ENERGY CONSERVATION AND ONSAGER’S CONJECTURE
FOR THE EULER EQUATIONS
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ABSTRACT. Onsager conjectured that weak solutions of the Euler equa-
tions for incompressible fluids iR? conserve energy only if they have a
certain minimal smoothness, (of orderlof3 fractional derivatives) and
that they dissipate energy if they are rougher. In this paper we prove
that energy is conserved for velocities in the function spiai,{é’(N). We
show that this space is sharp in a natural sense. We phrase the energy
spectrum in terms of the Littlewood-Paley decomposition and show that
the energy flux is controlled by local interactions. This locality is shown
to hold also for the helicity flux; moreover, every weak solution of the
Euler equations that belongs E;/CS(N) conserves helicity. In contrast,

in two dimensions, the strong locality of the enstrophy holds only in the
ultraviolet range.

1. INTRODUCTION

The Euler equations for the motion of an incompressible inviscid fluid
are

ou
Q) N + (u-V)u=—Vp,

(2) V.-u=0,

whereu(z,t) denotes the-dimensional velocityp(z,t) denotes the pres-
sure, andr € R%. We mainly consider the case= 3. Whenu(z,t) is a
classical solution, it follows directly that the total eneffgt) = 3 [ |u|* dx

is conserved. However, conservation of energy may fail for weak solutions
(see Scheffer [27], Shnirelman [26]). This possibility has given rise to a
considerable body of literature and it is closely connected with statistical
theories of turbulence envisioned 60 years ago by Kolmogorov and On-
sager. For reviews see, for example, Eyink and Sreenivasan [16], Robert
[25], and Frisch [17].

Date April 3, 2007.
2000Mathematics Subject ClassificatioRrimary: 76B03; Secondary: 76F02.
Key words and phraseguler equations, anomalous dissipation, energy flux, Onsager
conjecture, turbulence, Littlewood-Paley spectrum.
1



2 A. CHESKIDOQV, P. CONSTANTIN, S. FRIEDLANDER, AND R. SHVYDKOY

Onsager [24] conjectured that in 3-dimensional turbulent flows, energy
dissipation might exist even in the limit of vanishing viscosity. He sug-
gested that an appropriate mathematical description of turbulent flows (in
the inviscid limit) might be given by weak solutions of the Euler equations
that are not regular enough to conserve energy. According to this view, non-
conservation of energy in a turbulent flow might occur not only from vis-
cous dissipation, but also from lack of smoothness of the velocity. Specif-
ically, Onsager conjectured that weak solutions of the Euler equation with
Holder continuity exponent > 1/3 do conserve energy and that turbulent
or anomalous dissipation occurs whier< 1/3. Eyink [14] proved energy
conservation under a stronger assumption. Subsequently, Constantin, E and
Titi [9] proved energy conservation farin the Besov spacBs’, o > 1/3.

More recently the result was proved under a slightly weaker assumption by
Duchon and Robert [13].
In this paper we sharpen the result of [9] and [13]: we prove that energy is

conserved for velocities in the Besov space of tempered distribuﬂé{ﬁs

In fact we prove the result for velocities in the slightly larger spBééS(N)

(see Section 3). This is a space in which theéldier exponent” is exactly

1/3, but the slightly better regularity is encoded in the summability condi-
tion. The method of proof combines the approach of [9] in bounding the
trilinear term in (3) with a suitable choice of the test function for weak so-
lutions in terms of a Littlewood-Paley decomposition. Certain cancellations
in the trilinear term become apparent using this decomposition. We observe

that the spacé?isz) is sharp for our argument by giving an example of a

divergence free vector field IB;;/; for which the energy flux due to the tri-
linear term is bounded from below by a positive constant. This construction
follows ideas in [14]. However, because it is not a solution of the unforced
Euler equation, the example does not prove that indeed there exist unforced
solutions to the Euler equation that IiveBifoi and dissipate energy.

Experiments and numerical simulations indicate that for many turbu-
lent flows the energy dissipation rate appears to remain positive at large
Reynolds numbers. However, there are no known rigorous lower bounds
for slightly viscous Navier-Stokes equations. The existence oblalet-
continuous weak solution of Euler's equation that does not conserve en-
ergy remains an open question. For a discussion see, for example, Duchon
and Robert [13], Eyink [14], Shnirelman [27], Scheffer [26], de Lellis and
Szekelyhidi [12].

We note that the proof in Section 3 applied to Burger’s equation for 1-
dimensional compressible flow gives conservation of energ?é;@m. In
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this case it is easy to show that conservation of energy can fdﬂ%jﬁ
which is the sharp space for shocks.

