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Outline

We will be concluding our course with an application of linear alegbra to differ-
ential equations. In particular, we will show the following theorem:

Theorem. Let
any

(n) + an−1y
(n−1) + . . . a1y

′ + a0y = 0
with a1, . . . , an = 0. Then the solution set spans an n-dimensional subspace of
C∞(R).

Not only will we establish this fact, but we will also show a “standard” basis for
the set of solutions, meaning we will find basis elements that coincide with almost
any book on ordinary differential equations.

Terms and Previous Theorems

As with previous papers, if T : V → W is a linear operator, then the kernel of
T is

KER(T) = {X ∈ V : T(X) = 0}
and the image of T is

IMG(T) = {Y ∈ W : T(X) = Y for some X ∈ V}.

If T : V → V is linear and p(x) = anx
n + . . . a1x,+a0 is a polynomial with scalar

coefficients, we may define (just as in the case of matrices),

p(T) =
n∑
j=0

ajTj

where we always take the convention T0 = I, the identity map on V. This is another
linear operator from V to V.

If T : V → W is a function (not necessarily linear), we will use the following
notation

T(V) = {T(X) : X ∈ V} ⊆ W
for the image of V under T. Also, if we have subspaces U1,U2 ⊆ V, then

U1 + U2 = {X1 + X2 : Xi ∈ Ui, i = 1, 2} ⊆ V

is the span of the subspaces U1 and U2.

Exercise 1. If U1,U2 are subspaces of vector space V, show that U1 +U2 is as well.
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We recall from a previous handout that a linear map T : V → V is a projection
if T2 = T. We recall the following fact

Lemma 1. Let T : V → V be a projection, then

V = KER(T)⊕ IMG(T).

Equivalently, the span of KER(T) and IMG(T) is all of V, and KER(T) and
IMG(T) are independent spaces.

Let C∞(R) be the real vector space of all smooth functions f : R→ R. In what
follows, we will be forced to consider the complex vector space C∞(C), all smooth
functions f : R→ C. Without delving too deeply into a book on complex variables,
we may just consider this as the space

C∞(C) = {f + ıg : f, g ∈ C∞(R)}.

Note that integration and derivatives work as one may suspect, namely if h ∈ C∞(C)
and h = f + ıg, f, g ∈ C∞(R), then

h′(x) = f ′(x) + ıg′(x) and
∫
h dx =

∫
f dx+ ı

∫
g dx.

Remark. For those who have taken or will take a course in complex variables,
C∞(C) is not the set of analytic functions on the complex plane.

We define D : C∞(C) → C∞(C) to be the differential operator, meaning for
every h ∈ C∞(C),

D(h)(x) = h′(x)

We state without proof that D is linear. We will also refer to the differential
operator on C∞(R) by D as well, as the definition in the previous equation maps
f ∈ C∞(R) to f ′ ∈ C∞(R).

Finding Solutions to Linear ODEs

Let us consider a differential equation of the form

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0

and consider its characteristic polynomial p(x) = anx
n + · · · + a1x + a0. Noting

that Dk(y) = y(k) for each k, where D is the differential operator, we may rewrite
our ODE as

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = 0

anDn(y) + an−1Dn−1(y) + . . . a1D1(y) + a0D0(y) = 0
(anDn + an−1Dn−1 + . . . a1D1 + a0D0)(y) = 0

p(D)(y) = 0

We may then conclude y is a solution to our ODE if and only if it is in KER(p(D)).
So we already have reduced solving a differential equation to finding the kernel of
a linear function!

The remainder of this section builds to a general solution for any linear ordinary
differential homogeneous equation. Our first result uses the Fundamental Theorem
of Calculus.



ODES 3

Lemma 2. Let D : C∞(C) → C∞(C) be the differential operator. Then for each
k > 0,

KER(Dk) = Pk−1 = {a0 + · · ·+ ak−1x
k−1 : a0, . . . , ak−1 ∈ C}

= SPANC{1, x, . . . , xk−1}

Proof. We prove this by induction. The solution set for D(y) = y′ = 0 is the set of
constant functions. This is indeed P0.

Now assume that the solution set of Dk(y) = y(k) = 0 is Pk−1. Any y that
satisfies Dk+1(y) = 0 must satisfy

D(y) = z ∈ KER[Dk] = Pk−1.

