MATH 204 C03 - PLU-DECOMPOSITION

JON FICKENSCHER

LU-decomposition is a useful computational tool, but this does not work for every matrix. Consider even the simple example

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Exercise. Prove that no unipotent lower trangular \mathbf{L} and upper triangular \mathbf{U} exist such that $\mathbf{L U}=\mathbf{A}$ in this case.

In general, we need to perform moves of type $2\left(R_{k} \rightarrow R_{k}+c R_{\ell}\right)$ AND moves of type $1\left(R_{k} \leftrightarrow R_{\ell}\right)$ when reducing \mathbf{A} to echelon form by Guassian Elimination. This is the motivation behind $\mathbf{P L U}$-decomposition. Here \mathbf{P} is a permutation matrix. This may be interpretted in the following way:

Remark. Instead of permuting rows, eliminating entries by addition of rows, permuting rows again, eliminating by addition of rows, permuting rows ... we may instead permute the rows once and then reduce our matrix only by type 2 moves.

We first point out some things about permutation matrices and how they interact with other moves (see Section 11). We then sketch the idea of the proof of PLUdecomposition (see Section 2).

1. Permutations and Their Matrices

A permutation σ is nothing more than a bijection on the set $\{1, \ldots, n\}$. We denote this as

$$
\sigma=\{\sigma(1), \sigma(2), \ldots, \sigma(n)\}
$$

For example, the permutation $\sigma=\{2,4,1,3\}$ satisfies $\sigma(1)=2, \sigma(2)=4, \sigma(3)=1$ and $\sigma(4)=3$. A permutation σ on $\{1, \ldots, n\}$ has an associated permutation matrix

$$
\mathbf{M}_{\sigma}=\left[m_{i j}\right], \text { where } m_{i j}= \begin{cases}1, & j=\sigma(i) \\ 0 & \text { otherwise }\end{cases}
$$

So if we look at our $\sigma=\{2,4,1,3\}$, we get matrix

$$
\mathbf{M}_{\sigma}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

and see that the associated linear transformation $T_{\sigma}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ is defined by

$$
T_{\sigma}\left(\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right]^{t}\right)=\left[\begin{array}{llll}
x_{2} & x_{4} & x_{1} & x_{3}
\end{array}\right]^{t}
$$

(compare to see that this is consistent with the text).

[^0]Now suppose σ and ρ are both permutations on $\{1, \ldots, n\}$. Then we may see that

- $\sigma \circ \rho$ is also a permutation.
- We now show that

$$
\mathbf{M}_{\rho} \mathbf{M}_{\sigma}=\mathbf{M}_{\sigma \circ \rho}
$$

Remark. Yes, the order on the right hand side is intentional. If this is confusing, please at least remember that the product of two permutation matrices is itself a permutation matrix and the new permutation is related to the original two.

Proof. Let $m_{i j}$ denote the entries of $\mathbf{M}_{\rho}, m_{i j}^{\prime}$ denote the entries of \mathbf{M}_{σ} and $c_{i j}$ denote the entris of $\mathbf{M}_{\rho} \mathbf{M}_{\sigma}$. Then for each $i, j \in\{1, \ldots, n\}$,

$$
c_{i j}=\sum_{\ell=1}^{n} m_{i \ell} m_{\ell j}^{\prime}
$$

By definition $m_{i \ell}=1$ if and only if $\ell=\rho(i)$. Likewise $m_{\ell j}^{\prime}=1$ if and only if $j=\sigma(\ell)$. So $m_{i \ell} m_{\ell j}^{\prime}=1$ (and not zero) if and only if $j=\sigma(\ell)=\sigma(\rho(i))$.

So $c_{i j}$ will contain many zero elements in the sum and one ' 1 ' element if and only if $j=\sigma(\rho(i))$. Therefore the product is the matrix for permutation $\sigma \circ \rho$.

- The elementary matrix associated to the elementary operation of switching rows is a permutation matrix. Therefore, performing a series of row switches may be represented as a permutation matrix, since it is a product of permutation matrices.
We end with one more result. This concerns the relationship between moves of type 2 and permuting of rows.

Proposition 1. Let $\mathbf{E} \in M(m, m)$ be the elementary matrix that represents the action $R_{k} \rightarrow R_{k}+c R_{\ell}$ and let \mathbf{M}_{σ} be the permutation matrix for σ on $\{1, \ldots, m\}$. Then

$$
\mathbf{E M}_{\sigma}=\mathbf{M}_{\sigma} \mathbf{E}^{\prime}
$$

where \mathbf{E}^{\prime} is the elementary matrix that represents the action

$$
R_{\sigma(k)} \rightarrow R_{\sigma(k)}+c R_{\sigma(\ell)}
$$

Proof. Let $\mathbf{E}^{\prime} \mathbf{M}_{\sigma}=\mathbf{A}=\left[a_{i j}\right]$ and $\mathbf{M}_{\sigma} \mathbf{E}=\mathbf{B}=\left[b_{i j}\right]$. Each row of \mathbf{A} is identical to each row of \mathbf{M}_{σ} except for the $\sigma^{-1}(k)^{\text {th }}$ row. This has a ' 1 ' in column $\sigma\left(\sigma^{-1}(k)\right)=$ k, a ' c ' in column $\sigma\left(\sigma^{-1}(\ell)\right)=\ell$ and ' 0 ' in every other place. Likewise, each column of \mathbf{B} is the same as the column of \mathbf{M}_{σ} except the ℓ column. This column has a ' 1 ' in row $\sigma^{-1}(\ell)$, a ' c ' in row $\sigma^{-1}(k)$ and each other entry is ' 0 .' It is left to the reader to confirm that indeed $\mathbf{A}=\mathbf{B}$.