The Littlewood-Paley approach to the issue of energy conservation ver-
sus turbulent dissipation is mirrored in a study of a discrete dyadic model
for the forced Euler equations [5, 6]. By construction, all the interactions
in that model system are local and energy cascades strictly to higher wave
numbers. There is a unique fixed point which is an exponential global at-
tractor. Onsager’s conjecture is confirmed for the model in both directions,
i.e. solutions with bounded®/® norm satisfy the energy balance condi-
tion and turbulent dissipation occurs for all solutions wheni€® norm
becomes unbounded, which happens in finite time. The absence of anoma-
lous dissipation for inviscid shell models has been obtained in [10] in a
space with regularity logarithmically higher thap3.

In Section 3.2 we present the definition of the energy flux employed in
the paper. This is the flux of the Littlewood-Paley spectrum (see [7]), which
is a mathematically convenient variant of the physical concept of flux from
the turbulence literature. Our estimates employing the Littlewood-Paley de-
composition produce not only a sharpening of the conditions under which
there is no anomalous dissipation, but also provide detailed information
concerning the cascade of energy flux through frequency space. In section
3.3 we prove that the energy flux through the sphere of ragliisscon-
trolled primarily by frequencies of order. Thus we give a mathematical
justification for the physical intuition underlying much of turbulence the-
ory, namely that the flux is controlled by local interactions (see, for exam-
ple, Kolmogorov [18] and also [15], where sufficient conditions for locality
were described). Our analysis makes precise an exponential decay of non-
local contributions to the flux that was conjectured by Kraichnan [19].

The energy is not the only scalar quantity that is conserved under evolu-
tion by classical solutions of the Euler equations. For 3-dimensional flows
the helicity is an important quantity related to the topological configura-
tions of vortex tubes (see, for example, Moffatt and Tsinober [23]). The
total helicity is conserved for smooth ideal flows. In Section 4 we observe
that the techniques used in Section 3 carry over exactly to considerations of
the helicity flux, i.e., there is locality for turbulent cascades of helicity and
every weak solution of the Euler equation that belongBiﬁ(N) conserves
helicity. This strengthens a recent result of Chae [2]. Once again our argu-
ment is sharp in the sense that a divergence free vector fieﬂ’@ﬁman be
constructed to produce an example for which the helicity flux is bounded
from below by a positive constant.



4 A. CHESKIDOQV, P. CONSTANTIN, S. FRIEDLANDER, AND R. SHVYDKOY

An important property of smooth flows of an ideal fluid in two dimen-
sions is conservation of enstrophy (i.e. thenorm of the curl of the ve-
locity). In section 4.2 we apply the techniques of Section 3 to the weak
formulation of the Euler equations for velocity using a test function that
permits estimation of the enstrophy. We obtain the result that, unlike the
cases of the energy and the helicity, the locality in the enstrophy cascade is
strong only in the ultraviolet range. In the infrared range there are nonlo-
cal effects. Such ultraviolet locality was predicted by Kraichnan [20] and
agrees with numerical and experimental evidence. Furthermore, there are
arguments in the physical literature that hold that the enstrophy cascade is
not local in the infrared range. We present a concrete example that exhibits
this behavior.

In the final section of this paper, we study the bilinear té¥fa, v). We
show that the trilinear mapu, v,w) — (B(u,v),w)) defined for smooth

vector fields inZ* has a unique continuous extension{li@llgf7 ,}* (and a

fortiori to {H°/%}3, which is the relevant space for the dyadic model prob-
lem referred to above). We present an example to show that this result is
optimal. We stress that the borderline space for energy conservation is much
rougher than the space of continuity fd8(u, v), w).

2. PRELIMINARIES

We will use the notation\, = 27 (in some inverse length units). Let
B(0,r) denote the ball centered@bf radiusr in R¢. We fix a nonnegative
radial functiony belonging toC3°(B(0, 1)) such thaty({) = 1 for |£] <
1/2. We further define

3 p(€) = x(ATE) — x(6).

Then the following is true

4) XE)+D e =1,
q>0
and
(5) Ip— gl > 2= Supp (X, ') N Supp (A, ") = 0.

We define a Littlewood-Paley decomposition. Let us denoteFbthe
Fourier transform ofR?. Leth, h, A, (¢ > —1) be defined as follows:
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h=F"1'v and h= F 'y,
Agu=FH(p(A;1§)Fu) = Aif/h(Aqy)U(x —y)dy, ¢ =0

Aoy =F (O F0) = [ Fyuta —)dy.

For @ € N we define

Q
(6) So= > A,

q=-1
Due to (3) we have
(7 Squ = F (x(Agh ) Fu).
Let us now recall the definition of inhomogeneous Besov spaces.

Definition 2.1. Lets € R, and1 < p,r < oo. The inhomogeneous Besov
spaceB; , is the space of tempered distributiomsuch that the norm

def
lull g, E 1A vullzs + || (518 g0l 20)

er(N)
is finite.

We refer to [3] and [21] for background on harmonic analysis in the con-
text of fluids. We will use the following Bernstein inequalities.