Then by the Fundamental Theorem of Calculus,

y =
∫
z dx+ c ∈ Pk.

This proves that KER(Dk+1) ⊆ Pk. We may directly verify that if y ∈ Pk, then
y(k+1) = 0, showing our other inclusion. �

Lemma 3. Let D : C∞(C) → C∞(C) be the differential operator. Then for any
λ ∈ C and k > 0,

KER[(D− λI)k] =


k−1∑
j=0

ajx
jeλx : a0, . . . , ak−1 ∈ C


= SPANC{eλx, xeλx, . . . , xk−1eλx}

Proof. Let E = D− λI be a linear operator from V to V. In other words for each
smooth f ,

E(f)(x) = f ′(x)− λf(x).

Note that we now must investigate KER(Ek) (this is the same the space as in the
lemma). We will define another map M by

M(f)(x) = eλxf(x).

This is an invertible linear map, and in fact

M−1(f)(x) =
f(x)
eλx

.

We will now claim that E and D are similar. Specifically, for each smooth f ,

M−1 ◦E ◦M(f(x)) = M−1 ◦E(eλxf(x))
= M−1(λeλxf(x) + eλxf ′(x)− λeλxf(x))
= M−1(eλxf ′(x))
= f ′(x)
= D(f),

or M−1 ◦E ◦M = D. It follows that M−1 ◦Ek ◦M = Dk.

Exercise 2. Show that KER[Ek] = M(KER[Dk]) = {M(f) : f ∈ KER(Dk)}.

So as {1, . . . , xk−1} is a basis for the kernel of Dk, {eλx, xeλx, . . . , xk−1eλx} is a
basis for the kernel of Ek. �
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The following lemma is a technical one. At the discretion of the reader, under-
standing the statement and result is more important to the rest of the paper than
the proof, and therefore the proof may avoided on first reading. We will prove it
only for the sake of completeness. This lemma indicates that if X is a generalized
eigenvector of T, then p(T)X is always a linear combination of the λ-chain of X.

Lemma 4. Let T : V → V be linear, p(x) a polynomial and X1, . . . ,Xk be a
λ-chain, or

T(Xj) =
{
λXj + Xj−1, j > 1
λX1, j = 1.

Then

p(T )Xk =
k∑
j=1

p(k−j)(λ)Xj = p(λ)Xk + p′(λ)Xk−1 + . . . p(k−1)(λ)X1.

Proof. We start by proving an initial claim, that for each ` ≥ 0,

T`(Xk) =
k∑
j=1

m(λ, `+ j − k, `)Xj ,

where

m(λ, e, `) =


λe, e ≥ `
λe
∏`
r=e+1 r, 0 ≤ e < `

0, e < 0.
If p(x) = anx

n + . . . a1x+ a0, we remark that

p(k)(x) =
n∑
j=0

ajm(x, j − k, j) =
n−k∑
j′=0

aj′+km(x, j′, j′ + k).

This statement may be verified by induction (relate d
dxm(x, e, `) to an m function

with different terms).

Exercise 3. Prove this initial claim. You may want to use induction on `. In fact,
for ` = 1,∑k

j=1m(λ, 1 + j − k, 1)Xj =
∑k
j=k−1m(λ, 1 + j − k, 1)Xj

= m(λ, 0, 1)Xk−1 +m(λ, 1, 1)Xk

= Xk−1 + λXk

= T(Xk).

To use induction, assume the claimed identity for ` and then use the fact that

T`+1 = T ◦T` = T` ◦T

to prove the identity for `+ 1.

We now use this claim. Let a0, . . . , an be the coefficients of p(x), then

p(T)Xk =
∑n
`=0 a`T

`(Xk)
=

∑n
`=0 a`

∑k
j=1m(λ, `+ j − k, `)Xj

=
∑k
j=1 (

∑n
`=0 a`m(λ, `+ j − k, `)

∑
) Xj

=
∑k
j=1

(∑n−(k−j)
t=−(k−j) at+(k−j)m(λ, t, t+ (k − j))

)
Xj

=
∑k
j=1

(∑n−(k−j)
t=0 at+(k−j)m(λ, t, t+ (k − j))

)
Xj

=
∑k
j=1 p

(k−j)(λ)Xj .
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We have concluded the proof. Between the third and fourth line, we use the subsi-
tution t = `+ j − k. �

Corollary 5. If X is a kth order λ-eigenvector of linear map T : V → V, and p(x)
is a non-zero polynomial with λ as root of mulitplity m (m = 0 if λ is not a root of
p), then

X ∈ KER[p(T)] ⇐⇒ k ≤ m.

