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Preface

The main goal of this book is to provide a comprehensive overview of the al-
gebraic theory of K-stability for Fano varieties. It originates from investigating
canonical metrics on a complex manifold. This topic has been a major area of
research in complex geometry for several decades, with milestones as Yau’s
solution of the Calabi Conjecture in the late 1970s.

The existence of a Kähler-Einstein metric on a Fano manifold is a fundamen-
tal problem in complex geometry, and it was inspired by deep mathematical
philosophy to conjecture that this should be related to some algebraic condi-
tion of the manifold. Based on this speculation, at late 1990s, the concept of
K-stability was introduced in Tian (1997), and it was later put into algebraic
terms in Donaldson (2002). 1The major conjecture in this area asserts that the
existence of a Kähler-Einstein metric on a Fano variety is equivalent to its K-
(poly)stability.

In the past decade, it has become clear that the machinery of higher di-
mensional geometry, centered around the minimal model program, provides
a powerful tool for studying K-stability of Fano varieties purely algebraically.
Built on Li and Xu (2014) and Berman (2016), several equivalent characteriza-
tions of K-stability have been developed, including ones using well-formulated
invariants on valuations, introduced in Fujita (2019b) and Li (2017). This has
led to significant progress in the study of families of K-stable Fano varieties,
culminating in a robust moduli theory for these varieties, and even more re-
markably, the moduli space is proper as proved by Liu-Xu-Zhuang as in Liu
et al. (2022). It also completes the algebraic characterization of the existence
of a Kähler-Einstein metric for a general Fano variety.

Given the maturity of the foundational theory of K-stability of Fano vari-
eties, the author believes that it is an appropriate time to provide a comprehen-
1 As far as I can see, the use of the letter K was initiated by Mabuchi to refer to “Kanonisch”,

the german word for “canonical”.
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sive summary of the foundational results in this area. However, it should be
noted that this book primarily focuses on the algebraic aspects of the theory,
and does not delve into the details of analytic results. Interested readers are re-
ferred to other sources for more information on these topics, e.g. Székelyhidi
(2014), Guedj and Zeriahi (2017) etc.
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Notion and Conventions

We will follow the notation as in Hartshorne (1977); Lazarsfeld (2004b); Kollár
and Mori (1998); Kollár (2013)

• We work over a ground field k of characteristic 0.
• We say X is a variety if X is an integral and separated scheme, which is

finite type over k. A pair is a variety X with a pure codimension one reduced
subscheme. For a irreducible subvariety W of X, we will use η(W) to be the
generic point of W on X.

• By abuse of notation, we will often mix the usage of addition notation for
Cartier divisors and multiplicative notion for line bundles.

• Let X be an integral variety, and L a Q-Cartier divisor. We say an effective
Q-divisor D ∈ |L|Q, if D = 1

m D′ for some D′ ∈ |mL|.
• For two divisors D1 and D2 on an integral variety X, we define D1 ∧ D2 by

multE(D1 ∧ D2) = min{multE(D1),multE(D2)} for any prime divisor E; and
similarly D1 ∨ D2 by multE(D1 ∨ D2) = max{multE(D1),multE(D2)}.

• A log pair is a normal variety X together with an effective R-divisor ∆, such
that KX + ∆ is R-Cartier. See Kollár and Mori (1998) for the definition of a
pair with Kawamata log terminal (klt), pure log terminal (plt), divisorial log
terminal(dlt) or log canonical (lc) singularities .

• We say a normal variety X is potentially klt if there exists an effective Q-
divisor ∆ such that (X,∆) is klt.

• Two log pairs (X1,∆1) and (X2,∆2) are K-equivalent if there are proper bi-
rational morphisms pi : Y → Xi such that p∗1(KX1 + ∆1) = p∗2(KX2 + ∆2).

• Let f : X → S be a flat morphism of normal varieties. An effective Cartier
divisor D ⊆ X on X is called to be relative effective Cartier over S if D →
S is a flat morphism. A Q-linear combination of relative effective Cartier
divisors is called a relative Q-Cartier Q-divisor .

• Let (X,∆) be a pair and a an ideal on X, we say that a proper birational
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2 Notion and Conventions

morphism f : (Y, E) → (X,∆ + a) is a log resolution, if Y is smooth, f −1(a)
is of the form OY (−F) for some divisor F on Y , Supp(E) is simple normal
crossing and contains Supp(F + f −1∆ + Ex( f )) on Y .

• A variety Y with a reduced divisor ∆ on Y is log smooth if Y is smooth, and
∆ =

∑
i∈I ∆i is simple normal crossing (if J = ∅, the corresponding strata is

X). A strata is a component of the intersection
⋂

i∈J ∆i for some J ⊂ I. We
say a divisor F over (Y,∆) is toroidal if it is obtained as the weighted blow
up along a strata.

• A morphism ϕ : (Y,∆)→ B from a pair (Y,∆) to a variety B is log smooth, if
∆ =

∑
i∈I ∆i, then for any J ⊆ I, each component of the intersection

⋂
i∈J ∆i

is smooth over B.
• A log Fano pair (X,∆) is a projective klt pair with an effective Q-divisor ∆

such that −KX − ∆ being ample. More generally, we say that a projective
morphism f : X → Z is Fano type, if there exists an effective Q-divisor D
which is big over Z, such that (X,D) is klt and KZ + D ∼Q,Z 0.

• Let G be an algebraic group. Let X be a G-variety, and L→ X a line bundle
with a G-action such that L → X is G-equivariant. In particular, G acts on
sections of s by (g∗s)(x) = s(g−1(x)). A G-linearization of L is an action of
G on the variety L such that L→ X is equivariant and the action on fibres is
linear, i.e.. for any g ∈ G and x ∈ X, g induces a linear map Lx → Lg·x.

• Let X be a projective variety, and L a Q-line bundle such that rL is Cartier.
We define the stable base locus to be the Zariski-closed set

B(L) =
⋂

m∈r·N

Bs(|mL|) ,

where Bs(mL) is the base locus of |mL|. We define the restricted base locus

B−(L) =
⋃

A

B(L + A) ,

where the intersection runs through all ample Q-divisors A. We define the
augmented base locus B+(L) to be

B+(L) :=
⋂
ε,A

B(L − εA) =
⋂

0≤C∼RL−εA

Supp(C) ,

where the first intersection runs through over all positive ε and ample divisor
A, and the second intersection runs through all such effective Q-divisor C.

• For a normal variety, and a Q-divisor D,

H0(X,OX(D)) = { f ∈ OX | div( f ) + D ≥ 0} ∪ {0} .

It is clear H0(X,OX(D)) = H0(X,OX(bDc)). Any non-zero subspace of H0(X,OX(D))
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corresponds to a linear series consisting of Q-divisors D′ which are Z-linear
equivalent to D.

• Let L be an ample divisor on a projective variety X and x ∈ X a smooth
point. We define the Seshadri constant εx(L) to be

εx(L) = sup{t | µx
∗L − tEx is nef } ,

where µx : Yx → X is the blow up of x ∈ X with the exceptional divisor Ex.
It is equal to

inf
C

{
L ·C

multxC
| C is an irreducible curve on X passing x

}
.



Introduction

A Fano variety, named after Gino Fano, is a proper variety X whose anticanon-
ical bundle ω−1

X is ample. This class of varieties is central to several mathemat-
ical fields, including higher dimensional geometry. In fact, while originally
people were mostly interested in smooth Fano manifolds, from the viewpoint
of minimal model program, it became natural to consider Fano varieties with
mild singularities, as they are one the three building blocks of an arbitrary va-
riety, up to birational equivalence.

One characteristic of Fano varieties is they could have multiple ‘optimal’
birational models, and the birational maps to connect different models are
complex. This complexity make the birational geometry of Fano varieties a
fascinating but challenging topic. Understand the limits of a family of Fano
varieties is important, but generally there can be many of them. So some kind
of stability condition needs to be added. However, for higher dimensional va-
rieties, Mumford’s geometric invariant theory (GIT) Mumford et al. (1994) is
not an ideal framework because it depends on a choice of embeddings (see
Wang and Xu (2014)). Therefore, researchers seek for a more intrinsic theory
for the study of Fano varieties.

Another deep question about Fano varieties is whether it admits a Kähler-
Einstein metric. This traces back to the long tradition in people’s study on
Einstein metric, but one also posts the Kähler condition. More precisely, recall
that a Kähler-Einstein metric on a compact manifold X if the Kähler form ω

satisfies the Einstein equation:

Ric(ω) = λ · ω , (0.1)

where λ is a constant. If we take the class of (0.1), then

[Ric(ω)] = c1(X) = −KX = λ · [ω] .

If λ < 0, this is established independently in Aubin (1978) and Yau (1978).

4



Introduction 5

When λ = 0, this follows from the solution of the Calabi Conjecture in Yau
(1978). Moreover, these two results are generalized to the case that X con-
tains canonical singularities in Eyssidieux et al. (2009). See Guedj and Zeriahi
(2017) for a comprehensive study of singular Kähler-Einstein metrics.

The remaining case λ > 0 is subtler, as in this case, a Kähler-Einstein metric
does not always exist. This fact was known for a long time, e.g. Matsushima
(1957) shows that a Kähler-Einstein Fano manifold X satisfies Aut(X) is re-
ductive, but finding out the right geometric condition to characterize the exis-
tence of Kähler-Einstein metrics is challenging. A similar question for a vector
bundle E was extensively studied, which is to search the right condition to
characterize the existence of Hermitian-Einstein metrics. The solution, called
the Hitchin-Kobayashi correspondence, says it is equivalent to the slope stabil-
ity of E, see Narasimhan and Seshadri (1965), Donaldson (1985), Uhlenbeck
and Yau (1986), Donaldson (1987). Inspired by this, in Mabuchi (1986), the
K-energy function, on the space H of Kähler metrics with the same class was
defined, and it is shown that a Kähler metric ω satisfies (0.1) if and only if
it is the minimizer of the K-energy function. Moreover, using the convexity
of the K-energy function, it is shown in Bando and Mabuchi (1987) that a
Kähler-Einstein metric, if exists, is unique up to an element in the connected
component of Aut(X).

In order to understand the existence of a Kähler-Einstein metric, one must
address this infinite-dimensional minimizing problem, ideally using geomet-
ric constructions. In Ding and Tian (1992), the (generalized) Futaki invariant
was introduced to attack the problem. It is defined for a one-parameteter group
(normal) degeneration X0 of X, called a test configuration, as the Futaki invari-
ant Fut(X0) introduced earlier in Futaki (1983). Moreover, they showed that
the existence of a Kähler-Einstein metric ω on X implies the non-negativity of
Fut(X0), because the test configuration induces a ray emitting from ω and the
Futaki invariant is the derivative of the K-energy along this ray. This signifi-
cantly expands the range of geometric tests that can be applied, as previously
Futaki only considered the product case. The question then arises whether
these tests are sufficient. In Tian (1997), it was proved that the existence of a
minimizer was implied by a suitably defined properness of the K-energy func-
tion, and it was also conjectured that all tests as above provided a sufficient
condition for the properness. Not long after that, it was realized in Donald-
son (2002) that the Futaki invariant can be defined completely using algebraic
terms, and more generally for all polarized varieties. Thus the proposed ge-
ometric tests are indeed algebraic, confirming the speculation by Yau in the
1980s, and the algebraic notion is known as K-stability. There are a lot of
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later developments in the analytic theory, but now we switch our discuss to the
algebro-geometric theory.

Characterizations of K-stability

The earlier attempt to study K-stability algebraically is using the framework
of GIT. However, in Odaka (2013b), it was first observed that K-stability no-
tion relates to the minimal model program. This surprising connection became
more explicit in Li and Xu (2014), where minimal model program was used to
show that to test K-stability for all test configurations is equivalent to only test
it in the case X0 is a klt Fano variety, i.e. the test configuration is special. In
particular, this confirms Tian’s definition of K-stability is equivalent to Don-
aldson’s for any Fano variety. In fact, Li and Xu (2014) is the first one in a
sequence of works, which show that K-stability can be equivalently defined in
several different ways, but to establish the equivalences is highly nontrivial.

In Berman (2016), inspired by the work of Ding (1988), which introduced
the Ding energy functional whose minimizers are also Kähler-Einstein metrics,
Berman shows that this functional yields the algebraic notion of Ding invari-
ants for test configuration and uses it to define the Ding stability. In analytic
studies, Ding functional has the advantage that it requires less regularity than
K-energy. Similarly in the algebro-geometric side, Ding invariants behaves bet-
ter than Futaki invariants in various operations, especially in an approximating
process. As a result, it is proved in Fujita (2018) that Ding invariants D(F ) can
be extended to all filtrations. The extension from test configurations to general
filtrations can be regarded as an algebraic analogue to the operation of taking
completion with respect to suitable norms for the infinite-dimensional space
of Kähler metrics. Besides it gives more flexibility to test the stability, it also
yields a right ambient space for taking limits under suitable assumptions. In
particular, this is a necessary step for constructing a canonical test object.

Further foundational properties for invariants of filtrations are obtained in
Blum and Jonsson (2020), using the theory of Okounkov bodies. In fact, one
can skip the notion of K-stability, and only focus on Ding stability to use it to
build the entire algebraic theory. Nevertheless, following Li and Xu (2014), it is
also shown by Fujita (2019b) and Berman-Boucksom-Jonsson that K-stability
and Ding-stability are equivalent for Fano varieties, as they are the same when
test on special test configurations. In Xu and Zhuang (2020), it is noticed for a
filtration F , one may define base ideals

Im,λ = the base ideal of (F λH0(−mKX) ⊆ H0(−mKX)) .
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and D(F ) can be defined using the slope µ such that lct(X, I(µ)
• ) = 1, where

I(µ)
• = {Im,mµ}. This yields a conceptually more satisfying definition of D(F ).

Another key conceptual progress is to test the stability using valuations. In
Fujita (2019b) and Li (2017), they defined a new type of invariants, called the
Fujita-Li invariant,

FL(v) = AX(v) − S X(v) ,

where AX(v) is the log discrepancy and S X(v) is the expected vanishing order.
The Fujita-Li invariant is markedly easier to calculate, and when v arises from
a special test configuration, FL(v) is equal to the Ding invariant (as well as the
Futaki invariant) of the test configuration. The Fujita-Li criterion, indepen-
dently established by Fujita and Li, then says that FL(v) gives an equivalent
characterization of the notions of Ding stability.

From the Fujita-Li criterion, one easily sees the stability threshold

δ(X) = inf
v
δX(v), where δX(v) := AX (v)

S X (v)

gives a quantitative measure of how stable X is. When δ(X) ≤ 1, by Berman
et al. (2021) and Cheltsov et al. (2019), this invariant indeed has an analytic
explanation

δ(X) = sup { t |Ric(ω) ≥ t · ω for a Kähler form ω } .

To further advance the algebraic theory, the question of whether there is a
divisorial valuation computing δ(X) plays a central role. We will come back to
this topic in the next section.