Lemma 2.2.
d(3-3)
|AGullpe < Ag® P ||Agullpe forb>a > 1.
As a consequence we have the following inclusions.

Corollary 2.3. If b > a > 1, then we have the following continuous em-
beddings

sa(1-1)
(8) B,, C B, ,
(9) By, C L% fora >2.

In particular, the following chain of inclusions will be used throughout
the text.

(10) HE(R®) C BJ ,(R*) C B}, ,(R?) C Bi,(R?).

1O Wl
= ol
\I‘m |
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3. ENERGY FLUX AND LOCALITY

3.1. Weak solutions.

Definition 3.1. A functionu is a weak solution of the Euler equations with
initial data vy € L*(R?) if u € C,([0,T]; L*(R%)), (the space of weakly
continuous functions in time) and for evety € C'([0,T]; S(R?)) with
S(R?) the space of rapidly decaying functions, with - ) = 0 and0 <

t <T,we have

(11)

(u(t), () — (u(0), (0)) — / (u(s), 0.46(s))ds = / b(u, %, u)(s)ds,

where

(u,v) = / u - vdx,
]Rd

b(u,v,w) = / u-Vou-wdr,
Rd
andV, - u(t) = 0 in the sense of distributions for everg [0, 7.

Clearly, (11) implies Lipschitz continuity of the maps— (u(t), ) for
fixed test functions. By an approximation argument one can show that for
any weak solutiom of the Euler equation, the relationship (11) holds for all
1 that are smooth and localized in space, but only weakly Lipschitz in time.
This justifies the use of physical space mollifications.@fs test functions
1. Because we do not have an existence theory of weak solutions, this is a
rather academic point.

3.2. Energy flux. For a divergence-free vector fieldc L? we introduce
the Littlewood-Paley energy flux at wave numbey by

(12) Iy = / Tr[So(u ® u) - VSquldx.
R3
If u(t) is a weak solution to the Euler equation, then substituting the test

functiony) = S%u into the weak formulation of the Euler equation (11) we
obtain

(13) Mo(t) = 5— 1 Squ(t)ll2-

A3, <0
(14) K(q) = { L3 =
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For a tempered distributiomin R? we denote
(15) dg = N2 Agulls,
(16) d* = {d3}g>-1-

Proposition 3.2. The energy flux of a divergence-free vector field L
satisfies the following estimate

(17) | < C(K +d*)**(Q),
whereC > (0 is an absolute constant.

The proof of Proposition 3.2 will be given later in this section. From (17)
we immediately obtain
(18) hgl sup Tlg| < lim sup d).

We define, " to be the class of all tempered distributianin R® for
which

(19) Tim A Aqulls =0,

1/3

and hencel, — 0. We endowB, %, with the norm inherited fronB;’

3,00
Notice that the Besov spac%f’ for1 < p < oo, and in particularB?l,’/Q3

. . 1/3
are included inB/ .

As a consequence of (13) and (18) we obtain the following theorem.
Theorem 3.3. The total energy flux of any divergence-free vector field in

the cIassB;/sz) N L? vanishes. In particular, every weak solution to the

Euler equation that belongs to the clas¥([0, T'); B;L?EN)) N Cyw([0,T]; L?)
conserves energy.

Remark 3.4. We note tha{13) and (18) imply that every weak solutiom
to the Euler equations oft, 7] conserves energy provided the following
weaker condition holds

T
lim / AllAull3 dt = 0.
= Jo
Spaces defined by similar conditions were used ,iig].

Proof of Proposition 3.21n the argument below all the inequalities should
be understood up to a constant multiple.
Following [9] we write

(20) Sp(u®@u) =rg(u,u) — (u— Sgou) ® (u — Sgu) + Squ ® Sgu,
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where

ro(u, u) = /RS ho(y)(u(r —y) — u(2)) ® (u(x —y) — u(z))dy,

ha(y) = Ao 11h(Agiy)-
After substituting (20) into (12) we find
(21) Il = /R3 Tr[rg(u,u) - VSqu|dx
(22) - /]Ra Tr[(u — Sgu) ® (u — Squ) - VSguldx.
We can estimate the term in (21) using théldéter inequality by

lrq(u, w)lls/2llV Squlls,

whereas

23 ro(ww)ls < / o) u(- = ) = u()li3ay.
Let us now use Bernstein’s inequalities and Corollary 2.3 to estimate

(24) (- —y) = ()< D WPAIAuE + D 1Aul

a<Q >Q
_\4/3 —4/3 —2/3 2/3
(25) - )‘Q MQ Z )‘qu d(21 + )‘Q Z Aqudz
a<Q >Q
(26) < OGP + 27K + d)(Q).