Corollary 2. The same equation holds if \mathbf{E}^{\prime} represents the action $R_{k} \rightarrow R_{k}+c R_{\ell}$ and \mathbf{E} represents the action $R_{\sigma^{-1}(k)} \rightarrow R_{\sigma^{-1}(k)}+c R_{\sigma^{-1}(\ell)}$.

Proof. Exercise. If this is more than one sentence (or two), the proof is too long. Note that you should directly use the previous proposition.

2. PLU-Decomposition

We show this by induction on m, where $\mathbf{A} \in M(m, n)$. The case $m=1$ is trivial.
Exercise. Show that there exists a PLU-decomposition for any matrix in the case $m=2$.

Now we assume that any matrix with $m \geq 2$ rows has such a decomposition and use this fact to prove that every matrix with $m+1$ rows also has one. Let n_{0} denote the first non-zero column of $\mathbf{A} \in M(m+1, n)$. If no such column exists, we are done because $\mathbf{A}=\mathbf{0}$ has the decomposition $\mathbf{I} \cdot \mathbf{I} \cdot \mathbf{A}$. Then we may permute our rows by matrix $\mathbf{Q} \in M(m+1, m+1)$ so that the ($\left.1, n_{0}\right)$-entry in

QA

is non-zero. We then act by subtracting the first row from the ones below so that each $\left(i, n_{0}\right)$-entry is zero for $i>1$. These operations may be represented by a $\operatorname{matrix} \mathbf{E}=\left[e_{i j}\right]$ which satisfies

$$
e_{i j}= \begin{cases}1, & i=j \\ -c_{i}, & i>1, j=1 \\ 0, & \text { otherwise }\end{cases}
$$

where c_{i} are the constants the correspond to the actions $R_{i} \rightarrow R_{i}-c_{i} R_{1}$ (recall that these actions commute when they all use the same row). Call the resulting matrix $\mathbf{B}=\mathbf{E Q A}$ and note that

- $\mathbf{A}=\mathbf{Q}^{-1} \mathbf{E}^{-1} \mathbf{B}$.
- $\tilde{\mathbf{Q}}:=\mathbf{Q}^{-1}$ is a permutation matrix and $\tilde{\mathbf{L}}:=\mathbf{E}^{-1}$ is unipotent lower triangular.
- If $n_{0}=n$, then $\mathbf{B}=\mathbf{U}$ is in echelon form (hence upper triangular), So we have decomposed \mathbf{A}, with $\mathbf{P}=\tilde{\mathbf{Q}}$ and $\mathbf{L}=\tilde{\mathbf{L}}$.
- If $n_{0}<n$ then we may partition \mathbf{B} into

$$
\mathbf{B}=\left[\begin{array}{cccc}
0 \ldots 0 & b_{1, n_{0}} & b_{1, n_{0}+1} \ldots b_{1, n} \\
0 & \ldots & 0 & \\
\vdots & & \vdots & \mathbf{A}^{\prime} \\
0 & \ldots & 0 &
\end{array}\right]
$$

Here, $\mathbf{A}^{\prime} \in M\left(m, n-n_{0}\right)$, so $\mathbf{A}^{\prime}=\mathbf{P}^{\prime} \mathbf{L}^{\prime} \mathbf{U}^{\prime}$ for $\mathbf{P}^{\prime}, \mathbf{L}^{\prime} \in M(m, m)$ by our inductive hypothesis.

Exercise. We may now express \mathbf{B} as
where $\mathbf{P}^{\prime \prime}$ is a permutation matrix, $\mathbf{L}^{\prime \prime}$ is unipotent lower triangular and \mathbf{U} is upper triangular.

So

$$
\mathbf{A}=\tilde{\mathbf{Q}} \tilde{\mathbf{L}} \mathbf{P}^{\prime \prime} \mathbf{L}^{\prime \prime} \mathbf{U}
$$

Because of Proposition 1,

$$
\tilde{\mathbf{L}} \mathbf{P}^{\prime \prime}=\mathbf{P}^{\prime \prime} \hat{\mathbf{L}}
$$

for some $\hat{\mathbf{L}}$, which has the same form as $\tilde{\mathbf{L}}$ with the constants reordered (the actions of type $R_{k} \rightarrow R_{k}+c R_{1}$ commute, and the permutation associated to $\mathbf{P}^{\prime \prime}$ fixes 1). Hence, if we let $\mathbf{P}=\tilde{\mathbf{Q}} \mathbf{P}^{\prime \prime}$ (this is a product of permutation matrices) and $\mathbf{L}=\hat{\mathbf{L}} \mathbf{L}^{\prime \prime}$ (a product of lower triangular unipotent matrices), we finally conclude that

$$
\mathbf{A}=\tilde{\mathbf{Q}} \tilde{\mathbf{L}} \mathbf{P}^{\prime \prime} \mathbf{L}^{\prime \prime} \mathbf{U}=\tilde{\mathbf{Q}} \mathbf{P}^{\prime \prime} \hat{\mathbf{L}} \mathbf{L}^{\prime \prime} \mathbf{U}=\mathbf{P} \mathbf{L} \mathbf{U}
$$

**
*
Ta-da!

[^0]: Date: March 2, 2012.