Proof. Consider the λ-chain Xk = X,Xk−1, . . . ,X1. We know from Lemma 4, that

p(T)X = p(λ)X + p′(λ)Xk−1 + . . . p(k−2)(λ)X2 + p(k−1)(T)X1.

The right hand side is 0 if and only if p(λ) = p′(λ) = . . . p(k−1)(λ) = 0. This occurs
if and only if λ is a root of multiplicity m ≥ k. �

Theorem 6. Suppose T : V → V is a linear operator over complex vector space V
and p is a polynomial with complex coeffients. Then if

p(x) = α(x− λ1)m1 · · · (x− λk)mk

for α 6= 0 and distinct λ1, . . . , λk, then

KER(p(T)) = KER[(T− λ1I)m1 ] + · · ·+ KER[(T− λkI)mk ].

Proof. We will prove this by induction on n, the degree of p.

Exercise 4. If n = 1, then the statement holds. Also, if p(x) is a polynomial with
only one root of multiplicty m, then the statement holds.

By inductive hypothesis, we now assume that any polynomial f(x) of degree less
than n satisfies

KER(f(T)) = KER[(T− λ′1I)m
′
1 ] + · · ·+ KER[(T− λ′kI)m

′
k′ ],

where λ′1, . . . , λ
′
k′ are the roots of q of multiplicities m′1, . . . ,m

′
k′ , and will prove the

claim for p(x) of degree n. Let

p(x) = α(x− λ1)m1 · · · (x− λk)mk

and define the polynomial q(x) by p(x) = (x− λ1)m1q(x), or

q(x) = α(x− λ2)m2 · · · (x− λk)mk .

Because of the previous exercise, we may assume that k > 1. We will show two
cases, as the first is much easier and instructive while the second follows a very
similar argument. In either case, we will construct a projection, which we will call
Q, whose image is KER[(T−λ1I)m1 ] and KER(Q)∩KER[p(T)] = KER[q(T)]. By
Lemma 1 and our inductive assumption, this implies that

KER[p(T)] = KER[(T− λ1)m1 ] + KER[q(T)] =
k∑
j=1

KER[(T− λj)mj ]

which will conclude our proof.
Suppose first that m1 = 1. Consider X ∈ KER[p(T)], then

0 = p(T)X = (T− λ1I)(q(T)(X))

implies that q(T)X ∈ KER(T−λ1) or IMG(q(T)) is contained in the λ-eigenspace.
Remember that q(x) does not have λ1 as a root. By Lemma 4, if we consider any
λ-eigenvector Y, then

q(T)Y = q(λ1)Y,
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where q(λ1) 6= 0. This in turn implies that the λ1-eigenspace is contained in
IMG(q(T)), which indicates equality. Define

Q =
1

q(λ1)
q(T).

Exercise 5. Verify that Q is a projection with the same image and kernel as q(T).

We now consider the more general case, m1 > 1. Define the following polynomials
for 0 ≤ j < m1,

qj(x) = (x− λ1)jq(x).

If X is a generalized λ1-eigenvector of order `, then again by Lemma 4,

qj(T)X = q(T)(T− λ1I)jX

will be either 0 if ` ≤ j or a sum of the elements in the λ-chain of X of order at
most ` − j. Also, the coefficient for the ` − j order λ-eigenvector (what we would
call the leading term) is always q(λ1) 6= 0.

Exercise 6. Show that we may, for correctly chosen coefficients c0, . . . , cm1−1,
define

Q = c0q0(T) + · · ·+ cmk−1qmk−1(T)

that is a projection on the generalized λ1-eigenspace. Hint: Start by considering
X1, an eigenvector of order 1 (a “true” eigenvector). Note that in this case Q(X) =
c0q(T)X1 as before. So c0 = 1

q(λ1)
. Now consider an eigenvector X2 of order 2.

How many polynomials will give non-zero vectors? What should be assigned to the
coefficients (other than c0, which have already selected) so that QX2 = X2? How
do we progress for orders 3, 4, . . . ,mk−1?