Collecting the obtained estimates we find

/ Tr[rg(u,u) - V.Squ|dx
R3

1/2

< (K +d*)(Q) ( /R o) A Iy dy + Agf/?’) [Z Aol Aqull3

q<Q

- 1/2
< (K «d) (@A |3 A;*/de]
Lg<@

< (K =d*)*?(Q)
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Analogously we estimate the term in (22)

/R3 Tr[(u — Squ) ® (u — Squ) - VSgu|dx

< lu = Squll5l[VSqulls

< (Z IIAqU||§> (Z A?IIIAqUH§> :

>Q 9<Q

< (K +d?)°P*(Q).

This finishes the proof.
O

3.3. Energy flux through dyadic shells. Let us introduce the energy flux
through a sequence of dyadic shells between scales. @y < Q1 < oo
as follows

(27) HQle = / Tr[SQle (u ® u) ' VSQleu] dx,
R3
where
(28) SQu@r = Z Ag = 5q, — 5q,
Qo<g<Q1

If u is a weak solution of the Euler equations, then

o = —24 5™ 812
q=Qo

We will show that similar to formula (17) the flux through dyadic shells
is essentially controlled by scales near the inner and outer radii. In fact it
almost follows from (17) in view of the following decomposition

Soear = (Sqi — Sqo-1)?
= 50, + S5,-1 — 25g,-15a;
(29) — 3, 4+ 5%, 1 — 250,41
=55, — Shy-1 — 25go-1(1 — Sgo-1)
=55, — Spp_1 — 28qp—1A¢,-

Therefore

(30) HQle = HQI - HQO*l —2 /]R?’ TY[AQO (u ® u) ' VAQOU] dx?
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where

31) Bou) = [ hau(w)ute =) dy

andhq, (z) = F~, [o(0gh_1©)p(Aghe).

Note that the flux through a sequence of dyadic shells is equal to the
difference between the fluxes across the dyadic spheres on the boundary
plus an error term that can be easily estimated. Indeed, let us rewrite the
tensor product term as follows

(32) AQO (u®@u) =7g,(u,u) + AQOu Qu+uR AQOu,
where

ro(u,u) = /Rs ho(y)(u(z —y) — u(@) & (u(z —y) — u()) dy.

Thus we have
/ Tr[Ag, (u ® u) - VAg,u] dx = / Tr[rg(u,u) - VAg,u] dx
R3 R3

— | Agyu-Vu-Agudz

R3

Let K(q) = )\|;|2/ ®. We estimate the first integral as previously to obtain

(33) < d, (K = d*)(Qo).

/ Tr[Fg, (u, u) - VAg,u] dx
R3
As to the second integral we have

/ Agyu - VSg,u - Agyudx
R3

< dgy, (K = d*)'*(Q).

(34) /R3 Agou - Vu - Ag,udx

Applying these estimates to the flux (30) we arrive at the following con-
clusion.

Theorem 3.5. The energy flux through dyadic shells between wavenumbers
A, and g, is controlled primarily by the end-point scales. More precisely,
the following estimate holds

(35) Hguau| < CK * d*)*2(Qo) + C(K + d*)*(Qu),

whereC > ( is an absolute constant.
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3.4. Construction of a divergence free vector field with non-vanishing
energy flux. In this section we give a construction of a divergence free

vector field inBéfg(R:”) for which the energy flux is bounded from below

by a positive constant. This suggests the sharpneggc%g) (R3) for energy
conservation. Our construction is based on Eyink’s éxample on atorus[14],
which we transform t@®R?3 using a method described below.

Let xq(€) = x(Ag4.€)- We defineP;- for vectorst € R, ¢ # 0 by

Pro=v—[¢[2(v-&)¢ = (I- [ 2(€®¢)v

3
for v € C* and we use - w = » _v;w; for v,w € C°.
j=1

Lemma 3.6. Let ®,(x) beR* — valued functions, such that

o= [ llFouelds < .

Let also ¥, (z) = P(e**d,(z)) whereP is the Leray projector onto the
space of divergence free vectors. Then

GO ) -] <
and

1
(37) sgp ‘(S%\Ilk)(x) - Xé(k)“pk(xﬂ < (2;)3 >\Qil’

wherec is the Lipschitz constant f(¢)2.

Proof. First, note that for any, ¢ € R? andv € C* we have

<v-§>§+<v-£2>k‘ o R L vy 4
38) € TR | Tk (R A
_ lellé + 4
N

In addition, it follows that
(v-k)E | (w-Ok| _ [(v-(k+E))k|
|k [? k|2 k|2
L olle+ k)
k|

(39)
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Adding (38) and (39) we obtain

-€)E k)E
|P§LU—P]€LU|: (U‘€|2) _<U|k,‘2) ‘
(v-6)¢ <v-s>k’ (0 Wk (v-Ok
40
(40) S N e TR
olle + &
2—
=2

Using this inequality we can now derive the following estimate:

(41)
|Vi(x) — (P ) ()] = |F 7P (FO)(E + k) — P (FO)(€ + K)]]

< o [ 25w e g

= [ JelFR©] e

Finally, we have

(42)
(S Pk) (%) — x@(k)*Wr(z)] = |F " [(x(€)* — xa(k)*)(Fx)(&)]]

< Gy / M e+ i

-\ / E(FB)(©)] de,

wherec is the the Lipschitz constant gf¢)2. This concludes the proof.]

