MATH 204 C03 — DIRECT SUMS AND PROJECTIONS

JON FICKENSCHER

OUTLINE

We have discussed two notions in class that do not appear in the text: projections
and direct sums. This is designed as a supplement to the material put on the board
with extra examples. These two concepts are connected, and we express this as
Propositions 1-3 in the third section. We conclude by tying in our results to the
discussion of Proj and Orth as defined in the text.

TERMS

Let ¥V and W be a vector spaces and T : V — W a linear transformation. Then

IM(T) — Image of T
KER(T) <« Kernelof T

The span of a collection S C V is SPAN(S).
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1. PROJECTIONS
We always will assume that V is a vector space.
Definition. A linear map P :V — V is a projection if
P?=PoP=P

or equivalently
P(Y)=Y, forall Y € IM(P)

Remark. If P is a projection, then P* = Po-.--0o P = P for any n > 1 by
induction.

Example. Let T : R? — R3 be defined by the matrix

1 0 0
1 1 1
2 2 2
—_——————
A

Is T a projection? Well T2 is defined by A2, and

(1 0 0 1 0 0
AA — |1 o1 il 1 1
(TG I & S TG
L2 2 2 2 2 2
14040 04+0+0 040+0
1 1 1 1 1 1 1
= [i4+41-1 94141 og_1_1
t_t b gt 1t g 1,1
L2 4 4 4 4 4 4
1 0 0
N U Tt
A7
L2 2 2

>

So T? is defined by A, which tells us that 72 = T.
Exercise. What is IM(T") and KER(T)?

Example. The function 7' : C(R) — C(R) (C(R) is the set of real valued, continuous
functions) defined by

ﬂﬂ=47wm

is not a projection. Sure it is linear, but consider the function g(x) = .

T 2
T@:/tﬁ:ﬂ
O 2
while
) 2 x t2 1.3
T9) = 1(5) = | Gt = £100)
0
We conclude that T # T2 and so T is NOT a projection.

We have discussed a few general points about projections, as follows:
T/F: If P,Q : V — V are projections and IM(P) = IM(Q), then P = Q.

kokokok ok
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FALSE: For a simple counterexample, consider the two linear transforma-

tions defined by
1 0 11
P—{O O} andQ—[O 0].

Each define projections as P2 = P and Q? = Q. The image of each is the
z-axis in R?. But they are not the same transformation, as

oB)-B¢[-o)

If P,Q:V — V are projections such that IM(P) = IM(Q) AND KER(P) =
KER(Q), then P = Q.

kskokokok

TRUE: Call W, the mutual kernel and W; the mutual image. Consider
any X € V and let

Y = P(X) and Y’ = Q(X).
We see that QX - Y ) =Q(X)—Q(Y')=Y'-Y' =0, so

X=Y +7
where Y’ € W and Z' € W;. So it follows that
Y =P(X) = P(Y+Z)=PY)+PZ)
= Y+4+0=Y"

Therefore, for every X € V, P(X) = Q(X).

kokokok ok

Let P :V — V be a projection. There exists a unique projection @ : V — V
such that
IM(P) = KER(Q) and KER(P) = IM(Q).
KoKk
TRUE: If such a @ exists, it is unique by our previous T/F. So we simply
need to find @Q. Let
Q=1L -P

where Iy, is the identity function on V.

Exercise. Finish this argument by showing that:
- QoQ =0Q (Q is a projection).
— KER(Q) = IM(P).
— IM(Q) = KER(P).

(No single argument should have a long proof!).

kokkok ok

Let P,@Q : V — V be projections. Then P+ @ :V — V is a projection.

koKokok %k
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FALSE: We give two counterexamples, the second less trivial than the
first. Let

As long as V doesn’t consist of just one element (the zero element), then
for any X € V, X # 0,

(P+Q)(X)=P(X)+Q(X) =X+ X =2X #X.

Because (P + Q) is not the identity on its image, it is not a projection.
For our second counter example, consider ¥V = R? and

1 0 11 1
P{O 0} andQQ[1 J.
These are both projections.

Exercise. Confirm this, and determine their images and kernels.

However,
P—i—Q:;E’ ﬂ and(P—&-Q)Q:;E ﬂ
soP+Q# (P+Q)°

kokkok ok

Let P,@Q : V — V be projections. Then P+ @ : V — V is a projection if
and only if

IM(P) ¢ KER(Q) and IM(Q) € KER(P).
(Note that the above conditions imply that IM(P) N IM(Q) = {0}).

skskok ook
TRUE: First assume that
IM(P) c KER(Q) and IM(Q) C KER(P)

holds. Let Z € IM(P + @), then Z = X + Y for some X € IM(P) and
Y € IM(Q). So

(P+Q)(Z) = P(Z)+Q(Z)
= P(X)+P(Y)+Q(X)+Q(Y)
= X+0+0+Y
= Z

Because P + () is a projection on its image, it is a projection.

