If n0 = n, then B = U is in echelon form (hence upper triangular), So we

have decomposed A, with P = Q̃ and L = L̃.
• If n0 < n then we may partition B into

B =


0 . . . 0 b1,n0 b1,n0+1 . . . b1,n
0 . . .
...
0 . . .

0
...
0

A′

 .
Here, A′ ∈ M(m,n − n0), so A′ = P′L′U′ for P′,L′ ∈ M(m,m) by our
inductive hypothesis.

Exercise. We may now express B as

B =


1 0 . . . 0
0
...
0

P′


︸ ︷︷ ︸

P′′


1 0 . . . 0
0
...
0

L′


︸ ︷︷ ︸

L′′


0 . . . 0 b1,n0 b1,n0+1 . . . b1,n
0 . . .
...
0 . . .

0
...
0

U′


︸ ︷︷ ︸

U

,

where P′′ is a permutation matrix, L′′ is unipotent lower triangular and U is upper
triangular.

So

A = Q̃L̃P′′L′′U
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Because of Proposition 1,
L̃P′′ = P′′L̂

for some L̂, which has the same form as L̃ with the constants reordered (the actions
of type Rk → Rk + cR1 commute, and the permutation associated to P′′ fixes 1).

Hence, if we let P = Q̃P′′ (this is a product of permutation matrices) and L = L̂L′′

(a product of lower triangular unipotent matrices), we finally conclude that

A = Q̃L̃P′′L′′U = Q̃P′′L̂L′′U = PLU.

* * *
* *
*

Ta-da!
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