Example illustrating the sharpness of Theorem N\New we proceed to
construct a divergence free vector field Bif;(Ri*)) with non-vanishing
energy flux. Let/ (k) be a vector field/ : Z3 — C3 as in Eyink's example
[14] with

U(Ag;0,0) = iA;3(0,0,—1),  U(=A;,0,0) =i\, 1/3<0 0,1),

<0A,0>—M;1/3<1,0,1>, U(0, =X, 0) =i\ 3(=1,0, - 1),

U(Ags Mgy )—M;l/?’(o,o,n, U(=M,, Aq,O): 2 73(0,0,-1),
U(Ag, —Ag,0) =X, 3(1,1,-1),  U(=), )\q,())—z)\ 3(-1,-1,1),
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for all ¢ € N and zero otherwise. Denoje = F'(x(4:)) and A =
Jgs p(x)? dz. Sincex(§) is radial p( ) is real. Moreover,

A:/ pla)de =

(27)0 / / — 1)) x(4€) dnd§ > 0.

]P)ZU zkx

keZ3

Note thatu € B;/2 (R?). Our goal is to estimate the flX,, for the vector
field u. Define

@y, = |k|"3U (k) p(x) and  Wi(z) = P(e*"d(2)).

Then clearly®,(z) and ¥, (x) satisfy the conditions of Lemma 3.6, and we
have

(43) u() = > [k ().

kez3\{0}

Now let

Now note that
Uy, - VS{Uk, = Uy, - SHPIV (27D, )]
= i(Ug, - k2)SH Vs, + Uy, - SHP(e™2VDy,,).
In addition, the following equality holds by construction:
(45) P, = &, Vk € 7.

Define the annulusly = Z° N (B(0, A\g+2) \ B(0,Ag-1)). Thanks to
Lemma 3.6, for any sequenckegQ), k2(Q), k3(Q) € Ag with ky + ke =
ks, we have

/Rg@’“ : vsgxp,@) -y, da

(44)

=i [ (g, - ko)SEWy, - UF dx + O(N
agy =L e kS, W O0)

—i /R (€, k) gk By, - e R, i+ O(N)

= i(|ky|[ka|[ks]) P AU (k1) - k2)x@(k2)?U(ka) - Ulks)™ + O(XD).

On the other hand, since the Fourier transforn¥’gfis supported in
B(k,1/4), we have

(47) [ vsgwn) v de o
]R3
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wheneverk; + ko # k3. In addition, due to locality of interactions in this
example, (47) also holds H, \ {k1, ks, k3} # 0 for all ¢ € N. Finally,

(48) /(\Ilkl-vsg%)-\lf;;gdx+/ (g, - VS{U,) - Uy dx =0,
R3 R3

wheneverk, ¢ Ag andk; ¢ Ag. Hence, the flux for can be written as

(49) Tp=- Y. (|k1|!k2|\k3|)_1/3/, (W, - VS, - Uy, da.
k1,k2,k3€Aq R?
k1+ko+k3=0

By construction of the vector fieltl, the number of nonzero terms in the
above sum is independent@f Therefore, thanks to (46) we have

(50) I = Allg + O(A5"),
wherelly, is the flux for the vector field, i.e.,

(51) ﬁQ = E i(U(ky) - k‘2)XQ(k?2)2U(k2) - U(ks).
k1,k2,ks€Aq
k1+ko+k3=0

The quxﬁQ has only the following non-zero terms (see [14] for details):

— ) Uik — ks) - ka)Us(ks) - Us(ks)(xq(k2)* — xo(ks)?)
lk2|=Aq
lka|=v2Xq

> 4(x(1/2)* — x(1/v2)?),

and
— ) Uik — ks) - ka)Ua(ks) - Us(ks)(xq(k2)* — xo(ks)?)
lk2|=v2Xq
lk3|=2Aq
> 4(x(1/v2)* = x(1)?).
Hence

Mg > 4(x(1/2)* = x(1/v2)* + x(1/v2)* = x(1)*) = 4.
This together with (50) implies that

lim inf Tlg > 4A.
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4. OTHER CONSERVATION LAWS

In this section we apply similar techniques to derive optimal results con-
cerning the conservation of helicity in 3D and that of enstrophy in 2D for
weak solutions of the Euler equation. In the case of the helicity flux we
prove that simultaneous infrared and ultraviolet localization occurs, as for
the energy flux. However, the enstrophy flux exhibits strong localization
only in the ultraviolet region, and a partial localization in the infrared re-
gion. A possibility of such a type of localization was discussed in [20].