Now suppose that there exists X € IM(P) that does not belong to
KER(Q) and P + Q is a projection. Let Y = Q(X), and note that this is
non-zero. Then

X+Y = (P+Q)X)
(P+Q)*(X)
(P+Q)X+Y)
P(X) + P(Y) + Q(X) + Q(Y)
= X+P(Y)+2Y

PY) = -Y.
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But because Y # 0, we have a vector Y € IM(P) but P(Y) # Y, which
contradicts that P is a projection.

We may repeat the same argument by switching the roles of P and Q.
We may then conclude that if

IM(P) ¢ KER(Q) and IM(Q) C KER(P)

fails, P + @ can not be a projection.
KAk Rk

Remark. Our text refers to a class of transformations as projections. They are
technically correct, as all of their maps are projections. However, their maps are
orthogonal projections, they are projections P such that IM(P) L KER(P)
which means

XY =0, for all X € IM(P) and Y € KER(P).

In the language of the book, Projyy is the unique projection with image W and
kernel W+.
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2. DIRECT SUMS
We begin by giving a bsic definition

Definition. Let Wi, W5 C V be subspaces of vector space V. We say that V is the
direct sum of W; and Ws, or

V=W &W,

if the following two conditions holds:

(1) Wi 4+ W, = {X+Y|X eEW,,Y € WQ} =V.
“The span of W; and W, is all of V.”

(2) Wi N Wy = {0}.
“W1 and W are independent.”

Remark. We may state an equivalent definition as follows:
V=W, & Ws if every X € V may be uniquely written as

X=X+ X5
where X; € W;, i € {1,2}. We leave the proof to the reader, but we note the
following:

e Every X € V may be written as X = X3 4+ X5 if and only if V = W; + Ws.
This is the definition of Wy + Ws.

e If W, and W, are not independent, then how many ways can we express
any element in W; N W57

o If X =X, + X5 =X + X} where X} # X;, can we use the fact that both
sums equal X to find a common non-zero element in Wy N W57

Example. R?2 = R; @ Ry, where R; is the z-axis and Ry is the y-axis. There
are many more choices. Any two lines that are not parallel and pass through the
origin define two subspaces W; and W, such that their span is R? and, because
their intersection is the origin, are independent. So any X € R? may be uniquely
expressed as the sum of two points, one on the line W; and the other on line W;.

Example. Say V is a vector space with basis B = {B;,...,B,}. Let W; =
SPAN(B;,...,By) and Wy = SPAN(Bg41,...,B,,) for some 1 < k < n. Then

V=W & Ws.

The following properties were addressed in class, for V a vector space and W;
representing subspaces.:
e If everything is finite dimensional and V = W; + W, then
dim(V) < dim(Wh) + dim(Wh).
Skokokskock
Let B ={Y1,....,Y,} and B = {Zy,...,Z,,} be bases for W; and W,

respectively. Then any & € V may be expressed as Y € W) and Z € Ws.
But these are expressed as a linear combination of their basis vectors so

X:a1Y1 —|—anYn+b1Z1 ++mem
We conclude that
S= {Yl,"'aY’nazla"',Zm}
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spans V. A basis for V can be therefore expressed as a subset of S’ C S of
size k, so
dim(V) = k <n+m =dim(W;) + dim(Ws).
skoskoskoskosk

If we have finite dimensions and instead V = W; & W, then
dim(V) = dim(W ) + dim(W).

kskokokk

Exercise. Prove this equality by first noting that V = W; 4+ W, so the
above inequality holds. Given that Wi N Wy = {0}, show that S in the
previous proof is a basis for V.

kskokokk

Wi @& Wse = Wy & Wh.

kskokokk

This is just definitional given that addition and intersections commute:
Wi N We =We N W,

and
Y+Z:Z+Y, forallYEWl,ZEWQ.

Kok koK ok

W1 & Wy @ W3 = (W1 & Ws) & Ws.
All we are saying here is that if &Y = W; @ Wy (any vector in U may be
uniquely expressed as a sum of vectors in Wy and W), then

UD W3 =W, S Wo @ Ws.

This says that any X € U @ W5 may be uniquely written as X =Y + Z for
someY € U and Z € Ws. Because Y = Y + Y5 for some unique Y, € W,
and Yy € Wy,

X=Y1+Yy+Z

and these choices are all unique.
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3. THE RELATIONSHIP BETWEEN THE TwWO

We finish by making some useful remarks about the relationship between direct
sums and projections. Namely a direct sum W;®W, exists if and only if a projection
exists with image W; and kernel W,. We prove this in the first two propositions
below. We conclude with the relationship between projections P, @ and P + @ (if
this is indeed a projection!).
Proposition 1. If P:V — V is a projection, then

V = IM(P) & KER(P).
Proof. We first will show that V = IM(P) + KER(P). The first inclusion, IM(P) +
KER(P) C V, is clear as each set on the right is a subspace of V, so their sum will
be a subset as well. We then need to show that V C IM(P) +KER(P). Let X € V.
Let Y=P(X) e IM(P) and Z=X —-Y. Then X =Y + Z and
P(Z)=P(X-Y)=P(X)-P(Y)=Y-Y=0

or Z € KER(P). So X € IM(P) + KER(P). This finishes the proof of equality.