It is observed by Blum-Liu-Xu in Blum et al. (2022a) that there is a one-
to-one correspondence between a geometric subclass of valuations and weakly
special test configurations with an irreducible special fiber, namely any valu-
ation induced by the special fiber of such a test configuration precisely corre-
sponds to an lc place of a Q-complement. We call these valuations weakly spe-
cial. The latter description usingQ-complements makes them more transparent
to study in birational geometry. For instance, one can show when δ(X) < n+1

n ,
it can be approximated by δX(Ei) for a sequence of weakly special Ei. This
yields an explicit explanation of the Fujita-Li criterion.

When X admits a torus T-action, we also need to develop the reduced stabil-
ity notion by defining the invariants module the equivalence of the torus orbit.
This is necessary when treating K-polystability.
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Test configurations
(X,L)

Valuations
v ∈ Val<+∞

X

Special

Weakly Special

Test Config. with
integral X0

= Dreamy Valuations

Filtrations F

Figure 0.1 Test stability by different objects

Minimizers of δ

A key question in K-stability theory is to understand the minimizer of δ(X)
in the space Val(X) of valuations. The aim is to show that when δ(X) < n+1

n ,
one can find a divisor E such that δ(X) = δX(E). Then such E yields a special
test configuration minimizing the normalized Futaki invariant, which is an op-
timal destabilization. This can be regarded as an algebro-geometric analogue
to the regularity question for the minimizer of a functional in geometric par-
tial differential equation. It is a key technical step to several central geometric
questions.

One of them is the question of characterizing the existence of Kähler-Einstein
metrics. As we explained, we need to understand whether the geometric con-
structions of test configurations provide enough tests to the existence of a min-
imizer of the K-energy functional or Ding-energy functional, namely the Yau-
Tian-Donaldson Conjecture.



Introduction 9

The first proof of the Yau-Tian-Donaldson Conjecture is in the smooth case
(see Chen et al. (2015a), Chen et al. (2015b), Chen et al. (2015c), Tian (2015)
and Székelyhidi (2016)), and it involves showing that a sequence of Kähler-
Einstein Fano manifolds or log smooth Fano pairs admits a Kähler-Einstein
limit. Unfortunately, for now the smoothness assumption is essential to the
existence of the Kähler-Einstein limit in the metric geometry. The algebraic
analogue is that a sequence of K-stable Fano varieties admits a K-(poly)stable
limit. We will see in the next section that the existence of a minimizer E for
δX(·) plays a central role in showing this.

To solve the Yau-Tian-Donaldson Conjecture for all Fano varieties including
singular ones, one can apply a different set of analytic tools, e.g. the pluripo-
tential theory, to characterize the existence of a Kähler-Einstein metric. This is
called the variational approach, and it requires less regularity than the afore-
mentioned metric geometry method. Initiated by Berman-Boucksom-Jonsson
in Berman et al. (2021), and completed by Li-Tian-Wang in Li et al. (2022),
Li (2022), it is proved that uniformly K-stability gives a necessary and suf-
ficient condition of the existence of a (weak) Kähler-Einstein metric (in the
case when the automorphism group is discrete). To complete the solution, one
needs to show the equivalence between uniform K-stability and K-stability,
which immediately follows from the existence of a minimizer E in the case
when δ(X) = 1.

The proof of a minimizer E consists of two steps.
Since δ(X) can be approximated by δX(Ei) for a sequence of divisors Ei

which are weakly special, as we mentioned before, one can apply Birkar (2019)
to conclude that all these valuations are lc places of a bounded family of com-
plements. Then after passing to an infinite subsequence, we can assume all Ei

are lc places of one complement. So after possibly passing to an infinite sub-
sequence again, we may assume the rescaling 1

AX (Ei)
ordEi has a limit v, which

is a quasi-monomial valuation and satisfies δ(X) = δX(v). This was proved in
Blum et al. (2022a).

To get a divisorial valuation, it is noticed in Li and Xu (2018) that for
R =

⊕
m∈r·N H0(−mKX) if GrvR is finitely generated, then for a rational pertur-

bation of w = c · ordE , GrvR � GrwR, and

δ(X) = δX(v) = δX(w) ,

i.e. any small rational perturbation yields divisor which computes δ(X). Thus
it suffices to establish the finitely generation of GrvR. This is first proved by
Liu-Xu-Zhuang in Liu et al. (2022), and later stronger results are given in Xu
and Zhuang (2023). In both proofs, the key is to prove the birational geometry
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statement that a special valuation has the sought-after finite generation prop-
erties. Then it is not too hard to show for any minimizer v, it satisfies the above
assumption.

We draw a flowchart to compare solving a partial differential equation, e.g.
the Kähler-Einstein problem, with the optimal destabilization in algebraic K-
stability theory.

Solve a PDE by variational method

Step 1: Turn solving the PDE to a variational problem, so the
solution is given by the minimizer of an suitable functional

Step 2: Enlarge the ambient space of solutions, extending the func-
tional, and finding the minimizer in the larger space (weak solution)

Step 3: Proving the regularity of the weak solution

Optimal destabilization

Step 1: Minimize the normalized Ding invariant

Step 2: Include all filtrations, extend the Ding functional

Step 2’: Focus on the space ValX of all val-
uations, and minimize the function δX(·)

Step 3: Show the minimizer of δX(·) is a special divisorial valuation
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Moduli of Fano varieties

One major application of K-stability is that it provides an approach to parametriz-
ing Fano varieties. The concept of a family of higher dimensional varieties
X → S (or more generally a family of log pairs (X,∆) → S ), is rather subtle
and it has been addressed in Kollár (2023). Then to make it a well-behaved
moduli functor, one needs to add a natural polarization, e.g. ωX/S or ω−1

X/S is
relatively ample. In the case of ωX/S being ample, the functor is called the
KSB moduli (or KSBA moduli), and it has been investigated in details in Kollár
(2023).

In the case of ω−1
X being ample, one major obstacle is that easy examples

show the Fano condition alone is not enough to make the family behave well,
especially when one looks at degenerations. Only until the notion of K-stability
was introduced, pioneers looked at the moduli problem again, and the specu-
lation of using it to construct a moduli space intertwined with the improving
understanding of the notion itself. After around a decade’s work, it is finally
settled that with the K-stability assumption on the fibers, the moduli functor,
called the K-moduli stack, behaves very satisfactorily, e.g. it admits a projective
good moduli space, namely the K-moduli space.

To show the K-moduli stack is of finite type, one only needs to show that
if we fix the numerical invariants, the functor is bounded and open. Since the
volume (ω−1

Xt
)n is a constant in a family, we can simply fix it. Then to get the

boundedness, Jiang (2020) shows that one can reduce it to the boundedness
results established in Birkar (2019, 2021). Later, in Xu and Zhuang (2021),
with a deeper local results, one can reduce it to the earlier boundedness result
proved by Hacon-McKernan-Xu in Hacon et al. (2014). Then the openness is
proved by Blum-Liu-Xu in Blum et al. (2022a) as well as in Xu (2020), by
showing that the invariants which test the K-stability, e.g. stability threshold or
normalized volume, are constructible for the Zariski topology. One key recipe
in both proofs is the boundedness of complement proved in Birkar (2019).

What distinguishes the K-moduli stack with other functors of families of
Fano varieties, is it admits a projective good moduli space. For an algebraic
stack, admitting a good moduli space is delicate, which implies strong proper-
ties of the stack. In Alper et al. (2023), Alper-Halpern-Leistner-Heinloth show
that two valuative criteria, called the S -completeness and the Θ-reductivity,
imply the existence of a separated good moduli space, which can be viewed as
the Artin stack analogue to the result of Keel and Mori (1997) on the existence
of separated coarse moduli space for a Deligne-Mumford stack. For families
of K-semistablity Fano varieties, these two criteria are verified by Alper-Blum-
Halpern-Leistner-Xu in Alper et al. (2020b), based on earlier works studying
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families of K-semistable Fano varieties by Li-Wang-Xu in Li et al. (2021) and
in Blum and Xu (2019).

Following Halpern-Leistner’s work on instability theory, one knows the proper-
ness of the good moduli space follows from the existence of a Θ-stratification,
and it is shown by Blum-Halpern-Leistner-Liu-Xu in Blum et al. (2021) this
can be deduced from the existence of a divisor E such that δ(X) =

AX,∆(E)
S (E) , i.e.

the δ(X)-minimizing problem we discussed in the last section.
Finally, the projectivity of the good moduli space is obtained by establish-

ing the ampleness of the Chow-Mumford (CM) (Q)-line bundle. The CM line
bundle can be defined for any family of Fano varieties as in Tian (1997), but it
is not always positive and the subtlety is to show it is positive along the locus
parametrizing K-semistable Fano varieties. The algebraic theory of establish-
ing the connection between the K-stability of fibers and the positivity of the
CM line bundle on the base, was first developed in Codogni and Patakfalvi
(2021), by applying the general theory to investigate the filtration induced by
the Harder-Narasimhan filtration on the base. This connection is elaborated in
Xu and Zhuang (2020) which completely addresses the positivity of the CM
line bundle, by invoking the reduced uniform K-stability notion for a Fano
variety with a torus action.

K-stability for explicit Fano varieties

One active research topic is verifying whether an explicitly given Fano variety
is K-(semi,poly)stable. In general, this is a quite challenging question. The
case of smooth surfaces was solved in Tian (1990) decades ago, but in higher
dimension, the knowledge is far from being complete. Nevertheless, several
powerful tools have been developed.

The first one is estimating δ(X) by studying the singularity in |−KX |Q. There
have been a number of works, see e.g. Tian (1987), Tian (1990), Cheltsov
(2008), Cheltsov and Shramov (2008) etc., devoted to estimate the α-invariant

α(X) = inf
{

lct(X,D) | 0 ≤ D ∼Q −KX
}

and the condition α(X) > n
n+1 yields K-stability of Fano varieties as δ(X) ≥

n+1
n α(X). However, this approach is limited, because the α-invariant estimate

only gives a sufficient condition, but usually it is not necessary. To estimate the
δ-invariant, one can use the observation made in Fujita and Odaka (2018) and
Blum and Jonsson (2020) that δ(X) = limm δm(X), where

δm(X) = inf
{
lct(X,D) |m-basis type divisor D ∼Q −KX

}
.
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A powerful approach to estimate δ(X) is established in Abban and Zhuang
(2022), called the Abban-Zhuang method. It studies the multi-graded linear
series obtained by restricting a linear series along an admissible flag, and uses
the inversion of adjunction to obtain inequalities which reduces the estimate
of δ(X) to an estimate of log canonical thresholds of the multi-graded linear
series on lower dimensional subvarieties. It yields a list of results for three
dimensional smooth Fano manifolds including Araujo et al. (2023) etc., as well
as Fano hypersurfaces Abban and Zhuang (2022), Abban and Zhuang (2023)
etc..

Another approach is to use the existence of K-moduli, and study deforma-
tions and degenerations of a K-stable variety. See Mabuchi and Mukai (1993).
Odaka et al. (2016) for two dimensional examples; Liu and Xu (2019), Liu
(2022) for higher dimensional examples. In Ascher et al. (2019, 2023a,b),
Ascher-DeVleming-Liu also develops a wall-crossing theory, which gives ge-
ometric understanding to many birational maps between moduli spaces.

The organization of the book

After the preliminary Chapter 1, the book can be divided into two parts. From
Chapter 2 to Chapter 6, it discusses the foundational theory of K-stability.
From Chapter 7 to Chapter 9, it focus on constructing of the moduli space
and showing it is a projective scheme.

In Chapter 1, we discuss basic preliminary results. That includes asymptotic
invariants and the construction of Okounkov bodies. We also list results from
minimal model program and boundedness that we need later.

In Chapter 2, we will explain the original definition of K-stability using test
configurations and its variant Ding stability. We show that under a suitable
minimal model program sequence, the invariants testing stability decrease. As
a consequence, we conclude that K-stability is equivalent to Ding stability in
the Fano setting. In fact, the latter stability notion is the foundation of the
algebraic theory.

In Chapter 3, we introduce the view of studying K-stability using filtrations.
We show that the invariants of defining Ding stability can be extended from test
configurations to filtrations. We explain defining Ding invariants for filtrations
by using graded sequences of its ideals with a fixed slope.

In Chapter 4, we introduce the view of studying K-stability using valuations.
That includes the definition of the Fujita-Li invariants. We also explain the
theory of (weakly) special valuations, and use it to show the minimizers of the
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δ-function are quasi-monomial. We will establish two applications: the first
one is that the notion of K-semistability does not depend on the base field and
it is equivalent to the equivariant K-semistability; then we explain explicitly
applying the Abban-Zhuang method to verify any smooth Fano hypersurface
with a large degree is K-stable.

In Chapter 5, we devote the chapter to prove the Higher Rank Finite Gener-
ation Theorem, which implies that there is always a divisorial valuation com-
puting δ(X) when δ(X) < dim X+1

dim X .
In Chapter 6, we introduce the notion of reduced uniform K-stability. Using

it, our machinery then can be applied to treat K-polystability.
In Chapter 7, we define the functor of families of Fano varieties. And we

show that if we fix positive lower bounds of the volume and the stability thresh-
old, the subfunctor is a finite type global quotient stack.

In Chapter 8, we show that the K-moduli stack admits a good moduli space
by verifying it is S-complete and Θ-reductive. Moreover, we will prove that
the K-moduli space is a proper algebraic space.

In Chapter 9, we define the CM line bundle and prove it is ample on the
K-moduli space.

Prerequisite

The algebraic theory of K-stability builds on the machinery of higher dimen-
sional geometry. This book assumes the reader has basic familiarity with the
subject. For example, the reader should have some knowledge of minimal
model program as introduced in Kollár and Mori (1998) and we also need
the results proved by Birkar-Cascini-Hacon-McKernan in Birkar et al. (2010).
Some results on asymptotic invariants are needed. Most of them are covered in
Lazarsfeld (2004b). We also need boundedness type theorems proved in Ha-
con et al. (2014), Birkar (2019) and Birkar (2021). This is sufficient to read
Chapter 2 to Chapter 6. All the necessary higher dimensional geometry results
are summarized in Chapter 1.

To read Chapter 7 to Chapter 9 for the construction of K-moduli spaces,
we assume the reader has some knowledge on stacks. In particular, we will
need results in Alper (2013); Alper et al. (2023); Halpern-Leistner (2022) for
good moduli spaces. We only briefly discuss the notion of a family of higher
dimensional varieties or log pairs over an arbitrary base, and refer to Kollár
(2023) for the proofs. We also assume the semi-positivity for the pushforward
of pluri-canonical bundles.
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Preliminaries

In this section we introduce some background knowledge. The reader is en-
couraged to skip this chapter at first reading, and come back only when it is
needed in the book.

1.1 Okounkov body

In this section, we will recall the Okounkov body construction introduced in
Lazarsfeld and Mustaţă (2009).

1.1.1 Semi-group

Given any monoid Γ ⊆ Nn × r · N, set

Σ = Σ(Γ) = the closed convex cone containing Γ ⊆ Rn+1 ,

∆ = ∆(Γ) = Σ ∩
(
Rn × {1}

)
.