4.1. Helicity. For a divergence-free vector field € H'/? with vorticity
w =V x u € H™'/? we define the helicity and truncated helicity flux as
follows

(52) H = u-wdr

R3
(53) Hg = / Tr[So(u® u) - VSqw + So(u Aw) - VSqu] dz,
R3

whereu A w = © ® w — w ® u. Thus, ifu was a solution to the Euler
equation, ther{, would be the time derivative of the Littlewood-Paley
helicity at frequency\,

/ Squ - Sqw dx.
R3

Let us denote

(54) by = N2/3|| Agulfs,
(55) b2 = {bg 20:717
and as before

£\2/3 <0
56 K(q) = ¢ =
(56) (¢) { )\;4/3’ q¢>0,

Proposition 4.1. The helicity flux of a divergence-free vector field H'/?
satisfies the following estimate

(57) Hq| < C(K *b)**(Q).

Theorem 4.2. The total helicity flux of any divergence-free vector field in

the classB;", N HY/? vanishes, i.e.

(58) lim Hq = 0.

Q—o0
Consequently, every weak solution to the Euler equation that belongs to the
classL3([0, T7; Bgsz)) N L>=([0,T]; H'/?) conserves helicity.
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Proposition 4.1 and Theorem 4.2 are proved by direct analogy with the
proofs of Proposition 3.2 and Theorem 3.3.

Example illustrating the sharpness of Theorem 4\& can also construct

an example of a vector field irB§£3(R3) for which the helicity flux is
bounded from below by a positive constant. Indeed[1ét) be a vector
field U : Z* — C3 with

U(EAg,0,0) = A, 7%(0,0, -1),
U0, 4X,,0) = A\, 2/3(1 0,1),

U(FAg, £24,0) = A, %3(0,0,1),
U(+Ng, A 0) = A 2/3(1,1, 1),

for all ¢ € N and zero otherwise. Denote as befpre: 71(x(4:)), A =
Jgs p(2)? dz, and let

(59) =P U(k)e*p

keZ3

Note thatu € B3’2 (R?). On the other hand, a computation similar to the
one in Section 3 4 yields

(60) lim inf [H| > 44

4.2. Enstrophy. We work with the case of a two dimensional fluid in this
section. In order to obtain an expression for the enstrophy flux one can use
the original weak formulation of the Euler equation for velocities (11) with
the test function chosen to be

(61) ) =V+Siw.
Let us denote byl the expression resulting on the right hand side of (11):

(62) Qo = / Tr [So(u®@u) - VVSqw] dz
R2
Then
1d
(63) Qg = 2dtHSQWH2

As before we write
Qp = / Tr [ro(u, u) - VV*Sow] dx
R2

+ / Tr [(u — Sou) ® (u — Squ) - VV*Sqw] dz
R2
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Let us denote

(64) Cq = [[Agwlls,
(65) 62 = {Cz 21—17
A2 ¢ <0;
_ q’ = Y,
(66) wio={ 3 150

We have the following estimate (absolute constants are omitted)

91 < [ [fa)] (19Squiflul + (7 = Sq)ull) IV Squludy
+ I~ So)ullV*Sguls

1/2
< ()\QQHSQng + Z )\q2cg> (Z Agcz)

>Q a<Q
1/2
-2 2 42
() (o)
>Q 9<Q
1/2 1/2
<tself (Y0 ed) (St (D03 )
a<Q >Q q<Q

< [[Sqwll3(W * ) 2(Q) + (W = &)**(Q)
Thus, we have proved the following proposition.

Proposition 4.3. The enstrophy flux of a divergence-free vector field satis-
fies the following estimate up to multiplication by an absolute constant

(67) Q0] < [ISqull3(W = *)V2(Q) + (W = *)*/*(Q).

Consequently, every weak solution to the 2D Euler equation
withw € L3([0,T]; L?) conserves enstrophy.

Much stronger results concerning conservation of enstrophy are available
for the Euler equations ([15], [22]) and for the long time zero-viscosity limit
for damped and driven Navier-Stokes equations ([11]).

Example illustrating infrared nonlocalityWWe conclude this section with a
construction of a vector field for which the enstrophy cascade is nonlocal in
the infrared range. Let, = arcsin(\,—g_2) and

(68) U; = (cos(6,), —sin(b,)), U(]; = (sin(f,), cos(6,)),
(69)
k; = AQ(Sin(QQ)v COS<9¢]>>7 kh = ()‘2Q+2 o /\3)1/2(COS(GQ>7 - sin(Qq)),

q
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A

S}
]
, 3 TV
h i >
\ h /i
\ 0 k 0 UQ : 1
~_|n 2 4
2Q+1
\_ _______

FIGURE 1. Construction of the vector field illustrating in-
frared nonlocality.

see Fig. 4.2 for the cage= Q. Denotep(z) = dh(dx), A = Jgs p(x)? do =
s B(2)? dx. Note thatA > 0 and is independent &t Now let