Our constructed projection Q has image KER[(T − λ1I)m1 ]. Each polynomial
qj(x) has q(x) as a factor and is a polynomial of degree less than n. The polynomial,
which we will call s(x), that defines Q, also has q(x) as a factor and is of degree
less than n, as it is a linear combination of the qj ’s. In particular KER[q(T)] ⊆
KER[s(T) = Q] so KER[q(T)] ⊆ KER[p(T)] ∩KER[Q]. The polynomial s(x) has
either more roots than q(x) or has some roots of higher multiplicity. However, λ1

is not a root of s(x), as
s(T)Y1 = QY1 = Y1 6= 0

for any λ1-eigenvalue Y1. So we may use Corollary 5 to determine that for any
root µ of s(x) and Y a µ-eigenvector of T of order higher than the mulitplicity of
µ as a root of q(x), then p(T)Y 6= 0. This allows us to conclude that

KER[Q] ∩KER[p(T)] = KER[q(T)]

as desired. �

Corollary 7. Consider the linear first order differential equation

a0y + a1y
′ + a2y

′′ + · · ·+ any
(n) = 0

and let

p(x) =
k∑
j=0

ajx
j
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be its characteristic polynomial with roots λ1, . . . , λk with respective multiplicities
m1, . . . ,mk. The solution set of the ODE is

SPAN

 k⋃
j=1

mj−1⋃
`=0

{x`eλjx}

 .

In particular, the solution set is an n dimensional subspace of C∞(C).

Complex Extensions of Real Vector Spaces

Definition. Let V be a real vector space. We will call

VC = {X + ıY : X,Y ∈ V}

the complex extension of V.

Exercise 7. VC is a complex vector space. Show that dimC VC = dimR V and
dimR VC = 2 dimR V when V is finite dimensional.

Definition. Let T be a linear operator on real vector space V. Then we define
TC : VC → VC, the complex extension of T to VC as

TC(X + ıY) = T(X) + ı(Y)

where Z = X + ıY ∈ VC.

Exercise 8. Show that TC is a linear operator on VC and

KER(TC) = {X + ıY : X,Y ∈ KER(T)}

Definition. Let V be a real vector space and VC its complex extension. Then we
define the following functions. Let Z = X + ıY ∈ VC with X,Y ∈ V.

(1) · : VC → VC is the complex conjugate map, given by

Z = X + ıY = X− ıY

(2) Re : VC → V is the real part map, given by

Re(Z) = Re(X + ıY) = X.

(3) Im : VC → V is the imaginary part map, given by

Im(Z) = Im(X + ıY) = Y.

Exercise 9. Show that the three given maps are not linear when treating VC as a
complex vector space. However, if VC is treated as a real vector space (it is twice
the dimension of V over R), then they are linear. Also, verify that

Re(Z) =
1
2

(Z + Z) and Im(Z) =
1
2ı

(Z− Z)

for each Z ∈ VC.

Lemma 8. Let T : V → V be linear on V, a real vector space. Then for every
Z ∈ VC,

Re(TC(Z)) = T(Re(Z)).
(This is usually expressed as Re ◦TC = T ◦Re.) Likewise, Im ◦TC = T ◦ Im.

Proof. Exercise. �
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Exercise 10. Let V be a real vector space and VC its complex extension. Show
that for any subspace W ⊆ VC, the sets Re(W), Im(W) ⊂ V are equal and either
(both) is a real subspace of V.

Lemma 9. Let V be a real vector space and VC its complex extension. Let W ⊆ VC
be subspace with dimCW = n <∞. Then the following are equivalent:

(1) W =W, or ∀X, X ∈ W if and only if X ∈ W.
(2) There exists a basis {X1, . . . ,Xn} of W such that Xi ∈ V for 1 ≤ i ≤ n.
(3) Let W ′ = Re(W) ⊆ V. Then W =W ′ + ıW ′.

Moreover, if W satisfies these conditions, then the subspace W ′ has the basis from
(2) as its basis (the span is taken over R rather than C).

Proof. We will leave the following to the reader.

Exercise 11. Show that (2) implies (1) and (3) implies (1).

We will show that (1) implies (2). Start with any basis

{Z1, . . . ,Zn}
of W. Then Re(Zi) = 1

2 (Zi + Zi) and Im(Zi) = 1
2ı (Zi −Zi) belong to both V and

W, and therefore

{Re(Z1), Im(Z1), . . . ,Re(Zn), Im(Zn)}
contains 2n vectors in V, but still spans W (when considering SPANC). We may
therefore take a subset of these elements to form a basis of W.