Moreover for m ∈ r · N, put Γm = Γ ∩
(
Nn × {m}

)
. We denote by Γreg :=

Σ ∩
(
Nn × r · N

)
and Γ

reg
m := Σ ∩

(
Nn × {m}

)
for any m ∈ r · N.

Lemma 1.1. Assume Γ to be finitely generated and generate Zn ⊕ r · Z as a
group. Then there exists a γ ∈ Γ such that Γreg + γ ⊆ Γ.

Proof Let e1, ..., em be a generator of Γ. Consider all points of the form
∑n

i=1 λiei

for some 0 ≤ λi ≤ 1. This set contains finitely many integral points x j, and we
fix a way of writing

x j =

m∑
i=1

n j,iei for some n j,i ∈ Z .

15
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Choose any γ =
∑m

i=1 biei for some bi ≥ max j{−n j,i + 1}, we claim

Γreg + γ ⊆ Γ .

In fact, for an integral point x ∈ Σ, we can write x =
∑m

i=1 aiei for some ai ≥

0. Then
∑m

i=1(ai − baic)ei ∈ Z
n. Thus from our assumption, it can be written∑m

i=1 niei for some ni ≥ −bi. So

x + γ =

n∑
i=1

(
baic + (ni + bi)

)
ei ∈ Γ .

�

For a general Γ, we can choose finitely generated sub-semigroups

Γ1 ⊆ Γ2 ⊆ · · · ⊆ Γ , (1.1)

such that ∪iΓi = Γ.

Proposition 1.2. Let V be a closed cone with a compact base ∆(V) := V ∩
Rn × {1}. Assume it is contained in Σ̊ which is the cone over the interior ∆◦.
Then V ∩ (Γreg \ Γ) is finite.

Proof We can similarly define the closed cone Σ(Γi) and the interior cone
Σ̊(Γi) for any semigroup Γi. We claim

∪i Σ̊(Γi) = Σ̊ . (1.2)

In fact, for any 0 , x ∈ Σ̊, x is contained in the interior of a (full dimensional)
convex polytope with vertices x j (1 ≤ j ≤ N) and x j are contained in the
convex cone generated by Γ. Therefore, there exists some M � 0, such that
all x j are contained in the cone generated by ΓM . This confirms the claim. As
a consequence, we can replace Γ by ΓM and assume Γ is finitely generated.

Let γ be given by Lemma 1.1. Since the base ∆(V) ⊆ ∆◦, there exists R such
that for any t ≥ R, ∆(V) − 1

t γ ⊆ Σ. Thus for any

x ∈ (Nn × {m}) ∩ V

with m ≥ R and r divides m, x − γ ∈ Σ, i.e.

x ∈ γ + (Σ ∩ (Zn ⊕ r · Z)) = γ + Γreg ⊆ Γ .

�

Lemma 1.3. If a monoid Γ ⊆ Nn × r · N as above satisfies the following three
conditions

(i) Γ0 = 0;
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(ii) there are finitely many vectors (vi, r) spanning a monoid B ⊆ Nn × r ·N such
that Γ ⊆ B;

(iii) Γ generates = Zn ⊕ r · Z as a group,

then we have the following

lim
m→∞

# Γm

mn = volRn (∆) .

Proof One has Γm ⊆ (m∆
⋂
Nn × r · N), and since

lim
m→∞

#
(
m∆

⋂
(Nn × r · N

)
)

mn = volRn (∆) ,

it follows that

lim sup
m→∞

#Γm

mn ≤ volRn (∆) . (1.3)

For another direction, we first assume Γ is finitely generated. By Lemma
1.1, there exists a vector γ ∈ Γ such that

(Σ + γ) ∩ (Nn × r · N) ⊆ Γ .

Since

lim
m→∞

#(Σ + γ) ∩ (Nn × r · N)
mn = volRn (∆) ,

we have

lim inf
m→∞

#Γm

mn ≥ volRn (∆) .

This proves the theorem assuming Γ is finitely generated.
In general, choose finitely generated sub-semigroups

Γ1 ⊆ Γ2 ⊆ ... ⊆ Γ ,

as in (1.1) each satisfying (i)–(iii). Then #Γm ≥ #(Γi)m for all m ∈ r ·N. Writing
∆i = ∆(Γi), it follows from (1.3) for the finitely generated case that

lim inf
m→∞

#Γm

mn ≥ volRn (∆i)

for all i. As volRn (∆i)→ volRn (∆), (1.3) holds also for Γ itself. �

The Okounkov body construction has the following equidistribution prop-
erty.

Lemma 1.4. Let ρ be the Lebesgue measure on ∆. For any m ∈ r · N, let

dρm =
1

mn

∑
x∈Γm

δm−1 x ,

where δx is the Dirac measure centered on x. Then limm→∞ dρm = dρ.
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Proof It suffices to show for any continuous compactly supported function
f : ∆→ R, we have

lim
m→∞

1
mn

∑
x∈ 1

m Γm

f (x) = lim
m→∞

1
mn

∑
x∈ 1

m Γ
reg
m

f (x) =

∫
∆

f dρ . (1.4)

For the convex set ∆, the boundary ∂∆ in Rn has measure 0. Let χ∆ be the
characteristic function of ∆, so the function χ∆ · f is Riemann integrable, and
we have

lim
m→∞

1
mn

∑
x∈ 1

m Γ
reg
m

f (x) =

∫
Rn
χ∆ · f dρ =

∫
∆

f dρ ,

where gives the second equality.
For the first equality, it suffices to prove

lim
m→∞

1
mn

∑
x∈ 1

m Γ
reg
m \

1
m Γm

f (x) = 0 .

For any ε > 0, there exists a compact set K ⊆ ∆◦, and a function 0 ≤ g ≤ 1
continuous on ∆ such that g = 1 on ∆ \ K and

∫
∆

g ≤ ε. By Proposition 1.2, for
any sufficiently large m,

K ∩
1
m

Γm = K ∩
1
m

Γ
reg
m ,

i.e. 1
m Γ

reg
m \

1
m Γm ⊆ ∆ \ K. Thus for the maximal norm ‖ f ‖,∑

x∈ 1
m Γ

reg
m \

1
m Γm

f (x) ≤ ‖ f ‖
∑

x∈ 1
m Γ

reg
m

g(x) .

However,

lim
m→∞

1
mn ‖ f ‖

∑
x∈ 1

m Γ
reg
m

g(x) ≤ ‖ f ‖ε ,

which implies for any sufficiently large m ∈ r · N,

1
mn

∑
x∈ 1

m Γ
reg
m \

1
m Γm

f (x) ≤ 2‖ f ‖ε .

�

1.1.2 Okounkov body

Let X be a variety of dimension n. We fix throughout this section a flag

H• : X = H0 ⊇ H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = a point (1.5)
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of irreducible subvarieties of X, where codimX(Hi) = i, and each Hi is non-
singular at the point Hn. We call this an admissible flag.

Then after taking an open set of X containing Hn, we may assume Hi is
Cartier on Hi−1. Given 0 , s ∈ H0(X,D) for some Cartier divisor D, set to
begin with

ν1 := ν1(s) = ordH1 (s) .

After choosing a local equation for H1 in X, s determines a section

s̃1 ∈ H0(X,D − ν1H1)

that does not vanish identically along H1, and so we get by restricting a non-
zero section

s1 ∈ H0(H1, (D − ν1H1)|H1 ) .

Then take ν2 = ordH2 (s1). In general, given integers a1, . . . , ai ≥ 0, denote by
O(D − a1H1 − a2H2 − · · · − aiHi)|Hi the line bundle

OX(D)|Hi ⊗ OX(−a1H1)|Hi ⊗ OH1 (−a2H2)|Hi ⊗ · · · ⊗ OHi−1 (−aiHi)|Hi

on Hi. Suppose inductively that for i ≤ k one has constructed non-vanishing
sections

si ∈ H0(Hi,O(D − ν1H1 − ν2H2 − · · · − νiHi)|Hi ) ,

with νi+1(s) = ordHi+1 (si), so that in particular νk+1(s) = ordHk+1 (sk). Dividing
by the appropriate power, say vk+1 of a local equation of Hk+1 in Hk yields a
section

s̃k+1 ∈ H0(Hk,O(D − ν1H1 − ν2H2 − · · · − νkHk)|Hk ⊗ OHk (−vk+1Hk+1)) ,

not vanishing along Hk+1. Then take

sk+1 = (s̃k+1)|Hk+1 ∈ H0(Hk+1,O(D − ν1H1 − ν2H2 − · · · − νk+1Hk+1)|Hk+1 )

to continue the process. Note that the values νi(s) ∈ N do not depend on the
choice of a local equation of each Hi in Hi−1.

To summarize, we have the following construction.

Definition 1.5 (The valuation attached to a flag). For any s ∈ H0(X,D), we
call vi(s) = νi as above the valuation vector .

Then for any divisor D, we can define the valuation map

v = vH• = vH•,D : H0(X,D)→ Zn ∪ {+∞}, s→ v(s) := (v1(s), . . . , vn(s)) ,

where we set v(0) = +∞. It satisfies three properties:

(i) v(s) = +∞ if and only if s = 0;
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(ii) v(s + s′) ≥ min{v(s), v(s′)} where we put the lexicographical order on Zn;
and

(iii) If s ∈ H0(X,D) and s′ ∈ H0(X, E), then

vH•,D+E (s ⊗ s′) = vH•,D (s) + vH•,E (s′) .

We have the following lemma.

Lemma 1.6. Let H• be an admissible flag on a projective variety with an
attached valuation v. Let W ⊂ H0(X,D) be a subspace. Then

# v(W \ {0}) = dim W .

Proof Fix a = (a1, ..., an) ∈ Zn. Let

W≥a =
{
s ∈ W | vH• (s) ≥ a

}
and W>a =

{
s ∈ W | vH• (s) > a

}
,

where as above Zn is ordered lexicographically. Then dim(W≥a/W>a) ≤ 1,
since it injects into the space of sections of the one-dimensional skyscraper
sheaf

OX(D − a1H1 − · · · an−1Hn−1)|Hn−1 ⊗
OHn−1 (−anHn)

OHn−1 (−(an + 1)Hn)

on the curve Hn−1. �

Let X be a projective variety and L a Q-Cartier divisor on X. Fix a natural
number r such that rL is Cartier.

Definition 1.7. We say

V• :=
⊕
m∈r·N

Vm ⊆
⊕
m∈r·N

H0(X,mL)

is a graded linear series belonging to L, if Vm1 ·Vm2 ⊆ Vm1+m2 for any m1,m2 ∈

r · N.
We say V• contains an ample series if there exists an ample Q-divisor, such

that we can write L ∼Q A + E for an effective Q-divisor E, and we have natural
inclusions

H0(X,mA) ⊆ Vm ⊆ H0(X,m(A + E))

for all sufficiently divisible m.

Definition 1.8. Let V• be a graded linear series belonging to a Q-Cartier divi-
sor L on a projective X. We define

vol(V•) := lim sup
m→∞

dim Vm

mn/n!
.
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Let H• be an admissible flag on a projective variety with an attached valua-
tion v.

Definition 1.9. Let V• be a graded linear series belonging to L. We define the
monoid

Γ(V•) :=
{

(v(s),m) ∈ Nn × r · N
∣∣∣∣ 0 , s ∈ Vm

}
.

Let Σ := Σ(Γ(V•)) be the closed convex cone generated by Γ(V•) in Rn+1. We
define the Okounkov body to be

∆(V•) = Σ ∩
(
Rn × {1}

)
,

or equivalently

∆(V•) = the closed convex hull
( ⋃

m∈r·N

1
m

v(Vm \ {0})
)
⊂ Rn .

Proposition 1.10. If V• is a graded linear series belonging to L which contains
an ample series, then the monoid Γ(V•) satisfies the conditions in Lemma 1.3.

Proof To verify Lemma 1.3(2), it suffices to show that if b ≥ 0 is a sufficiently
large integer (depending on L as well as H•), then

νi(s) ≤ mb for every 1 ≤ i ≤ d,m ∈ r · N, and 0 , s ∈ H0(X,OX(mL)) .

To this end, fix an ample divisor H, and choose first of all an integer b1 which
is sufficiently large so that

(L − b1H1) · Hd−1 < 0 .

This guarantees that ν1(s) ≤ mb1 for all s as above. Next, choose b2 large
enough so that on H1 one has(

(L − aH1)|H1 − b2H2
)
· Hd−2 < 0

for any a ≤ b1. Continuing in this way, one constructs integers bi > 0 for
i = 1, ..., n such that νi(s) ≤ mbi, and then it is enough to take b = max{bi}.

Next we show Lemma 1.3(3) holds in our setting. Since A is an ample Cartier
divisor, for a sufficiently divisible m ∈ r ·N, the image of the valuation map of
|mA| contains the standard basis vectors e1, . . . , en of Nn. So it follows from the
assumption |mA| ⊂ Vm ⊂ |m(A + E)| that for any sufficiently large m divided by
r, one can realize in Γ = ΓH• (V•) all the vectors

( fm,m), ( fm + e1,m), ..., ( fm + en,m) ∈ Nn × r · N ,

where fm is the valuation vector of a section defining mE. Applying the defini-
tion for a sufficiently large ` ∈ r · N such that gcd(m, `) = r, since |`L| , ∅, we
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know ( f`, `) ∈ Γ for some vector f` ∈ Nn. Thus Nr × r · N is contained in the
group generated by Γ = ν(V•). �

Theorem 1.11. If V• is a graded linear series belonging to L which contains
an ample series. The limit

lim
m→∞

dim Vm

mn/n!

exists, which is equal to

vol(V•) = n! · volRn
(
∆(V•)

)
.

Proof This follows from Lemma 1.6 and Proposition 1.10. �

Restricted volume
Let E ⊆ X be a prime divisor on an n-dimensional projective variety X. Let L
be a big Q-line bundle on X and r a positive integer such that rL is Q-Cartier.
We assume E * B+(L), then for any m ∈ r · N, the restricted linear series is
defined to be

|mL|E := Im
(
H0(X,mL)→ H0(E,mL|E)

)
.

So this yields a graded linear series V• which contains an ample series. In fact,
since E * B+(L), we can choose L ∼Q A + G where A is ample, G ≥ 0, and
E * Supp(G), and we can form an Okounkov body, denoted by ∆X|E(L).

Therefore, we can make the following definition

Definition 1.12. Under the above assumption, we define the restricted volume

volX|E := lim
m→∞

(n − 1)! · dim
(
Im

(
H0(X,mL)→ H0(E,mL|E )

))
mn−1

which is positive.

Assume E is a Cartier divisor. Let T be the pseudo-effective threshold of
E with respect to L, then for any x < T , E * B+(L − xE). In fact, for any
x′ ∈ (x,T ), we can find an ample Q-divisor A such that

L − x′E − A ∼Q B + aE

for an effective Q-divisor B, a ≥ 0 and E * Supp(B). Then

L − (x′ + a)E ∼Q B + A . (1.6)

As E * B+(L), this implies that E 1 B+(L − tE) for any t ∈ [0, x′ + a]. In
particular, E * B+(L − xE).
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Let H• be an admissible flag

H• : (X = H0) ⊇ (E = H1) ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = a point .