(70) u;(x) = ]P’[U; Sin(k; ~x)p(z)], ug(x) = }P’[U(]]rl sin(kf]1 ~x)p(z)].
Let
(71) ug(x) = uz(x) + up(z)
forg=0,...,Q, and
(72) ugn(®) = PIV sin(q 21)p(x)),
wherel” = (0, 1). Now define
Q+1
(73) u(x) = Zuq(x).
=0

Our goal is to estimate the enstrophy flux far Since Fu is compactly
supported, the expression (62) is equivalent to

(74) Qo = / (u-V)SPw - wdz.
R3

It is easy to see that

Q
(75) Qo > Z/R (up - V)SH(VE - up) (V- ugs) da.
q=0
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Using Lemma 3.6 we obtain

Q
Qg > A [UNIUL AgialV] + O(9)

q=0

(76) .
= Aoral[Bgiaulla Y2 XAl + OG),

q=0
which shows sharpness of (67) in the infrared range.
5. INEQUALITIES FOR THE NONLINEAR TERM

1
We taked = 3 and considew,v € B3, with V - u = 0 and wish to
examine the advective term

(77) B(u,v) =P(u-Vv) = AH(u ® v)
where
(78) [H(u ®v)]; = Rj(ujv;) + Ri( Re Ry(ugvr))

andPP is the Leray-Hodge projectof\, = (—A)% is the Zygmund operator
andR;, = 0,A~" are Riesz transforms.

Proposmon 5.1. The bilinear advectlve ternB(u v) maps continuously
the spaceB3 5 X B 3 to the spaceB3 ; + B . More precisely, there exist
bilinear continuous maps§’'(u, v), I( v) so that B(u,v) = C(u,v) +
I(u,v) and constantg’ such that, for alku, v € B% with V- u = 0,

7 1< 1 1
(79 (0}l < Ol Toll .
20
and
(80) IHu,v)|| _2 <C|u| 1 |v] 1
100 < Clllg ol
hold. Ifu,v,w € B , then
77
(81) B(u,v),w)| < C||ul| 1 |v| 2 ||lw] 1
(B0l < Clll el ool
T2 K K

holds. So the trilinear mapu, v, w) — (B(u,v),w) defined for smooth

1 3
vector fields inL? has a unique continuous extension{t@i8 2} and a
s

-3 3
fortiori to {H%} .
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2

Proof. We use duality. We takes smooth {v € B; ) and take the scalar
47

product

(B(u,v),w) = /RS B(u,v) - wdx

We write, in the spirit of the paraproduct of Bony ([1])

(82) A (B(u,v)) = Cy(u,v) + I;(u,v)

with

(83) Colu,v) = > AJAH(Apu, Ayv))
p>q—2, [p—p'|<2

and

(84)

2
Iy(u,v) = > [AGAH(Syrjou, Agyjv) + AgAH(Syrj o0, Agyju)]

j=—2

We estimate the contribution coming from tag(u, v):

> HC(u,v), w)]

q

-2 1 1
<C Y > AN A Al A3 Ay o] s | Agw]| s

lg—q’'|<1 pZQq—Z, lp—p'|<2 ,
=C 3 NI Al A A vl D A AR A W]

lp—p'|<2 q<p+2,lg—¢'|<1

1 1
<O Y IAs A ]| A3 Aol lell
lp—p'|<2
< Cllul],

Lo

2

sl g el o
3,2 3,2 By,

This shows that the bilinear map(v, v) = > ., C,(u, v) maps continu-
; >
ously{Biz} to B; and
< 1 1 1
(85) (O, 0),w)] < Clul y 1ol ol

3, 2
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The terms/, (u, v) contribute

> (T (u, ), w)

<C >0 AISeri—ull g 1Al | Agw]| g
7152, |l¢—¢'|<1
+ > AlSari—2vll g A ulls | Agw]l
171<2, l¢—¢'|<1 X ,
SCOllall y Y AdllAgsvllesAdllagw] g

B2 |jl<2,lg—¢'|<1 1 i
ST A Aull A 1 Aw] g
171<2,lg—¢'I<1

< Cllull g 1ol Tl

5 3,2

+C|l]l

1
3
3,2

Here we used the fact that

sup || Squl| 3 < Cflul]
q>0

1
B3
3

This last fact is proved easily:

m\»—‘

1Sg(w)l g < ZIA UF

J<q L3

1
{Z!\AjU\IQLg} < Cllull
B3,

J<q

IN

We used Minkowski's inequality i in the penultimate inequality and
Bernstelns mequallty in the last. This proves thatmaps continuously

The proof of (81) follows along the same lines. Because of Bernstein’s
inequalities, the inequality (85) for the trilinear tefi(u, v), w) is stronger
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than (81). The estimate dffollows:

Z |<IQ(UJU>7U)>|
<C Y AlSarioaull gllAgisvll s | Agw]] s
1712, lg—¢'|<1
+ Y Al Sgriavll g 1A ull s 1A wl] s
l71<2, lg—¢'|<1 ) )
< COllull 3 > XAl s A [ Agw]), s

3,2 .
l71<2,]q—¢'|<1

1 1
+O|vll s > A7 [ Agijull 15 Ad | Agw| 15
32 1j1<2,|g—q'|<1
< Ol [Jul] ]|

1 ||v + llv]| 1 1
;o;” | 2 | ”B;{Q 5

3
BE 18
7 7

3
B
18 o 2

This concludes the proof. O
The inequality (85) is not true fafB(u, v),w) and (81) is close to being
optimal:

Proposition 5.2. Forany0 < s < 1,1 < p < o0, 2 < r < oo there

exist functionsu, v,w € B, and smooth, rapidly decaying functionsg,
wy, such thatlim, .., v, = v, lim, .., w, = w hold in the norm of53;
and such that

lim (B(u,v,,), w,) = 00

n—oo

Proof. We start the construction with a divergence-free, smooth function
u such thatFu € C§°(B(0, 1)) and [uidz > 0. We select a direction
e =(1,0,0) and setd = (0,u,0). Then

(86) A= /Rg(u(x) -e) |Pj<1>(x)‘2d:p > 0.

Next we consider the sequenee= \/%3 so that(a,) € ¢"(N) for r > 2, but
not forr = 2, and the functions

(87) Uy = Zn: )\;%anP’ [sin(\ze - )P (z)]
and
(88) w, = Z )\;%aqP [cos(Age - x)P(x)].

Clearly, the limitsv = lim,, .o, v, andw = lim,, ., w, €Xist in norm in
every B, with 0 < s < % 1 < p < ocoandr > 2. Manifestly, by
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construction,u, v,, andw,, are divergence-free, and because their Fourier
transforms are ils°, they are rapidly decaying functions. Clearly also

(Blu,v,).w) = [

R3
The terms corresponding to eagin

P(u - Vu,)w,dx = / (u-Vu,) - wydz.

R3

u- Vo, = Z(u(av) )aq/\_%]P’ [cos(Age - 2)P(x)]
(89)
—i—Zaq)\ u P[sin(Ase - ) VO(x)]

and in (88) have Fourier transforms supported3in e, 5) U B(—\ge, 3).
These are mutually disjoint sets for distircand, consequently, the terms
corresponding to different indicesdo not contribute to the integrgl(u

Vu,) - w,dx. The terms from the second sum in (89) form a convergent
series. Therefore, using Lemma 3.6, we obtain

[ ww) Z [ (wla) ) Ploosthe - 2)0(a))y de + O(1)

:Zag/m(u &) [PLo()[* dr +0(1)

= [Z az| A+O(1),
q=1
which concludes the proof. O
6. REMARKS

In [13], Duchon and Robert have shown that a weak solutitmthe 3D
Euler or 3D Navier-Stokes equations conserves energy provided

(90) / lu(z, £) — u(x —y, )P dz = CO)lylo(yl), Yy € BY,

for someC(t) integrable or|0, 7] ando(a), such that(a) — 0 asa — 0.

Here we show that there are functionsZity( (0, T'); Bép(R?’)), p > 1that
do not satisfy (90). Namely, any function ¢h 7' of the form

u(z,t) = (sin(A(t)z1)p(z),0,0),

wherep = F~!(x(4-)) and \(¢) is integrable, belongs t&3((0,T); B?%p)
for all p > 1. However,u does not satisfy Duchon-Robert condition (90)
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provided\(¢)? is not integrable. Indeed, suppose that (90) is satisfied. Then
for |y| < 1 andX < |y|~! we have

C(t)lylo () = / u() — u(x — ) de ~ Xyl

Let us fixtg, such that”(t,) > 0. Then for|y| small enough withy| <
A71(ty) we have

(91) C(to)o(lyl) ~ Alto)’|y[*
Now, for everyt with \(¢) > 1 we setjy| = A(¢)~! and obtain
CHONE) to(A(t) ™) ~ 1.
Hence, using (91) we obtain
C(t) ~ AaAB) ™)™ ~ M) Clto)\(to) ™,

which is not integrable, a contradiction.
We also note that the estimates on the energy flux in Section 3.2 can be
applied to weak solutions of the 3D Navier-Stokes equations.

Theorem 6.1.Letu € L>=((0,T); L*(R*))NL*((0,T); H'(R?)) be a weak
solution to the 3D incompressible Navier-Stokes equations with

we L¥(0,T); By..).

Thenu satisfies energy equality, i.€}u(t)||3 is absolutely continuous on
0, T7.

Hence the techniques in this present paper give stronger results than those
in [13] for the conditions under which it can be proved that the energy bal-
ance equation holds for the both the Euler and the Navier-Stokes equations.
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