We now show that (2) implies (3). Let {X1, . . . ,Xn} be a basis of W with
Xi ∈ V. Then for any vector Z ∈ W, there exists unique a1 + ıb1, . . . , an + ıbn ∈ C
such that

Z = (a1 + ıb1)X1 + · · ·+(an+ ıbn)Xn = (a1X1 + · · ·+anXn)+ ı(b1X1 + · · ·+bnXn).

This allows us to conclude that W ⊆ W ′ + ıW ′. Moreover, this tells us that our
final claim holds, namely, our basis {X1, . . . ,Xn} is also a basis for W ′.

To show the other inclusion, select any X,Y ∈ V, then

X = a1X1 + · · ·+ anXn and Y = b1X1 + · · ·+ bnXn

for unique real values a1, . . . , an, b1, . . . , bn. By letting ci = ai + ıbi, we may find
Z =

∑n
i=1 ciXi such that Z ∈ W and Z = X + ıY. Therefore W ′ + ıW ′ ⊆ W. �

Lemma 10. If T : V → V is linear on real a vector space V, then KER(TC) is
closed under conjugation and

KER(T) = Re(KER(TC)) = Im(KER(TC)).

Proof. Let W = KER(TC) and W ′ = Re(W) = Im(W).
We will first prove that W =W. It suffices to show that if Z ∈ W, then Z ∈ W.

By Exercise 8, if Z ∈ W, then Z = X + ıY where T(X) = T(Y) = 0. But then

TC(Z) = TC(X− ıY) = T(X)− ıT(Y) = 0− ı0 = 0

or Z ∈ W as well.
We now show that KER(T) =W ′. Let Z ∈ W. Then by Exercise 8, Z = X+ ıY

for X,Y ∈ KER(T). In particular Re(Z) = X ∈ KER(T). This implies that
Re(KER(TC)) ⊆ KER(T). Now assumse that X ∈ KER(T). Let Z = X +
ı0 and note that Re(Z) = X and TC(Z) = 0. We conclude that KER(T) ⊆
Re(KER(TC)). �
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Finding Solutions in the Space C∞(R)

We now consider the differential operator, but this time acting only on C∞(R)
rather than on the complex vector space. We also will be only considering linear
ODEs such that all of the coefficients are real. It follows from Corollary 7 that we
may define our n-dimensional solution set but in C∞(C). If all of the roots of the
characteristic polynomial are real, then the solution set given works and defines our
n-dimensional space in C∞(R). If there are complex roots, then by Lemmas 9 and
10, we must take a common real basis for our solution set.

Corollary 11. Consider the linear first order differential equation

a0y + a1y
′ + a2y

′′ + · · ·+ any
(n) = 0

and let

p(x) =
k∑
j=0

ajx
j

be its characteristic polynomial with real coefficients. Let λ1, . . . , λ` be the real roots
of p with respective multiplicities m1, . . . ,m` and let µ1, µ1, . . . , µk, µk be the pairs
of complex conjugate roots with multiplicities m′1, . . . ,m

′
k. Then the solution set is

SPANR

⋃̀
j=1

mj−1⋃
r=0

{xreλjx}

 ∪
 k⋃
j=1

m′
k−1⋃
r=0

{xreαjx cos(βx), xreαjx sin(βx)}


where µj = αj + ıβj, αj , βj ∈ R, βj 6= 0.

Proof. By Corollary 7, we may find an n-(complex)dimensional subspace of C∞(C)
that is the set of solutions to p(D)y = 0. This is of the form

SPANC

⋃̀
j=1

mj−1⋃
r=0

{xreλjx}

 ∪
 k⋃
j=1

m′
j−1⋃
r=0

{xreµjx, xreµjx}

 .

By Lemma 10, the solution set is the real part of the complex solution set. By
Lemma 9, we may find a basis in C∞(R) that spans the complex solution set (by
taking complex linear combinations) and the real solution set (by taking real linear
combinations instead). For each real root λj , the associated basis elements already
belong to C∞(R). For each 1 ≤ j ≤ k and 1 ≤ r ≤ m′j − 1, note that

xreµjx = xreαjx+ıβjx = xreαjxeıβjx = xreαjx cos(βjx) + ıxreαjx sin(βjx)

and likewise xreµjx = xreαjx cos(βjx) + ıxreαjx sin(βjx).