Let pr1 : Rn → R1 be the projection on the first coordinate. Let ∆(L) be the
Okounkov body of L.

Proposition 1.13. For any t ∈ [0,T ) ∩ Q, if we let ∆(L)v1≥t := pr−1
1 ([t,+∞]),

∆(L)v1=t := pr−1
1 (t), then

∆(L)v1≥t = ∆(L − tE) + t~e1 and ∆(L)v1=t = ∆X|E(L − tE) .

Proof Given a graded semigroup Γ ⊆ Nd × r ·N, and an integer a > 0, denote
by Γν1≥a ⊆ Γ and Γν1=a ⊆ Γ the sub-semigroups

Γν1≥a = {(ν1, . . . , νd,m) ∈ Γ | v1 ≥ am} ,

Γν1≥a = {(ν1, . . . , νd,m) ∈ Γ | v1 = am} .

Write ν = νH• for the valuation determined by H•. Consider an integer a > 0
such that L − aE is big. Then for any m ∈ r · N,

H0(X,OX(mL − maE)) =
{
s ∈ H0(X,OX(mL)) | ordE(s) ≥ ma

}
.

In view of the definition of νH• , this means that Γ(L)ν1≥a is the image of
Γ(L − aE) under the map

φa � N
d × r · N→ Nd × r · N , (ν,m)→ (ν + ma · ~e1,m) ,

where as above ~e1 = (1, 0, ..., 0) ∈ Nd is the first standard basis vector. Passing
to cones, it follows that

Σ(Γ(L)ν1≥a) = φa,R (Σ(Γ(L − aE))) ,

where φa,R : Rd × R → Rd × R is the map on vector spaces determined by φa.
By Lemma 1.4, ∆(Σ(Γ(L)ν1≥a)) = ∆(L)ν1≥a. Therefore,

∆(L − aE) + a · ~e1 = ∆(L)ν1≥a . (1.7)

Hence (upon replacing L by a multiple)

∆(pL − qE) + q · ~e1 = ∆(pL)ν1≥q , (1.8)

whenever pL − qE is big. But both sides of (1.8) scale linearly, and therefore
(1.7) holds for rational number a ∈ [0,T )Q.

To show

∆(L)v1=t = ∆X|E(L − tE) ,
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we may assume t > 0 since we can replace L by L + tE for 0 < t � 1, as
E * B+(L + tE) for |t| � 1. Start again with an integer a > 0, and denote by

ΓX|E(L − aE) ⊆ Nd−1 × N

the graded semigroup (with respect to the flag H•|E) computing the Okounkov
body ΓX|E(L − aE). Then it follows Γ(L)ν1=a ⊆ N

d × r · N coincides with the
image of ΓX|E(L − aE) under the map

Nd−1 × r · N→ Nd × r · N , (ν2, ..., νd,m)→ (ma, ν2, ..., νd,m) .

By Lemma 1.14,

Σ(Γ(L)ν1=a) = Σ(Γ(L))ν1=a , (1.9)

where the left-hand side denotes the cone generated by the semigroup Γ(L)ν1=a,
and the right-hand side is the intersection of Σ(Γ(L)) with the subspace of ν1 =

a. It follows that ∆(L)ν1=a = ∆X|E(L − aE), and hence that

∆(pL)ν1=q = ∆X|E(pL − qE)

whenever pL−qE is big and q > 0. By scaling, this shows for any a ∈ [0,T )∩Q,
∆(L)v1=a = ∆X|E(L − aE). �

Lemma 1.14. Let Γ ⊆ Nn be a sub-semigroup which generates a finite index
subgroup of Zn, and denote by Σ = Σ(Γ) ⊂ Rn the closed convex cone generated
by Γ. Given a linear subspace L ⊆ Rn defined over Q such that L meets the
interior Σ◦ of Σ. Then

Σ ∩ L = Σ(Γ ∩ L) .

Proof Suppose that γ ∈ Σ ∩ L. By assumption, we can choose a vector γ0 ∈

Σ◦ ∩ L. Since the line segment [γ0, γ) is contained in Σ◦ ∩ L, and since it is
enough to show that this segment is contained in Σ(Γ∩L), we may assume that
γ ∈ Σ◦∩L. It follows from (1.2) that, we may choose a finitely generated Γi ⊆ Γ

such that γ ∈ Σ◦i := Σ(Γi)◦. So after replacing Γ by Γi, we may assume that Γ

is finitely generated. In this case, Γ and Γ ∩ L are rational polyhedral cones. In
particular, Γ ∩ L is the convex cone generated by the semigroup Γ ∩ L ∩ Zn.

Furthermore, given any δ ∈ Σ ∩ Zn, by Lemma 1.1, there is m ≥ 1 such that
mδ ∈ Γ. In particular, Γ∩ L and Γ∩ L∩Zn generate the same convex cone. �

Theorem 1.15. Let X be a smooth n-dimensional projective variety and E a
prime divisor on X. Let L be a big Q-line bundle on X. Assume E * B+(L).
Then

d
dt

vol(L + tE)
∣∣∣∣
t=0

= n · volX|E(L) . (1.10)
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Proof Since one can compute the volume of n-dimensional convex body by
integrating the (n− 1)-dimensional volumes of the fibres of an orthogonal pro-
jection to the first coordinate, we have for any 0 < a < T ,

volX(L) − volX(L − aE) = n! · (vol(∆(L)) − vol(∆(L − aE)))

= n! ·
∫ a

0
vol(∆(L)ν1=t)dt .

Therefore, as E * B+(L + tE) for any |t| � 1,

d
dt

vol(L + tE)
∣∣∣∣
t=0

= n! · vol(∆(L)ν1=0) = n · volX|E(L) ,

where the second equality follows from Proposition 1.13. �

1.1.3 Multi-graded linear series

In this section, we extend the construction from V• to a multi-graded linear
series. For simplicity, we work over Nr-graded linear series. Let X be a pro-
jective variety of dimension n, and fix Cartier divisors L1, . . . , Lr on X. For
~m = (m1, . . . ,mr) ∈ Nr, we write ~m~L =

∑r
i=1 miLi, and we put |~m| =

∑
|mi|.

Definition 1.16. A multi-graded linear series W~• on X associated to the Li

(i = 1, . . . , r) consists of subspaces

W~k ⊆ H0(X,OX(~k~L))

for each ~k ∈ Nr, with W~0 = k, and

W~k ·W~k′ ⊆ W~k+~k′ ⊆ H0(X,OX(~k + ~k′)~L) .

Fix ~k ∈ Nr, denote by (W~k)• the (singly) graded linear series belonging to
~k~L given by the subspaces

(W~k)m := Wm~k ⊆ H0(X,OX(m~k~L)) for any m ∈ N .

We set

volW~•
(~k) := vol((W~k)•) , (1.11)

and we obtain a volume function on Nr. Similarly, having fixed an admissible
flag H• on X, we can apply Definition 1.9, and write

∆(~k) = ∆((W~k)•) ⊆ Rn .

We define the support

supp(W~•) ⊆ Rr of W~• (1.12)
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to be the closed convex cone spanned by all indices ~k ∈ Nr such that W~k , 0.
Moreover, we define the multi-graded semigroup

Γ(W~•)(= ΓH• (W~•)) :=
{
(v(s),~k) ∈ Nn × Nr | s ∈ (W~k)•

}
.

Definition 1.17. We say W~• contains an ample series if the following hold:

(i) The interior supp(W~•)◦ of supp(W~•) ⊆ Rr is non-empty;
(ii) For any integer vector ~k ∈ supp(W~•)◦, Wm~k , 0 for m � 0;

(iii) There exists an integer vector ~k0 ∈ supp(W~•)◦ such that the N-graded linear
series (W~k0

)• contains an ample series (see Definition 1.7).

Lemma 1.18. Assume that W~• contains an ample series. If ~k ∈ supp(W~•)◦ is
any integer vector, then (W~k)• contains an ample series.

Proof By definition, for any sufficiently large integer m � 0, there is an
effective divisor Fm~k0

such that

m~k0~L − Fm~k0
∼ Am~k0

is ample, and for any p � 0,

H0(X,OX(pAm~k0
)) ⊆ Wpm~k0

⊆ H0(X,OX(pm~k0~L)) .

Now let ~k ∈ Supp(W•)◦ be any integer vector. Then for some large r ∈ N,
r~k = ~k0 + ~k′, where ~k′ also lies in Supp(W•)◦. Therefore Wm~k′ , 0 for m � 0.
Let Em~k′ = div(s) be the divisor corresponding to a nonzero section s ∈ Wm~k′ .
Then mr~k~L = m~k0~L + m~k′~L, and

mr~k~L − Fm~k0
− Em~k′ ∼ Am~k0

is ample. Moreover, for all p � 0

H0(X,OX(pAm~k0
)) ⊆ Wpm~k0

⊆ Wpmr~k ,

where the second inclusion is given by the multiplication with s⊗p. �

Lemma 1.19. If W~• contains an ample series, then Γ(W~•) generates Zn+r as a
group.

Proof Given an integer vector ~k ∈ Nr lying in Supp(W•)◦, denote by

Γ~k = ΓH• ((W~k)•) ⊆ Nn × N · ~k ⊆ Nn × Nr (1.13)

the graded semigroup of (W~k)• with respect to H•, which is a sub-semigroup
of Γ(W~•). By Proposition 1.10, we can suppose that each Γ~k generates Zn×Z ·~k
as a group. If we choose ~k1, . . . ,~kr spanning Zr, then the corresponding Γ~ki

(i = 1, . . . , r) together generate Zn+r. �



1.1 Okounkov body 27

Now let Σ(W~•) ⊂ Rn × Rr be the closed convex cone spanned by Γ(W~•), set

∆(W~•) = Σ(W~•) ,

and consider the diagram:

∆(W~•)

""

⊆ Rn × Rr

pr2
{{

Rr .

Theorem 1.20. Assume that W~• contains an ample series, and let H• be an
admissible flag. Then for any integer vector ~k ∈ supp(W~•)◦, the fibre of ∆(W~•)
over ~k is the corresponding Okounkov body of (W~k)•, i.e.

∆(W~•)~k = ∆((W~k)•) .

Proof Let Γ~k be defined as in (1.13). Let Σ(W~•)R·~k be the slice of the cone
Σ(W~•) over R · ~k ⊂ Rr. It suffices to prove

Σ(Γ~k) = Σ(W~•)R·~k ⊆ R
n × Rr ,

as ∆(W~•)~k is the fiber of Σ(W~•) over ~k, and ∆((W~k)•) is the fiber of Σ(Γ~k) over
~k. Repeatedly using Lemma 1.14, it suffices to prove

pr2
−1(R · ~k) ∩ Σ(W~•)◦ , ∅ .

By (1.2), we may choose a finitely generated Γi ⊆ Γ such that

~k ∈ Σ(pr2(Γi))◦ .

So after replacing Γ by Γi, we may assume that Γ is finitely generated. If pr−1
2 (R·

~k) does not meet Σ(W~•)◦, then it is contained in one of the faces of Σ(W~•). In
this case we can find a nonzero linear function ` on Rn+r that is nonnegative on
Σ(W~•) and vanishes on pr−1

2 (R · ~k) such that

pr−1
2 (R · ~k) ∩ Σ(W~•) ⊆ Σ(W~•) ∩ (` = 0) .

We get an induced linear function ` on Rr such that ` = ` ◦ pr2. Since ` is
nonnegative on pr2(Σ(W~•)), and vanishes on ~k, this contradicts the fact that
~k ∈ Σ(W~•)◦.

�

Corollary 1.21. Under the hypotheses of the theorem, the function~k → vol((W~k)•)
(see (1.11)) extends uniquely to a continuous function

volW~•
: supp(W~•)◦ → R>0
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which is homogeneous of degree n, and the resulting function is log-concave,
i.e. for ~k, ~k′ ∈ supp(W~•)◦,

volW~•
(~k + ~k′)

1
n ≥ volW~•

(~k)
1
n + volW~•

(~k′)
1
n .

Proof By Theorem 1.20, the function

~k → vol((W~k)•) = n! · vol(∆((W~k)•)) = n! · vol(∆(W~•)~k) ,

defined over integral vectors ~k ∈ supp(W~•)◦ ∩Zr can be extended to all vectors
~k ∈ supp(W~•)◦, as the right hand side is defined for any such vector ~k. It is
homogeneous of degree n. Since ∆(W~•) is convex, ~k → vol(∆(W~•)~k) is log-
concave by Brunn-Minkowski inequality. �

Theorem 1.22. Let L1, L2 be big Q-line bundles on an n-dimensional projec-
tive variety X. Let E be a prime divisor on X which is not contained in B+(Li)
(i=1,2). Then the function

t ∈ [0, 1]Q 7→ volX|E(tL1 + (1 − t)L2)

can be extended to a unique continuous function on t ∈ [0, 1]. This function is
homogeneous of degree n − 1, and it satisfies the log-concavity property

volX|E(tL1 + (1 − t)L2)
1

n−1 ≥ t · volX|E(L1)
1

n−1 + (1 − t) · volX|E(L2)
1

n−1 .

Proof By rescaling, we may assume L1 and L2 to be Cartier. We fix an ad-
missible flag

H• : (X = H0) ⊇ (E = H1) ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn = a point ,

and form the Okounkov body

∆(W~•) ⊆ Rn × R2

for the multi-graded linear series associated to ~mL = m1L1 + m2L2, where

Wm1,m2 = H0(X,OX(m1L1 + m2L2)) .

Let pr : Rn × R2 → Rn → R1 be the projection to the first coordinate, and set

∆(W~•)1 := pr−1(1) .

Since E * B+(tL1 + (1 − t)L2) for t ∈ (−ε, 1 + ε) for some 0 < ε � 1, for each
~t = (t1, t2) ∈ N2

≥0, we have

(∆(W~•)1)~t := (the slice cone of ∆(W~•) over {1}) over (t1, t2)

= (the slice cone of ∆(W~•) over (t1, t2)) over {1}

=
(
the slice cone of ∆((W~t)~•)

)
over {1} (by Theorem 1.20)

=: ∆((W~t)•)1 .
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By Proposition 1.13, ∆((W~t)•)1 is the Okounkov body for the restricted linear
series of t1L1 + t2L2 on E. Therefore,

volX|E(t1L1 + t2L2) = (n − 1)! · vol
(
(∆(W~•)1)~t

)
and the right hand side can be extended continuously to ~t ∈ R2

≥0 as a homoge-
neous function of degree n−1. Moreover, since ∆(W~•)1 is convex, volX|E(t1L1 +

t2L2) is log concave by the Brunn-Minkowski inequality. �

1.2 Valuations

1.2.1 Space of valuations

Let k ⊆ K be a finitely generated field extension. We denote by k× and K× the
non-zero elements in each field. A real-valued valuation is a group homomor-
phism v : K× → (−∞,+∞) such that

v( f + g) ≥ min
{
v( f ), v(g)

}
and v|k× = 0 .

Since we mostly consider real-valued valuations, we simply call it a valua-
tion unless specified otherwise. It is convenient to set v(0) = +∞. The trivial
valuation vtriv is defined by vtriv( f ) = 0 for all f ∈ K×.