We now show that IM(P)NKER(P) = {0}. 0 is contained in the intersection, so

we show that any vector in this set must be 0 as well. Let X € IM(P) N KER(P).
Then

XeIM(P) XeKER(P)
|
Proposition 2. If V is a vector space and Wi, Wa C V are subspaces such that
V=W é&W,,
then there exists a unique projection P : V — V such that IM(P) = Wy and
KER(P) = W;.
Proof. Any X € V has a unique expression X = Y +Z, where Y € W and Z € W;.
So the transformation P : V — V defined by
PX)=Y
is well defined. We now show that P is linear. The zero element is uniquely
expressed as 0 =0+ 0, so
P(0)=0.
If X, X’ € V, they have unique expressions
X=Y+Zand X' =Y+ 7
where Y, Y’ € Wy and Z,Z' € Wy. X+ X’ may be expressed (just by addition) as
X+X'=Y+Y'+Z+7Z.
This must be the expression for X + X’ by uniqueness. So
PX+X)=Y+Y =PX)+P(X).
By the same reasoning X =Y + Z implies that ¢X = ¢Y + ¢Z for any scalar ¢, so
P(eX) =cY = cP(X).
Now we need show that

e P is a projection.
e P has image W, and kernel W;.
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If P(X)=7Y, Y has the unique sum Y =Y + 0, so
P%(X) = P(P(X)) = P(Y) =Y = P(X).

Therefore P? = P so it is a projection.
By our choice of P, IM(P) C W;. We now show that W; C IM(P). As before,
if Y € Wy, its unique sum is Y =Y + 0, so

P(Y)=Y € IM(P).
Exercise. Show that KER(P) = Wh.

e Show that if Z € Wy, then P(Z) = 0.
e If P(X) = 0, write the unique sum X =Y + Z. What can you say about
Y? What does this say about X?

O

Our final claim concerns sum of projections.

Proposition 3. Suppose P,Q : V — V are projections. Assume that P+ Q is a
projection as well. Then

IM(P + Q) = IM(P) ® IM(Q)
and
KER(P + Q) = KER(P) N KER(Q).
This implies that
Y =IM(P) ® IM(Q) ® KER(P) N KER(Q)
as well.

Proof. We assume that P, Q and P + @ are projections. It follows immediately
that

IM(P 4+ @) = IM(P) + IM(Q).
Because P + (@ is a projection, we proved at the end of the section on projections
that (among other things) IM(P) C KER(Q). We see that

{0} € IM(P) NIM(Q) € KER(Q) NIM(Q) = {0},
so IM(P + Q) = IM(P) & IM(Q).

k3kokokk

If Z € KER(P) N KER(Q), then
(P+Q)(Z)=P(Z)+Q(Z)=0+0=0.
So KER(P) N KER(Q) C KER(P + Q)

k3kkokk

Now assume Z € KER(P + Q). Then
0=(P+Q)(Z)=P(Z)+Q(Z).
This may happen if and only if
P(Z) = -Q(2Z).
This result is an element of IM(P) by the left hand side and an element of IM(Q)

by the right hand side. Because IM(P) N IM(Q) = {0}, each side must be 0, so
Z € KER(P) N KER(Q). O
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4. ORTHOGONAL PROJECTIONS

We end with a note about Projy and Projyy as listed in the text. Here YV = R"
and we have a notion of orthogonality. If Y # 0, then Projy defined as

XY

Projy(X) = Y v

Y.
We discussed in class the following:
Exercise. Show that Projy is a projection and has image SPAN(Y) and kernel
Y1 = (SPAN(Y))*.
What about Projw? Well, if {Y1,..., Y} is an orthonormal basis for subspace

W, then consider each projection Py, = Projy,.

Exercise. Show that Py = Py, +--- + Py, is a projection.
(How do the images and kernels of each Py, relate to each other?)

We know from Proposition 3 that
IM(Py) = IM(Py,) @ --- @ IM(Py, ) = W.

Also,
KER(Py) = KER(Py,) N---NKER(Py,).

Exercise. Show that the right hand side is W+*.

So this is indeed the orthogonal projection on WW. What the text calls Orthyy is
the unique projection with image W+ and kernel W. Given our results in Section
1, we may simply point out that Othry, can be nothing else than

Orthyy = I — Projyw

where [ is the identity function on R™.
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