Exercise 12. Show that

SPANC{xreαjx cos(βjx), xreαjx sin(βjx)} = SPANC{xreµjx, xreµjx}

We conclude that we may take the basis stated as our C∞(R) basis by replacing
our complex basis elements xreµjx, xreµjx with elements as listed in the above
exercise. �
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Examples

Finding Solutions to Linear ODEs. We begin with a few examples to illustrate
the proof of Theorem 6

Example. Suppose T : V → V satisfies

T2 = I.

Let p(x) = x2 − 1 = (x+ 1)(x− 1), then the original equation becomes

p(T) = T2 − I = (T + I)(T− I) = 0.

So in this case KER[p(T)] = V. We would then define q(x) = x− 1. As the proof
suggests, we see that

q(T)X = (T− I)X = 0 ⇐⇒ TX = X

if and only if X is a 1-eigenvector. Likewise, let Y = q(T)X for X ∈ V. Then

TY = T(T− I)X = T2X−TX = (I−T)X = −Y

or that the image of q(T) is the (−1)-eigenspace. We need to find Q, a projection
with the same image and kernel as q(T). Let Y be a (−1)-eigenvector of T. Then

q(T)Y = TY − IY = −2Y.

So let Q = − 1
2q(T). We then may say that in deed (by Lemma 1) that

V = KER(T− I)⊕KER(T + I),

or equivalenty that every X ∈ V may be uniquely expressed as X = X1 + X−1

where X±1 is in the (±1)-eigenspace.
This result has a number of applications to specific vector spaces in this course:
• V = M(n, n). T : V → V is defined by T(A) = At. We conclude that every

matrix A may be uniquely written as

A = B + C

where Bt = B and Ct = −C.
• V = MC(n, n) (treated as a real vector space). Then if T : V → V is defined

by T(A) = A, then any matrix A may be uniquely expressed as

A = X + ıY

where X,Y ∈M(n, n).
• V = C∞(R). T : V → V defined by T(f(x)) = f(−x). Any function
f ∈ C∞(R) may be uniquely expressed as

f = g + h

where f is even and g is odd.

We now go through our proof with an eigenvalue of mulitplicity 2.

Example. Let p(x) = x3 − 2x2 + x, T : V → V be linear. Let q(x) = x so that
p(x) = (x− 1)2q(x). Let X ∈ K = KER[p(T)], then

0 = p(T)X = (T− I)2q(T)X

implies that the image of q(T) restricted to K belongs to KER[(T− I)2]. Also, by
definition KER[q(T)] = KER[T]. The proof suggests considering two polynomials:

q0(x) = q(x) and q1(x) = (x− 1)q(x).
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Also, we must consider 1-eigenvectors of orders 1 and 2. If Y1 is an order 1
eigenvector, we see that

q0(T)Y1 = q(1)Y1 = Y1,
q1(T)Y1 = q1(1)Y1 = 0.

If we consider Y2, an order 2 eigenvector, and Y1 as the order 1 eigenvector in its
chain, then

q0(T)Y2 = q(1)Y2 + q′(1)Y1 = Y2 + Y1,
q1(T)Y2 = q1(1)Y2 + q′1(1)Y1 = 2Y1.

If we let s(x) = q0(x)− 1
2q1(x) = 3

2x−
1
2x

2 and Q = s(T), then for any 1-eigenvector
(of either order) Y, QY = Y. Now s(x) is a polynomial with roots 0 and 3 (both of
mulitplicity 1), so the kernel of Q is the span of 1-eigenvectors and 3-eigenvectors.
However, only 1-eigenvectors belong in the kernel of p(T), as 3 is not a root of
p. Therefore, the only elements that are in the kernels of both Q and p(T) are
1-eigenvectors, precisely the kernel of q(T). We then may conclude, as Q is a
projection, that

KER[p(T)] = KER[T]⊕KER[(T− I)2].

The following example makes clear a key point, what Theorem 6 does NOT say.

Example. Let A ∈MC(3, 3) with Jordan canonical form

A ∼

2 1 0
0 2 0
0 0 3


We already know from this that NULL(A−3I) is one dimensional, NULL(A−2I)

is one dimensional and NULL[(A− 2I)2] is two dimensional. The Cayley-Hamilton
theorem tells us that indeed

pA(A) = 12I− 16A + 7A2 −A3 = 0.