Definition 1.23. To each valuation v is attached the following list of invariants.
The valuation ring of v is

Ov := { f ∈ K | v( f ) > 0 } .

This is a local ring with maximal ideal mv := { f ∈ K | v( f ) > 0 }, and the
residue field of v is k(v) := Ov/mv. The transcendence degree of v (over k) is
tr. deg(v) := tr. deg k(v)/k. Finally, the value group of v is Γv := v(K×) ⊂ R,
and the rational rank of v is rankQ(v) := dimQ Γv ⊗ Q.

We have the following inequality.

Theorem 1.24 (Abhyankar’s inequality). If k ⊆ K is a finitely generated field
extension. Denote by k ⊆ K0 ⊆ K an intermediate field extension, with v is a
valuation on K and v0 is its restriction to K0.

(i) We have an inequality

tr. deg(v) + rankQ(v) ≤ tr. deg(v0) + rankQ(v0) + tr. deg(K/K0) . (1.14)

(ii) If the equality holds and the value group Γv0 � Z
rankQ(v0), then Γv � Z

rankQ(v).
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Proof (i) We first prove the weaker inequality

rankQ(v) ≤ rankQ(v0) + tr. deg(K/K0) . (1.15)

First we assume K0 ⊆ K is algebraic. For any u ∈ K, let

f (X) = Xn + a1Xn−1 + · · · + an

be the minimal monic polynomial of u over K0. Since f (u) = 0, there ex-
ist distinct integers i and j such that v(aiun−i) = v(a jun− j) and hence v(u) =

1
i− j v0(ai/a j), i.e., the value of u depends rationally on the value of ai/a j ∈ K0.
Therefore rankQ(v) = rankQ(v0).

Now suppose s := tr. deg(K/K0) > 0 and assume that the weaker inequality
(1.15) is true for s − 1. Let z1, z2, . . . , zs−1 be part of a transcendence basis of
K/K0. Let K1 = K0(z1, z2, . . . , zs−1), let v1 be the restriction of v to K1. By our
induction hypothesis,

rankQ(v1) ≤ rankQ(v0) + s − 1 .

Now we may assume that there is a nonzero element z ∈ K such that v(z) does
not depend rationally on the values of elements of K1. Then z is transcendental
over K1. Let

f (X) = f0 + f1X + · · · + fnXn and g(X) = g0 + g1X + · · · + gnXn

be nonzero elements of K1[X]. Let ai = v1( fi) if fi , 0 and b j = v1(g j) if
g j , 0. Since h depends rationally neither on the ai nor on the b j, there exist
integers p and q such that v( fpzp) < v( fizi) whenever i , p and fi , 0, and
v(gqzq) < v(g jz j) whenever j , q and g j , 0. Thus

v( f (z)/g(z)) = v1( fp/gq) + (p − q)v(z) . (1.16)

This says the value of any nonzero element of K1(z) is of the form a + mv(z)
where a is in the value group of v1, and m is an integer. Therefore, if we let v2

to be the restriction of v to K1(z), then

rankQ(v2) = rankQ(v1) + 1 ≤ rankQ(v0) + s .

Since K/K1(z) is an algebraic extension, we have

rankQ(v) = rankQ(v2)

Thus the induction is complete and (1.15) has been proved.
Now let y1, y2, . . . , yd be a transcendence basis of k(v) over k(v0) and fix Yi

in Ov ⊆ K such that its image in k(v) is yi. Let

K′ := K0(Y1,Y2, . . . ,Yd) ⊆ K
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and v′ be the restriction of v to K′. Given a polynomial 0 , f (X1, X2, . . . , Xd) ∈
K0[X1, X2, . . . , Xd], choose a coefficient q of f having minimum v0-value and
let

F(X1, X2, . . . , Xd) =
1
q

f (X1, X2, . . . , Xd) .

Then all the coefficients of F(X1, X2, . . . , Xd) belong to OV0 , and at least one of
them is equal to 1. Let F(X1, X2, . . . , Xd) ∈ k(v0)[X1, . . . , Xd] be the polynomial
obtained by reducing the coefficients of F(X1, X2, . . . , Xd) modulo mv0 . Since
F(X1, X2, . . . , Xd) has a coefficient equal to 1 and y1, y2, . . . , yd are algebraically
independent over k(v0), we have F(y1, y2, . . . , yd) , 0, i. e., v(F(Y1,Y2, . . . ,Yd)) =

0, i.e.,

v( f (Y1,Y2, . . . ,Yd)) = v(q) , ∞ ,

Hence f (Y1,Y2, . . . ,Yd) , 0. Thus Y1,Y2, . . . ,Yd are algebraically independent
over K0. Applying (1.15) to K/K′, we conclude that

tr. deg(K/K0) − (tr. deg(v) − tr. deg(v0)) ≥ rankQ(v) − rankQ(v′) .

As v(Yi) = 0, the value groups of v0 and v′ are identical, we have

rankQ(v) + tr. deg(v) ≤ tr. deg(K/K0) + rankQ(v0) + tr. deg(v0) .

(ii) Let K′ and v′ be as above. Then v0 and v′ have the same value groups, K/K′

is a finitely generated extension of transcendence degree

e := tr. deg(K/K0) − (tr. deg(v) − tr. deg(v0)) = rankQ(v) − rankQ(v′) .

Let x1, . . . , xe be a transcendence basis of K/K′. Let Ki = K′(x1, x2, . . . , xi), vi

the restriction of v to Ki, and ri = rankQ(vi). By (i), we must have ri+1 = ri + 1
for i = 1, . . . , e. Applying (1.16) to K1/K′,K2/K1, . . . ,Ke/Ke−1, we conclude
that for any nonzero element x of Ke we have

v(x) = a + mr+1tr+1 + · · · + mr+etr+e ,

where a is the value of an element of K′ and where mr+1, . . . ,mr+e are integers.
Since Γv′ = Γv0 � Z

rankQ(v0), the value group Γve � Z
rankQ(v0)+e. Since K/Ke is a

finite algebraic extension, the value group Γve is a subgroup of the value group
Γv of finite index and hence Γv � Z

rankQ(v). �

When K0 = k, we obtain the inequality first proved by Zariski:

tr. deg(v) + rankQ(v) ≤ tr. deg(K/k) . (1.17)

A valuation v is called an Abhyankar valuation if the above inequality (1.17)
is an equality.
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Let X be a variety and K(X) its fractional field. A valuation of K(X) is on X
means there is an affine set U ⊆ X, such that if we write U = Spec(R), then
R ⊆ Ov. We denote the point given by the prime ideal R ∩ mv to be the center
cX(v) on X, and it is unique by the separatedness assumption of X.

We denote by ValX the set of all valuations on X, equipped with the weak
topology, and Val∗X ⊂ ValX the subspace of all non-trivial valuations.

Definition 1.25 (Valuative ideal sheaf). Let v ∈ ValX , fix λ ∈ R, then we can
define the valuative idea sheaf aλ(v) to be

aλ(v)(U) := { f ∈ O(U) | v( f ) ≥ λ }

for any open set U ⊆ X.

Example 1.26 (Divisorial valuation over X). Let X be a variety and µ : Y → X
be a proper birational morphism, with Y normal. A prime divisor E ⊆ Y defines
a valuation ordE : K(X)× → Z given by order of vanishing at E. Note that
cX(ordE) is the generic point of µ(E) and, assuming X is normal, ap(ordE) =

µ∗OX(−pE). We call any valuation v = λ · ordE for some λ > 0, a divisorial
valuation. We denote by DivValX the set of all divisorial valuations.

A more general class of valuations is given as following.

Example 1.27 (Quasi-monomial valuations). Denote Y → X a log resolu-
tion with simple normal crossing divisors E1, . . . , Er on Y . Denote by α =

(α1, . . . , αr) ∈ Rr
≥0. Assume

⋂r
i=1 Ei , ∅. We denote by C a component of⋂r

i=1 Ei, such that around the generic point η of C, Ei is given by an equation
yi in OY,η. We define a valuation vα to be

vα( f ) = min
{ r∑

i=1

αiβi| cβ(η) , 0
}

where f =
∑
β∈Nr

cβyβ around η ,

and all such valuations are called quasi-monomial valuations. The dimension
of the Q-vector space spanned by {α1, . . . , αr} is identical to the rational rank
of vα. The valuations vα for all α give a simplicial cone, denoted by QMη(Y, E),
which is a natural subspace in ValX .

Let E =
∑

i∈I Ei be a general simple normal crossing divisor on Y . If we
put together all stratum C ⊆ (Y, E) and all corresponding simplicial cones, we
get a subspace QM(Y, E) ⊆ ValX , whose prime integral vectors are precisely
toroidal divisors of (Y, E). A valuation v ∈ QM(Y, E) is called toroidal over
(Y, E). We also denote by DC(Y, E) the dual complex, which is the base of the
cone QM(Y, E).

Example 1.28. Given a valuation v, and a simple normal crossing (but possibly
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non-proper) model (Y, E =
∑

Ei) over X such that the center of v on Y is
non-empty, we can define a valuation vα = ρY,E(v), where the corresponding
component αi is defined to be v(zi).

Proposition 1.29. A valuation v on K = K(X) is quasi-monomial if and only
it is Abhyankar. In particular, it is divisorial if and only if v is Abhyankar with
rankQ(v) = 1,

Proof Let r = rankQ(v). By Theorem 1.24, the valuation group Γv � Zr. Fix
f1, . . . , fr in K, whose values generate Γv. By replacing fi by 1

fi
if necessary,

we may assume all v( fi) > 0. We can write each fi as a fraction ai
bi

, where the
ai and bi are regular on some neighborhood of cX(v) ⊆ X. By blowing up the
ideals (ai, bi), we can make the fractions ai

bi
regular on some neighborhood of

the center. So we may assume fi are regular around cX(v). By blowing up fur-
ther to make a transcendental basis to be regular on X, we can assume that the
dimension of the center is the transcendence degree of v, i.e. its codimension
equals rankQ(v). So we have created a model Y ′ dominating X where the ele-
ments fi are regular on a neighborhood of cY ′ (v), and the codimension of the
center is exactly r = rank of Γv.

Let Y be a log resolution of (Y ′, f1 f2 · · · fr = 0) in a neighborhood of the
center on Y ′. For any closed point x of Y , we have

f1 f2 · · · fr = uxa1
1 xa2

2 · · · x
aN
N ,

where x1, . . . , xN is a regular system of parameters at x and u is a regular func-
tion invertible in a neighborhood of x. Because the local rings of Y are unique
factorizations domains, we have

fi = uix
ai1
1 xai2

2 · · · x
aiN
N

for some ai j ∈ N and some unit ui. Hence v( fi) =
∑N

j=1 ai jv(x j). In particu-
lar, the elements v(x j) generate Γv. We claim that exactly r of the elements
x j have nonzero value. If more have nonzero value, then there are at least
r + 1 of the parameters x1, . . . , xr+1 contained in the defining ideal of the center
cY (v). This would force cY (v) to have codimension greater than r, a contra-
diction. Relabeling so that the parameters x1, . . . , xr are those with positive
value. Since x1, . . . , xr are part of a regular sequence of parameters in a neigh-
borhood of cY (v), they must generate the maximal ideal after localization. So
v ∈ QMcY (v)(Y, E =

∑r
i=1 Ei) where Ei = (xi = 0). �

To any valuation v ∈ ValX and t ∈ R, there is an associated valuation ideal
sheaf at(v): For an affine open subset U ⊆ X,

at(v)(U) = { f ∈ OX(U) | v( f ) ≥ t }
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if cX(v) ∈ U and at(v)(U) = OX(U) otherwise.
Let L be a Cartier divisor on an integral variety X. For a valuation v, let s0

be a generator of L around cX(v), i.e., we fix an isomorphism ϕ : L|U � OU for
a neighborhood U of cX(v) and let s0 ∈ O(U, L) be the section ϕ−1(1). For any
s ∈ Γ(X, L), write s = f · s0 for a regular function around cX(v), then we define

v(s) = v(Ds) = v( f ) , (1.18)

where Ds is the Cartier divisor corresponding to s. The definition of v(s) does
not depend on the choice of the generator s0.

Lemma 1.30. Fix a Cartier divisor L on a projective variety X. The set of
functions

{ φD

∣∣∣ QM(Y, E)→ R , D→ v(D) } (1.19)

for D runs through members in |L|, is finite.

Proof It suffices to prove the statement for the restriction of φD to a fixed
simplicial cone in QM(Y, E). Choose any irreducible component C ⊆

⋂
i∈J Ei.

Write η ∈ Y for the generic point of C, set r := |J|, and fix a regular system of
parameters (zi)i∈J at η ∈ Y such that zi locally defines Ei.

Set B := P(H0(X,OX(L))∗) and writeD for the universal divisor on X×B pa-
rameterizing elements of |L|. To prove the lemma, we will write B =

⋃
Bi as a

finite union of constructible subsets so that the restriction of ψDb to QMη(Y, E)
is independent of b ∈ Bi.

Choose a nonempty affine subset U ⊆ B and a function f ∈ OY,η ⊗k O(U)
that defines the Cartier divisor D|Y×B in a neighborhood of {η} × U. We can
write the image of f in ÔY,η⊗O(U) as

∑
β∈Nr cβzβ, where each cβ ∈ k(η)⊗O(U)

and consider the associated Newton polygon

N := convex hull of { β + Rr
≥0

∣∣∣ cβ , 0} .

Note that N is determined by a finite collection of non-zero coefficients {cβ(i) }

(i = 1, . . . ,m). Hence, if we let B1 ⊆ U denote the open set where cβ(i) , 0
for all i = 1, . . . ,m, then the Newton polygon of the image of f in OY,η ⊗ k(b)
agrees with N for all b ∈ B1. Hence, ψDb is independent of b ∈ B1. Repeating
this argument on the complement eventually yields such a decomposition. �

We have the following estimate, proved in Boucksom et al. (2014).

Theorem 1.31. Assume Y is quasi-projective with an ample line bundle H
and E is a proper divisor on Y such that (Y, E) is simple normal crossing. If we
identify DC(Y, E) with the valuations v ∈ QM(Y, E) with AY (v) = 1. Let G be
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an effective Cartier divisor on Y, and if we denote by φG the function in (1.19).
Then it is Lipschitz on DC(Y, E), with the Lipschitz constant at most

A ·min φG + B ·max
J⊆I
|G · Hn−|J|−1 · EJ | ,

where E =
∑

i∈I Ei and EJ =
⋂

j∈J E j. Here the constants A and B depend on
Y,H and a fixed metric on DC(Y, E), but not G.

Lemma 1.32. Let X be a smooth variety. By successively blowing up the center
of v and possibly shrinking, we get a sequence of models φi : Yi → Yi−1 where
Y0 = X such that the center of v on Yi is not empty. Define E0 = ∅ and Ei =

φ−1
i∗ (Ei−1) + Ex(φi). Denote by vi = ρYi,Ei (v), then v = limi→∞ vi.