However, if we pick a very large polynomial, like q(x) = (x− 1)3(x− 2)2(x− 3)(x−
10)100, then

q(A) = 0

still holds. Theorem 6 tells us that in this case

C3 = NULL[(A− I)3] + NULL[(A− 2I)2] + NULL[A− 3I] + NULL[(A− 10I)100].

This statement is techinically still true, as every eigenspace is trivial (just the zero
vector) for all values other than 2 and 3. Specifically, this theorem does NOT
guarantee that every eigenspace has full dimension, or even positive dimension!

Complex Extensions of Real Vector Spaces. We give a few basic examples of
complex extensions (that we have alreay seen in this course).

Example. Rn is a real n-dimensional vector space. Cn = Rn + ıRn is its complex
extention. It has complex dimension n.

Example. M(n, n) is a real vector space of dimension n2.

MC(n, n) = M(n, n) + ıM(n, n)
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is its complex extension. If {E`,j}n`,j=1 is the standard basis for M(n, n), then it
also a complex standard basis for MC(n, n) as well. If we wanted to treat MC(n, n)
as a real vector space, then our basis would have to be

{E`,j , ıE`,j}n`,j=1.

So dimC MC(n, n) = n2 while dimR MC(n, n) = 2n2.

Example. A ∈ M(n, n) naturally defines a linear operation on Rn. The com-
plex extension of Rn is Cn. The complex extension of A to this space is again
multiplication by A, as if Z = X + ıY, X,Y ∈ Rn, then

AZ = AX + ıAY.

We now show some examples related to Lemma 9.

Example. Let W = SPANC

{[
ı
1

]}
be a one dimensional subspace of C2. Note

that for any z = a+ ıb ∈ C,

z

[
ı
1

]
= (a+ ıb)

[
ı
1

]
=
[
−b
a

]
+ ı

[
a
b

]
So we may redefine V as

W =
{[
−b
a

]
+ ı

[
a
b

]
: a, b ∈ R

}
.

We may directly see that

W ′ = Re(W) = Im(W) = R2.

However, W 6= W ′ + ıW ′ = C2. We may verify that other equivalent conditions
fail, such as [

ı
1

]
=
[
−ı
1

]
/∈ W.

So we have an example that fails this lemma.

Example. Let W = SPANC


1
ı
1

 ,
ı1
ı

 ⊆ C3. Our basis is not closed under

conjugation, but we will see that the equivalent conditions of Lemma 9 hold forW.
In particular, let Z1,Z2 be our listed basis vectors. Then

Z1 = −ıZ2 and Z2 = −ıZ1.

So for any vector Z = c1Z1 + c2Z2 ∈ W, Z = −ıc1Z2 − ıc2Z1 ∈ W as well. To
fulfill the second condition, consider

{Re(Z1), Im(Z1),Re(Z2), Im(Z2)} =


1

0
1

 ,
0

1
0

 ,
0

1
0

 ,
1

0
1

 =


1

0
1

 ,
0

1
0

 .

This is a basis for W with elements in R3. We then may find that W ′ = Re(W) is
just the span of this basis, but over R and that W =W ′ + ıW ′.
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Finding Solutions in the Space C∞(R). We end with solutions to ODE prob-
lems.

Example.
y′′ − 6y′ + 8y = 0

has characteristic polynomial p(x) = x2 − 6x + 8 = (x − 2)(x − 4). The general
solution is then

y = c1e
2x + c2e

4x.

Example.
y′′′(x)− 3y′′(x) + 3y′(x)− y(x) = 0

has characteristic polynomial p(x) = (x− 1)3. The general solution is therefore

y(x) = c1e
x + c2xe

x + c3x
2ex.

Example.
y′′′′(x) + 2y′′(x) + y = 0

has polynomial p(x) = x4 + 2x2 + 1 = (x2 + 1)2. The general solution is

y(x) = c1 cos(x) + c2 sin(x) + c3x cos(x) + c4x sin(x).

Example.
y(7) − 2y(6) − 6y(5) + 16y(4) − 32y′′ + 32y′ = 0

has polynomial p(x) = x(x− 2)2(x+ 2)2(x2 − 2x+ 2) and general solution

y = c1 + c2e
2x + c3xe

2x + c4e
−2x + c5xe

−2x + c6e
x cos(x) + c7e

x sin(x).
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