Proof For any valuation v and an ideal a on X, v(a) ≥ ρY,E(v)(a) and the
equality holds if after shrinking around the generic point of cY (v), (Y, E) is a
log resolution of (X, a). This implies for any f , v( f ) = limi→∞ vi( f ). �

Let X be an integral variety. The function field X × A1
s is isomorphic to

K(X)(s). Therefore, X × A1
s admits a Gm-action t · (x, a) → (x, t · a). For a

valuation v on K(X)(s), we say v is Gm-invariant, if for any t ∈ Gm and f ∈
K(X)(s)×, v( f ) = v(t∗( f )).

Lemma 1.33. A valuation v on K(X × A1
s) is Gm-invariant if and only if v has

the form (w, p), where w is a valuation on K(X), p ∈ R, and for any f =
∑

i fi ·si

with fi ∈ K(X)×,

v( f ) = v(
∑

i

fi · si) = min
i
{w( fi) + i · p} . (1.20)

Proof Let w be the restriction of v on K(X) ⊂ K(X)(s) and p = v(s). In (1.20),
“≥” follows from the definition of valuation.

Since t∗v = v, then for any t ∈ Gm,

v( f ) = v
(
(t−1)∗( f )

)
= v

∑
i

ti fi · si

 .
Assume in the expression

∑
i fi · si there are precisely r summands α j (1 ≤ j ≤

r) with fα j , 0. If we choose general p elements t1, . . . , tp ∈ Gm. Then the
(p × p)-matrix

(
tα j

i
)
i j is non-degenerate. So for any j, we can write fα j · s

α j as
a k-linear combination of

∑
j tα j

i · fα j · s
α j (1 ≤ j ≤ r), which implies for any j,

w( fα j ) + α j · p = v( fα j · s
α j )

≥ min
i

{
v
( r∑

j=1

tα j

i · fα j · s
α j
)}

= v( f ) ,

i.e., “≤” in (1.20) holds. �
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Definition 1.34 (Log discrepancy function on ValX). Let (X,∆) be a log canon-
ical pair, the log discrepancy function

AX,∆ : ValX → [0,+∞]

is defined in the following three steps:

• AX,∆(E) = multE(KY − π
∗(KX + ∆)) + 1 for a divisorial valuation;

• for a quasi-monomial valuation vα as in Example 1.27, we define

AX,∆(vα) =
∑

i

αiAX(Ei) ; (1.21)

• for a general valuation v, we define

AX,∆(v) = sup
Y,E

AX,∆(ρY,E(v)) . (1.22)

Definition 1.35. For a klt pair (X,∆), we define the minimal log discrepancy
mld(X,∆) to be minE AX,∆(E) where the minimum runs through over all divi-
sors over E.

Lemma 1.36. Fix a klt pair (X,∆), let Y → (X,∆) be any log resolution. Then

AX,∆(v) < +∞ ⇐⇒ AY (v) < +∞ .

Proof Denote by a = mld(X,∆) > 0. We write µ∗(KX + ∆) = KY + ∆Y , then
coefficients of ∆Y are less or equal to 1 − a. Let D = Supp(∆Y ).

Assume AX,∆(v) < +∞. Since (Y,D) is log canonical, AY (v) ≥ v(D) for any
valuation v, thus

AX,∆(v) ≥ AY (v) − (1 − a) · v(D) ≥ a · AY (v) ,

which implies AY (v) < +∞.
Assume AY (v) < +∞, let b = min{coeff(∆Y ) , 0}. Then

AX,∆(v) ≤ AY (v) − b · v(D) ≤ (1 − b)AY (v) ,

which implies AX,∆(v) < +∞. �

Definition 1.37. For a potentially klt variety X, we denote by Val<+∞
X all non-

trivial valuations of ValX with finite log discrepancy with respect to any reso-
lution Y of X.

By Lemma 1.36, the definition does not depend on the choice of Y . It is clear
that all quasi-monomial valuations over X are contained in Val<+∞

X .

Definition 1.38. For an lc pair (X,∆), any valuation v is said to be an lc place
if it satisfies that AX,∆(v) = 0. We denote by LCP(X,∆) the subspace of all lc
places v.
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Lemma 1.39. Let (X,∆) be a log canonical pair. Let (Y, E) → (X,∆) be a log
resolution, and E+ ⊆ E the sum of all components F with AX,∆(F) = 0, then
QM(Y, E+) = LCP(X,∆).

Proof The case when v is a divisorial valuation follows from (Kollár and
Mori, 1998, Corollary 2.31).

When v is quasi-monomial, we can assume the model v ∈ (Y ′, E′) which is a
log resolution of (Y, E). Let the center of v be a generic point of the intersection
of

⋂r
j=1 E′j where E′j are irreducible components of E′. Let v = vα where α =

(α1, ..., αr) with α j > 0 for all 1 ≤ j ≤ r. By (1.21),

AX,∆(v) =

r∑
j=1

α jAX,∆(E j) ,

so AX,∆(E j) = 0, which implies ordEi ∈ QM(Y, E+). Then it follows that v ∈
QM(Y, E+).

Finally, for a general valuation v, we consider the quasi-monomial valuation
ρY (v). Since AX,∆(ρY (v)) ≤ AX,∆(v),

AX,∆(ρY (v)) = AX,∆(v) = 0 .

This implies for the sequence of blow ups as in Lemma 1.32, ρYi (v) = ρY (v),
as

vi := ρYi (v) ∈ LCP(X,∆) ∩ QM(Yi, Ei) ⊆ QM(Y, E+) .

Therefore, by Lemma 1.32, v = lim vi = ρ(v). �

1.2.2 Log canonical thresholds

For any ideal sheaf a on a variety X, we can define

v(a) := min
{
v( f ) | f ∈ aX,x where x = CX(v)

}
.

For any two ideals a, b,

v(a · b) = v(a) + v(b) .

For any log canonical pair (X,∆) and a nonzero ideal sheaf a, we define the
log canonical threshold of a with a non-negative exponent c to be

lct(X,∆; ac) = inf
v

AX,∆(v)
c · v(a)

(whenever v(a) = 0, we set AX,∆(v)
c·v(a) = +∞). We also set lct(X,∆; 0) = 0. For

x ∈ X, let Xx := Spec(OX,x) and ax = a|Xx . and we define

lctx(X,∆; ac) = lct(Xx,∆|Xx ; a
c
x) .
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We call any valuation v such that AX,∆(v)
c·v(a) attains the infimum at the right hand

side a valuation which computes the log canonical threshold.
Similarly, let (X,∆) be a log canonical pair, and M an effective R-Cartier

divisor on X. We can define the log canonical threshold

lct(X,∆; M) = sup
t

{
t | (X,∆ + tM) is log canonical

}
.

Lemma 1.40. We have

lct(X,∆; a) = inf
E

AX,∆(E)
ord(a)

,

and the infimum in the right hand side is attained.
Moreover, if we let (Y, E) → (X,∆ + a) be a log resolution, and E+ ⊆ E

the sum of all components F such that AX,∆(F)
ordF (a) is minimal among all compo-

nents of E. Then QM(Y, E+) precisely gives all valuations which computes
c = lct(X,∆; a).

Proof This follows from Lemma (1.39). �

Lemma 1.41. Let V be a linear system on a klt pair (X,∆), if we denote its
base locus by b(V). Let H1, ...,Hk ∈ V be general members, then for any k ≥
lct(X,∆; b(V)),

lct(X,∆; b(V)) = lct(X,∆ +
1
k

(H1 + · · · + Hk)).

Proof Set c := lct(X,∆; b(V)). Let µ : Y → (X,∆ + b(V)) be a log resolution.
If we write µ∗(KX + ∆) = KY + ∆Y , and µ−1b(V) = OY (−E), then (Y,∆Y + cE)
is a simple normal crossing pair with coefficients of ∆Y + cE less or equal to
one, and at least one component equal to one.

Since H1, ...,Hk ∈ V are general members, by Bertini Theorem, we know
that the pair

µ∗(KX + ∆ +
c
k

(H1 + · · · + Hk)) = KY + ∆Y + cE +
c
k
µ−1
∗ (H1 + · · · + Hk)

is also a simple normal crossing pair. Therefore, it also has coefficients less or
equal to one, and at least one component equal to one. �

For a Q-linear system c · V , we also define

lct(X,∆; c · V) := lct(X,∆; b(V)c) .

Lemma 1.42. Let (X,∆) be a klt pair andD ⊆ X×S a relative Cartier divisor
over S , i.e., D is flat over S and for any t ∈ S , Dt := D ×S {t} is a Cartier
divisor on X. Then the function t ∈ S → lct(X,∆;Dt) is a constructible and
lower-semicontinuous function on S .
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Proof After stratifying S into disjoint union of locally closed irreducible stra-
tum S i, we may assume there exists a log resolution µi : (Yi, Ei) of

(X × S i,∆ × S i +Di) forDi := D×S S i

such that (Yi, Ei) is log smooth over S i. Then write µ∗(KX×S i +∆×S i) = KYi +∆i

and µ∗(Di) = DYi .
Since (Yi,Supp(∆i +DYi )) → S i is log smooth, t ∈ S i → lct(X,∆;Dt) is a

constant function on S i.

To see it is lower semi-continuous, we may assume S = Spec(R) for a DVR,
with fractional field K and residue field κ. Let (XL,∆L) be the base change for
k ⊆ L where L = K or κ, then

lct(XK ,∆K ;DK) ≥ lct(X,∆ + Xκ;D) = lct(Xκ,∆κ;Dκ) ,

where the equality follows from the inversion of adjunction. �

Lemma 1.43. Let X be an n-dimensional variety with a smooth point x. Let
∆ be a Q-divisor, such that multx∆ ≤ 1. Then (X,∆) is log canonical in a
neighborhood of x.

Proof After localizing, we may assume x is a closed point; then after shrink-
ing X, we may assume X is smooth and quasi-projective. Let H1,..., Hn−1 be
general hypersurface passing through x. Then C =

⋂n−1
i=1 Hi is smooth around

x, and (1− t)∆|C is a Q-divisor with multiplicity less than one for any t ∈ (0, 1).
Therefore, after shrinking X, (C, (1 − t)∆|C) is klt. We will inductively prove
for j = 0, ..., n − 1, (W j :=

⋂ j
i=1 Hi, (1 − t)∆|W j ) is klt for any t ∈ (0, 1).

When j = n − 1, Wn−1 = C, this has already been shown. Assume this is
known for j. Then W j = W j−1∩H j, by the inversion of adjunction, (W j−1, (H j +

(1 − t)∆)|W j−1 ) is plt along W j. Since W j ⊂ H j, then (W j−1, (1 − t)∆)|W j−1 ) is klt
along W j.

When j = 0, (X, (1 − t)∆) is klt around x, i.e. (X,∆) is lc around x. �

Theorem 1.44. Let (X,∆) be a klt projective pair. Let L be a Q-line bundle
such that |L|Q , ∅. Then

lct(X,∆; |L|Q) : = inf
D∈|L|Q

lct(X,∆; D) > 0 .

Proof Let f : Y → X be a morphism from a projective variety. Write f ∗(KX +

∆) = KY + ∆Y . We can choose Y such that Supp(∆Y ∨ 0) is a disjoint union of
smooth components. Denote by ∆≥0

Y = ∆Y ∨ 0 and a the maximal coefficient of
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∆≥0
Y . Let LY be ample on Y such that |LY − f ∗L|Q , ∅. Then

lct(X,∆; |L|Q) ≥ lct(Y,∆≥0
Y ; |LY |Q)

≥
1

(1 − a)(Ln
Y )
,

where the last inequality follows from Lemma 1.43 and the fact that any divisor
D ∈ |LY |Q and x ∈ Y , multxD ≤ Ln

Y . �

1.3 Asymptotic invariants

1.3.1 Asymptotic invariants of graded ideal sequences

Let Φ ⊆ R≥0 be a discrete monoid.

Definition 1.45. For a nontrivial monoid Φ ⊆ R≥0, we say a• = {am}m∈Φ is a
graded sequence of ideals indexed by Φ if for each m ∈ Φ, am ⊆ OX is an ideal
sheaf, which satisfies that

(i) am · am′ ⊆ am+m′ for m,m′ ∈ Φ; and
(ii) If am ⊇ am′ if m ≤ m′.

Lemma 1.46. The limit limm→+∞
v(am)

m exists, which is equal to inf v(am)
m .

Proof If for any p ∈ N, if we define bp = ∪m≥pam. Then bp · bp′ ⊆ bp+p′ , i.e.
{bp}p∈N is a graded sequence of ideal indexed by N. Since for any valuation v,
v(bp) + v(bp′ ) ≥ v(bp+p′ ), thus by Feketa Lemma 1.47, limp→∞

1
p v(bp) exists.

Since for any m ∈ [p, p + 1), we have bp ⊇ am ⊇ bp+1,

v(bp) ≤ v(am) ≤ v(bp+1) ,

then we know limm→+∞
1
m v(am) exists, which is equal to limp→∞

1
p v(bp). More-

over, for any m0 ∈ Φ,

1
m0

v(am0 ) ≥ lim
p→+∞

1
pm0

v(apm0 ) = lim
m→+∞

1
m

v(am) .

�

In the above proof, we use the following elementary lemma.

Lemma 1.47 (Fekete’s Subadditive Lemma). For every subadditive sequence
{am}

∞
m=1, the limit limm→∞

am
m exists and is equal to infm

am
m .
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Proof Let M = infm≥1
am
m . For any ε > 0, choose m0 so that am0 < m0(M + ε).

Let a = max0≤r<m0 ar (we set a0 = 0). If m ≥ m0, let m = qm0 + r with
0 ≤ r < m0.

From the subadditivity property,

am = aqm0+r ≤ qam0 + a .

Thus
am

m
≤

qam0

m
+

a
m
<

(M + ε)m0q
m

+
a
m
.

The right hand side converges to M + ε as m→ ∞. �

Definition 1.48. For a graded sequence of ideals a• index by a nontrivial
monoid Φ ⊆ R≥0, we define

v(a•) = lim
m→∞

1
m

v(am) .

Lemma 1.49. Let (X,∆) be klt pair. The limit

lim
m→+∞

m · lct(X,∆; am)

exists, and it is equal to sup m · lct(X,∆; am).

Proof For any p ∈ N, we set bp as in the proof of Lemma 1.46. Since for any
valuation v,

v(bp) + v(bp′ ) ≥ v(bp+p′ ) ,

if we set ap = lct(X,∆; bp), we have 1
ap

+ 1
ap′
≥ 1

ap+p′
, i.e. { 1

ap
}p∈N is subaddi-

tive. By Feteke’s Lemma 1.47, limp→∞
1

p·ap
exists, which implies limp→∞ p ·

lct(X,∆; bp) exists. Moreover, it is equal to supp p · lct(X,∆; bp).
Since for any m ∈ [p, p + 1), bp ⊇ am ⊇ bp+1, we have

lct(X,∆; bp) ≤ lct(X,∆; am) ≤ lct(X,∆; bp+1) ,

thus limm→∞ m · lct(X,∆; am) exists. Moreover, as before this limit is equal to
supm m · lct(X,∆; am). �

We define the log canonical threshold for the graded sequence of ideals
a• = {am}m∈Φ to be

lct(X,∆; a•) = lim
m→+∞

m · lct(X,∆; am) . (1.23)

We also consider a slightly different setting: Let (X,∆) be a klt pair. Let
a• = {am}m∈r·N be a graded sequence of ideals on X. Let D be an effective
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Q-Cartier Q-divisor whose support contains the reduced cosupport of ar. We
define

cm = lct(X,∆ + (am)
1
m ; D)

= sup
{

c ∈ R | (X,∆ + (cD) · (am)
1
m ) is sub log canonical

}
.

From our assumption, we know that cm > −∞ for any m ∈ r · N.

Lemma 1.50. The limit limm→∞ cm exists, which is the same as c := supm→∞ cm.

Proof Let m0 satisfy that cm0 > c−ε. Then for any m, we can write m = qm0+r
for some 0 ≤ r < m0. Let a = min1≤r<m0 lct(X,∆ + (ar)

1
r ; D).

For any two ideals ba1
1 and ba2

2 with rational exponents, and a rational number
t ∈ [0, 1],

lct(X,∆ + b
ta1
1 · b

(1−t)a2
2 ; D) ≥ t · lct(X,∆ + b

a1
1 ; D) + (1 − t) · lct(X,∆ + b

a2
2 ; D).

Then we have

lct(X,∆ + (am)
1
m ; D) ≥ lct(X,∆ + (am0 )

q
m · (ar)

1
m ; D)

≥
qm0

m
lct(X,∆ + (am0 )

1
m0 ; D) +

r
m

lct(X,∆ + (ar)
1
r ; D)

≥
qm0

m
(c − ε) +

r
m
· a .

The right hand side has its limit c − ε as m→ ∞. �

Definition 1.51. We define c∞ = lct(X,∆ + a•; D) to be limm→∞ cm.

Definition 1.52. Let (X,∆) be a klt pair, and a ⊂ OX be an ideal. Let µ : Y →
(X,∆ + a) be a log resolution. Write µ−1(a) = OY (−E). For λ ≥ 0, we define
the multiplier ideal

J(X,∆; aλ) = µ∗OY (dKY − µ
∗(KX + ∆) − λµ∗Ee) .

The following summation formula is proved in Takagi (2006) and Jow and
Miller (2008).

Theorem 1.53 (Summation Formula). Let (X,∆) be a klt pair, a, b ⊆ OX be
two ideals. Then

J(X,∆; (a + b)λ) =
∑

t+s=λ

J(X,∆; at · bs) .

Theorem 1.54 (Subadditivity). Let (X,∆) be a klt pair, a, b ⊆ OX be two ideals.
Let Jac(X) be the Jacobian ideal sheaf. Let r be a positive integer such that
r(KX + ∆) is Cartier. Then for any s, t ∈ R≥0,

Jac(X) · J(X,∆; as
b

tOX(−r∆)
1
r ) ⊆ J(X,∆; at) · J(X,∆; bs) .
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Proof The statement is proved in Takagi (2013), generalizing Demailly et al.
(2000), Takagi (2006). �

In the below, to make our notation simpler, we will consider the case Φ =

r · N.

Lemma 1.55. Let a• = {am}m∈Φ be a graded sequence of ideals. For any λ ≥ 0,{
J(X,∆;

λ

m
am)

}
m∈Φ

has a maximal element.

Proof Since for any p ∈ N, a(p−1)!(p+1)
r·p ⊆ a

p+1
r·p! ⊆ ar·(p+1)!,

J(X,∆;
λ

r · p
ar·p) ⊆ J

(
X,∆;

λ

r · p!
ar·p!

)
⊆ J

(
X,∆;

λ

r · (p + 1)!
ar·(p+1)!

)
.

Thus the sequence
{
J

(
X,∆; λ

r·p!ar·p!

)}
p

is increasing, and it has a maximal el-
ement by the noetherian property. �

We denote this maximal element as J(X,∆; aλ•).

Lemma 1.56. We have

lct(X,∆; a•) = sup { λ
∣∣∣J(X,∆; aλ•) = OX} .

Proof If lct(X,∆; a•) > λ, then there exists a sufficiently large m0, lct(X,∆; am) >
λ
m for m ≥ m0. In particular, for any λ′ ≤ λ, J(X,∆; aλ

′

• ) = OX .
If lct(X,∆; a•) = c, then by Lemma 1.49, for any m, lct(X,∆; am) ≤ c

m .
Therefore, J(X,∆; c

mam) ( OX . Thus J(X,∆; ac•) ( OX by Lemma 1.55. �

Definition 1.57. For a graded sequence {am}, we define bm := J(X,∆; am• ).

Lemma 1.58. There exists a nonzero ideal I which only depends on (X,∆),
such that for m,m′ ∈ Φ, we have

I · bm+m′ ⊆ bm · bm′ . (1.24)

Moreover, if X is smooth and ∆ = 0, then we can take I = OX .

Proof Let H be a effective Cartier divisor such that H ≥ ∆, and we set I =

Jab(X) · OX(−H).
By Lemma 1.55, there exists sufficiently divisible p, such that

bm = J(X,∆;
m
p
ap), bm′ = J(X,∆;

m′

p
ap) and bm+m′ = J(X,∆;

m + m′

p
ap) .
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Then by Theorem 1.54, we have

J(X,∆;
m
p
ap) · J(X,∆;

m′

p
ap) ⊇ Jac(X) · J(X,∆;

m + m′

p
ap

1
r
OX(−r∆))

⊇ Jac(X) · OX(−H) · J(X,∆;
m + m′

p
ap)

= I · bm+m′ .

The above argument also shows that if X is smooth, then Jac(X) = OX and
we can take H = 0 if ∆ = 0. �

Lemma 1.59. We have

(i) for any divisor E, limm→∞
1
m ordE(bm) = ordE(a•), and

(ii) limm→∞ lct(X,∆; 1
mbm) = lct(X,∆; a•).

Proof (i) Since am ⊆ J(X,∆; am) ⊆ bm,

1
m

ordE(bm) ≤
1
m

ordE(am) . (1.25)

In particular, if ordE(a•) = 0, this is clear, so we may assume ordE(a•) > 0.
We know bm = J(X,∆; m

p ap) for some sufficiently divisible p. Choose a log
resolution µ : Y → X of (X,∆ + ap) such that E is a component on it. Write
µ−1(ap) = OY (−F). Since

ordE(bm) = ordEJ(X,∆;
m
p
ap)

≥ multE

(
b
m
p

F − (KY − µ
∗(KX + ∆))c

)
≥

m
p

multE F − AX,∆(E) ,

then
1
m

ordE(bm) ≥
1
p

ordE(ap) −
1
m

AX,∆(E) .

Combining with (1.25), we see (i) holds.

(ii) Since lct(X,∆; 1
mbm) ≥ lct(X,∆; 1

mam), if lct(X,∆; a•) = +∞, this is clear.
So we may assume lct(X,∆; a•) < +∞. If E computes the log canonical thresh-
old of ap, then

lct(X,∆;
1
m
bm) ≤

AX,∆(E)
1
m ordE(bm)

≤
AX,∆(E)

1
p ordE(ap) − 1

m AX,∆(E)
=

m · lct(X,∆; 1
pap)

m − lct(X,∆; 1
pap)

.
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Let m→ ∞, this is clear. �

Lemma 1.60. Let (X,∆) be a klt pair. For any v ∈ Val∗X ,

lct(X,∆; a•) = inf
v∈Val∗X

AX,∆(v)
v(a•)

= inf
v∈DivValX

AX,∆(v)
v(a•)

. (1.26)

Proof For any m ∈ Φ, and any valuation v ∈ Val∗X , thus by Lemma 1.46,

m · lct(X,∆; am) ≤
m · AX,∆(v)

v(am)
≤

AX,∆(v)
v(a•)

,

which implies

lct(X,∆; a•) ≤ inf
v∈Val∗X

AX,∆(v)
v(a•)

.

We may assume lct(X,∆; a•) < +∞. By Lemma 1.58, for any positive integer
p,

Ip · b(p+1)! ⊆ (bp!)p+1,

so for any E,

1
p!

ordE(bp!) ≤
p

(p + 1)!
ordE(I) +

1
(p + 1)!

ordE(b(p+1)!) .

Thus by Lemma 1.59(i),

1
p!

ordE(bp!) ≤
∑
`=p

`

(` + 1)!
ordE(I) + ordE(a•) ≤

1
p!

ordE(I) + ordE(a•) (1.27)

as
∑∞
`=p

`
(`+1)! = 1

p! . There exists C, ordE(I) ≤ C · AX,∆(E) for any E.
For any ε, by Lemma 1.59(ii), there exists a sufficiently large p, such that

C
p! < ε and ∣∣∣∣∣∣ 1

p! · lct(X,∆; bp!)
−

1
lct(X,∆; a•)

∣∣∣∣∣∣ ≤ ε .
For any divisor E computing lct(X,∆; bp!), by (1.27),

1
p! · lct(X,∆; bp!)

=
ordE(bp!)
p!AX,∆(E)

≤
ordE(a•)
AX,∆(E)

+ ε .

So ∣∣∣∣∣∣ordE(a•)
AX,∆(E)

−
1

lct(X,∆; a•)

∣∣∣∣∣∣ ≤ 2ε .

�

Definition 1.61. If lct(X,∆; a•) < +∞, any valuation v such that the equality
case in (1.26) holds is called a valuation computing lct(X,∆; a•).
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It is a much more delicate question than Lemma 1.40 to understand the
valuations which compute the log canonical threshold of a grade sequence of
ideals. See a partial answer in Section 4.3.2.

1.3.2 Asymptotic vanishing orders

Let X be a projective variety, and L a Q-line bundle such that rL is Cartier. For
any m ∈ r · N, we define

am := Bs(|mL|) . (1.28)

Then a• := {am} forms a graded sequence of ideals.

Definition 1.62. For a valuation v, we define the asymptotic vanishing order
of L along v is

v(‖L‖) := v(a•)

(see Definition 1.48). If (X,∆) is a klt pair, we define

J(X,∆; ‖mL‖) := J(X,∆; m · a•) .

Proposition 1.63. Let X be a smooth projective variety, v a divisorial valuation
of the function field of X, and Z = cX(v). If L is a big Q-divisor on X, then the
following are equivalent:

(i) There is a constant C > 0 such that v(Bs(|mL|)) ≤ C whenever m ∈ r · N is
sufficiently large,

(ii) v(‖L‖) = 0,
(iii) Z is not contained in B−(L).

Proof We may assume that L is integral. The implication (i)=⇒(ii) is clear.

(ii)=⇒(iii): Suppose now that v(‖L‖) = 0. So by (1.27), and I = OX , bp! is
trivial around the generic point of Z, which implies J(X, ‖mL‖) = OX at the
generic point of Z for any m ∈ N.

Let A be a very ample divisor on X, and G = KX +(n+1)A, where n = dim X.
It follows J(X, ‖mL‖)⊗OX(G + mL) is globally generated (Lazarsfeld, 2004b,
Corollary 11.2.13) for every m ∈ N. This shows that Z is not contained in the
base locus of |G + mL| for every m. In particular,

Z * Bs(L +
1
m

G) ,

i.e. Z is not contained in B−(L).

(ii)=⇒(i): With the above notation, we see that Z is not contained in the base
locus of |G + mL| for every m. Since L is big, we can find a positive integer
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m0 and an integral effective divisor B such that m0L ∼ G + B. For m ≥ m0,
mL ∼ (m−m0)L +G + B, so v(Bs|mL|) ≤ v(Bs|B|), as (m−m0)L +G is globally
generated.

(iii)=⇒(ii): we can find a positive integer m0 and integral divisors H and B,
with H ample and B effective such that m0L ∼ H + B. For m ≥ m0,

mL ∼ (m − m0)L + H + B .

Since Z is not contained in B−(L), it follows that Z is not contained in B((m −
m0)L + H), and

v(‖mL‖) ≤ v(‖(m − m0)L + H‖) + v(‖B‖) = v(‖B‖) .

Hence v(‖L‖) ≤ v(‖B‖)
m for every m, and therefore v(‖L‖) = 0. �

1.4 Minimal model program and boundedness

The development of K-stability theory needs deep results from the minimal
model program.

1.4.1 Minimal model program

Definition 1.64 (Minimal Model Program with scaling). Let f : (X,∆) → Z
be a klt pair which is projective over a quasi-projective variety Z. Let H be an
f -ample divisor. We define minimal model program with a scaling of H as the
following process:

(i) Let t0 be sufficiently large such that KX + ∆ + t0H is ample over Z. Denote
by X0 = X.

(ii) Assume after i steps, we have constructed Xi which is projective over Z such
that hi : X d Xi is birational and Ex(h−1

i ) does not contain any divisor, as
well as a number ti > 0 such that KXi + ∆i + tiHi is nef over Z where ∆i and
Hi are the pushforwards of ∆ and H on Xi. Then we define ti+1 to be

ti+1 := min
{

t ∈ [0, ti] | KXi + ∆i + tHi is nef over Z
}
.

(iii) If ti+1 = 0 or KXi + ∆i + ti+1Hi is not big, then we stop. Otherwise, KXi + ∆i +

ti+1Hi is not ample, and by Lemma 1.65, there exists a (KXi + ∆i)-negative
extremal ray R in NE(Xi/Z) ⊂ N1(Xi/Z), such that (KXi +∆i + ti+1Hi) ·R = 0,
then we perform either the divisorial contraction or the flip with respect to
R, to get Xi+1.
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(iv) Since KXi + ∆i + ti+1Hi is nef on Xi, (KXi + ∆i + ti+1Hi) · R = 0 implies that
KXi+1 + ∆i+1 + ti+1Hi+1 is nef.

We note that in this process KXi + ∆i and Hi keep being Q-Cartier.

Lemma 1.65. In the above setting, there exists a (KXi + ∆i)-negative extremal
ray R in NE(Xi/Z) ⊂ N1(Xi/Z), such that (KXi + ∆i + ti+1Hi) · R = 0.

Proof By our assumption ti+1 > 0, for any positive t < ti+1, KXi + ∆i + tHi is
not nef. Fix a t ∈ (0, ti+1), then as Hi is big, it follows from the Cone Theorem
(Kollár and Mori, 1998, Theorem 3.25) that

NE(Xi/Z) = NE(Xi/Z)(KXi +∆i+tHi)≥0 +
∑
finite

R j .

If all (KXi +∆i + tHi)-negative extremal rays R j satisfies that (KXi +∆i + ti+1Hi) ·
R j > 0, then since there are only finitely such R j, we can find a sufficiently
small ε > 0, such that (KXi + ∆i + (ti+1 − ε)Hi) ·R j > 0 for all R j, which implies
that KXi +∆i + (ti+1−ε)Hi is non-negative on NE(Xi/Z). This is a contradiction
to the definition of ti+1.

Therefore there exists an (KXi + ∆i + tHi)-negative extremal ray R such that
(KXi + ∆i + ti+1Hi) · R = 0, which is then (KXi + ∆i)-negative. �

We note that by step i, the process is automatically a minimal model program
process for KX + ∆ + tH for any t ∈ [0, ti).

The following theorem proved in Birkar et al. (2010) is all we need to run
the minimal model program.

Theorem 1.66. Notation as in Definition 1.64. Assume ∆ is big or KX + ∆ is
not pseudo-effective over Z. Then the relative minimal model program of (X,∆)
over Z with a scaling by any f -ample divisor Z terminates after finitely many
steps, i.e., after finitely many steps, we obtain a model Xi such that

(i) either KXi + ∆i is semi-ample,
(ii) or KXi + ∆i + ti+1Hi is semi-ample, where ti+1 > 0 is the pseudo-effective

threshold of KX + ∆ with respect to H over Z. Moreover, this minimal model
program process with scaling is automatically a (KX + ∆ + ti+1H)-minimal
model program sequence over Z.

Proof In Birkar et al. (2010) a similar statement was proved under the as-
sumption that X is Q-factorial. However, one can easily remove this assump-
tion as follow.

For each i, Xi is a weak log canonical model of (X,∆+tiH) over Z. Therefore,
by (Birkar et al., 2010, Theorem E), there are only finitely many Xi. If the
sequence does not terminate, then there exists i < j such that the rational map



1.4 Minimal model program and boundedness 49

Xi d X j extends to be the identity morphism. However, this violates the fact
that AXi,∆i (E) < AX j,∆ j (E) for some divisor E. �

Definition 1.67. We say the minimal model program in Theorem 1.66 ends
with a good minimal model of (X,∆) over Z.

In the following, we mention some corollaries that we will use.

Corollary 1.68. Let (X,∆) be a klt pair. Let ∆+ ≥ ∆ such that (X,∆+) is an
lc pair. Then for a set of prime divisors E1, . . . , Ek over X with AX,∆+ (E j) < 1
(1 ≤ j ≤ k), there exists a morphism µ : Y → (X,∆+) such that Ex(µ) precisely
consists of E := E1 + · · · + Ek. Moreover, we can further assume

(i) Y is Q-factorial, or
(ii) −E is ample over X if k = 1.

Proof See (Birkar et al., 2010, Corollary 1.4.3) for (i). For (ii), we can take
the log canonical model of

(
Y, µ−1

∗ (∆) ∧ (1 − AX,∆(E) − ε)E
)

over X for 0 <

ε � 1. �

Corollary 1.69. Let f : (X,∆) → S be a projective morphism from a log
canonical pair to a normal variety. Let A ⊂ S be an effective Cartier divi-
sor. Assume ∆ ≥ H for an µ-ample Q-divisor, AX,∆(E) > 0 for any divisor
cX(E) ⊂ Supp(µ∗A) and ∆ ∼Q,S ∆′ such that (X,∆′) is klt over S \ A. Then
(X,∆) has a relative good minimal model over S , if KX + ∆ is pseudo-effective
over S .

Proof Let ∆′′ = (1 − t)∆ + t∆′ for 0 < t � 1. We claim (X,∆′′) is klt. In
fact, let µ : Y → (X,Supp(∆ + ∆′)) be a log resolution. Let E be divisor on Y .
If cX(E) ⊆ f −1(S \ A), then

AX,∆′′ (E) = (1 − t)AX,∆(E) + tAX,∆′ (E) > 0

as AX,∆(E) ≥ 0 and AX,∆′ (E) > 0. If cX(E) ⊆ Supp( f ∗A),

AX,∆′′ (E) = (1 − t)AX,∆(E) + tAX,∆′ (E) > 0 (1.29)

for t � 1, as AX,∆(E) > 0. Since there are only finitely many prime divisors on
Y which are contained in ( f ◦ µ)−1(A), we can choose t sufficiently small such
that (1.29) holds for all E with cX(E) ⊂ Supp(µ∗A).

This implies (X,∆′′) is klt, thus we can apply Theorem 1.66. �

Corollary 1.70. Let f : (X,∆)→ Y be projective morphism such that −KX −∆

is ample and (X,∆) is dlt. Then for any divisors Di (1 ≤ i ≤ k) on X, the ring⊕
(n1,...,nk)∈Nk

H0(X, n1D1 + · · · + nkDk)
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is finitely generated.

Proof See (Birkar et al., 2010, Corollary 1.3.2). �

Theorem 1.71. Let X be a projective Q-factorial variety, and let D1, . . . ,Dk

be divisors on X such that⊕
(n1,...,nk)∈Nk

H0(X, n1D1 + · · · + nkDk)

is finitely generated. Assume that for some positive combination n1D1 + · · · +

nkDk is a big divisor. LetRk
≥0 be the nonnegative linear combination of D1, . . . ,Dk

and Supp(Rk
≥0) correspond to the cone of pseudo-effective R-divisors. Then

there is a finite decomposition

Supp(Rk
≥0) =

⋃
j

A j

into cones such that the following holds:

(i) eachA j is a rational polyhedral cone;
(ii) for each j, there exists a normal projective variety X j and a rational map

ψ j : X d X j such that ψ j is the ample model for every D ∈ A j, i.e. X j =

Proj
⊕

m∈N H0(X,mD);
(iii) if Ai ⊆ A j, then there is a morphism ψ ji : X j → Xi such that the diagram

commutes

X
ψ j

��

ψi

  

X j
ψ ji

// Xi ;

(iv) if ψ j is birational, ψ j∗D is semiample for every D ∈ A j.

Proof See e.g. (Kaloghiros et al., 2016, Theorem 4.2). �

Theorem 1.72. Let f : (X,∆)→ B be projective morphism to a smooth variety
B such that (X,Supp(∆))→ B is log smooth. Then

(i) if ∆ is big and (X,∆) is klt, then for any t ∈ B

f∗OX
(
m(KX + B)

)
→ H0(Xt,OXt (m(KXt + Bt))

)
is surjective;

(ii) if (X,∆) is log canonical, t ∈ B→ vol(KXt +∆t) is a locally constant function
on B.

Proof This follows from (Hacon et al., 2013, Theorem 1.8). �
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The following lemmas about positivity are useful.

Lemma 1.73 (Negativity Lemma). Let µ : Y → X be a projective birational
morphism between normal varieties, and E is Q-Cartier divisor on Y. Assume
−E is µ-nef over X.

(i) E is effective if µ∗(E) is effective.
(ii) Assume E is effective. Then for any x ∈ X, either E ∩ µ−1(x) = ∅ or E ⊇

µ−1(x).

Proof See (Kollár and Mori, 1998, Lemma 3.39). �

Lemma 1.74. Let f : X → C be a projective morphism from an n-dimensional
normal projective variety to a smooth projective curve. Let H1, . . . ,Hn−2 be
relatively nef divisors. Let E be a Q-Cartier divisor supported on a fiber X0 for
a closed point 0 ∈ C. Then

(i) H1 · · ·Hn−2 · E2 ≤ 0, and
(ii) if Hi is relatively ample for each i, then the equality holds if and only if

E ∼C,Q 0.

In particular, E is nef over C if and only if E ∼C,Q 0.

Proof It suffices to prove (ii), as any relatively nef divisor can be written
as the limit of a relatively ample divisor. Replace Hi by its multiple, we can
assume Hi is very ample over C. Choosing general sections, H1 · · ·Hn−2 yields
a normal surface, and this follows from the well known Zariski Lemma, see
(Barth et al., 2004, III, 8.2).

To see the last claim, if E is nef, then 0 ≤ H1 · · ·Hn−2 · (E + t · f ∗(0)) · E,
as we can choose t sufficiently large such that E + t · f ∗(0) is effective. This
implies H1 · · ·Hn−2 · E2 = 0, i.e. E ∼C,Q 0 by (ii). �

Remark 1.75 (Beyond the case of varieties). In Lyu and Murayama (2022),
the minimal model program is extended to projective morphisms between ex-
cellent schemes.

1.4.2 Boundedness of varieties

In this section, we collect some theorems on boundedness of varieties, which
are proved in Hacon et al. (2013, 2014); Birkar (2019, 2021).

Theorem 1.76 (ACC of log canonical thresholds). Fix a positive integer n and
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a subset I ⊂ R≥0 which satisfies the descending chain condition (DCC). Then
the set

LCT(n, I) =

{
lct(X,∆; M)

∣∣∣∣ (X,∆) is log canonical, dim(X) = n, M is

R-Cartier, and Coeff(M), Coeff(∆) ⊆ I

}
satisfies the ascending chain condition (ACC).

Proof See (Hacon et al., 2014, Theorem 1.1). �

Theorem 1.77 (Global ACC Theorem). Fix a positive integer n and a set I ⊂
[0, 1] which satisfies the DCC. Then there is a finite subset I0 ⊆ I with the
following properties: If (X,∆) is an n-dimensional projective log canonical
pair such that

(i) the coefficients of ∆ belong to I, and
(ii) KX + ∆ is numerically trivial,

then the coefficients of ∆ belong to I0.

Proof See (Hacon et al., 2014, Theorem 1.5). �

Definition 1.78. For any ε ≥ 0, we say a pair (X,∆) is ε-lc, if AX,∆(E) ≥ ε for
any divisor E over X, i.e. mld(X,∆) ≥ ε.

Definition 1.79. We say a class C of projective normal varieties X over k to-
gether with a divisor D on X belong to a bounded family, if there exists a finite
type scheme S and projective morphisms XS → S , DS → S , such that for any
(X,D) ∈ C, we can find a k-point s → S and an isomorphism X � XS ×S s
sending D to DS ×S s.

The following theorem, which was called the BAB Conjecture, is proved in
Birkar (2021).

Theorem 1.80 (BAB Conjecture). Fix a positive integer n and positive num-
bers δ, ε. Let C be the class of (X,D) where X is a normal projective variety,
D = Supp(∆) for an effective R-divisor ∆ which satisfies (X,∆) is ε-lc, −KX−∆

is ample and the coefficient of any component in ∆ is at least δ. We have

(i) C is bounded; and
(ii) if N∆ is integral for some positive integer N, then there exists an positive

integer M = M(n, ε,N) such that −M(KX + ∆) is very ample.

We introduce the following notion which first appeared in Shokurov (1992).



Exercise 53

Definition 1.81. Assume f : (X,∆) → Z is a pair projective over Z with
f∗OX = OZ . We say that an effective Q-divisor D is an N-complement over
z ∈ Z for some N ∈ N+, if over a neighborhood of z, (X,∆ + D) is lc and
N(KX + ∆ + D) ∼ 0. We say D is a Q-complement, if it is an N-complement for
some N.

Theorem 1.82. Assume k is algebraically closed. Fix a positive integer n and
a finite rational set I ⊂ Q∩ [0, 1]. There is a positive integer N only depending
on n and I which satisfies that for any pair f : (X,∆) → Z projective over Z
with f∗OX = OZ such that

(i) (X,∆) is lc of dimension n,
(ii) coeff(∆) ⊆

{m−1+a
m | a ∈ I and m ∈ N

}
,

(iii) X is of Fano type over Z, and
(iv) −(KX + ∆) is nef over Z.

Then for any point z ∈ Z, there is an N-complement D of KX + ∆ over z.
Moreover, we may assume N · I ⊂ Z.

Proof See (Birkar, 2019, Theorem 1.7 and 1.8). �

Remark 1.83. In literatures, the theorems in this section are stated when k is
an algebraically closed field. For a (not necessarily algebraically closed) field k
of characteristic 0, the statements in Theorem 1.76, 1.77, 1.80, trivially follow
from the corresponding statements after base change to an algebraic closure k̄.

It is more subtle for Theorem 1.82, especially the general case. Nevertheless,
the case when Z = Spec(k) is clear. In fact, H0(b−N(KX + ∆)c) has a nonzero
section, if and only if the same statement holds after base change to k̄. More-
over, for an N-complement D, the log canonicity of (X,∆ + D) is an open con-
dition. Therefore, there is a non-empty open set P

(
H0(b−N(KX +∆)c)∗

)
satisfy-

ing this, if the same holds after the base change. Similarly, it also holds when
f : X → Z is isomorphic outside a k-point x, and (X,∆) is plt and f −1(x) = S =

b∆c. In fact, we can find an N-complement over k, for (KX + ∆)|∆ = KS + ∆S ,
and then extend it to get an N-complement defined over k of (X,∆) over Z.

Exercise

1.1 Let x ∈ X be a germ and v a valuation whose center is x. Let a• =

{ak(v)}k∈N be the graded sequence of ideals. Then v(a•) = 1.
1.2 (Alternative construction of Okounkov body) Let X be an n-dimensional

integral variety. Let v be a valuation with rational rank n, i.e. the value
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group Φ on K(X)× → R satisfies ϕ : Φ � Zn. Let V• be a graded linear
system belonging to a Q-Cartier divisor L containing an ample series.
Similarly to Definition 1.9, we define

Γ(V•) :=
{
(ϕ(v(s)),m) ∈ Zn × N | 0 , s ∈ Vm

}
,

and its associated Okounkov body ∆(V•). Then

vol(V•) = n! · vol
(
∆(V•)

)
.

1.3 In this exercise, we allow the characteristic of the ground field k to be not
necessarily 0. Let v be a valuation over a variety X. Prove the following
are equivalent:

(a) v is Abhyankar with rankQ(v) = 1, and
(b) v is divisorial.

1.4 Let (X,∆) be a projective klt pair, L a Q-Cartier integral Weil divisor
such that L − KX − ∆ is big and nef. Then

Hi(X,OX(L)) = 0 for any i > 0 .

In particular, if (X,∆) is a log Fano pair, and N a positive integer such
that N∆ is an integral Weil divisor, then

Hi(X,OX(−N(KX + ∆))) = 0 for any i > 0 .

1.5 Let X be an n-dimensional proper scheme and L an ample divisor on X
then for sufficiently large k,

dim H0(X, L⊗k) = a0kn + a1kn−1 + O(kn−2) ,

with a0 = Ln

n! . If X is normal, then a1 = 1
2

(−KX )·Ln−1

(n−1)! .
1.6 Let (X,∆) be a projective klt pair of dimension n and let L a big and nef

Q-line bundle. Let E be a prime divisor over X and π : Y → X a log
resolution such that E ⊆ Y . Let T be the pseudo-effective threshold of E
with respect to π∗L. Then for any 0 ≤ λ ≤ T , we have

vol(π∗L − λE)
vol(L)

≤ 1 −
(
λ

T

)n

.

1.7 Let x ∈ X be a smooth point on a projective variety. Let D be an effective
Q-divisor on X such that (X,D) is klt in a punctured neighborhood of x
and −(KX + D) is ample. Let E be a divisor over X centered at x, and let
µ =

AX (E)
ordE (mx) . Then AX(E) ≥ µ

µ+1 ordE(D).
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1.8 (The Kollár-Shokurov Connectedness Theorem) Let (X,∆) be a log pair
with a projective morphism f : X → Z such that f∗(OX) = OZ . Assume
−KX − ∆ is big and nef over Z. Then for any z ∈ Z, the intersection of
f −1(z) with the non-klt locus of (X,∆) is connected.

1.9 Let f : (X,∆) → Z be a projective morphism with f∗OX = OZ with X
being potentially klt and (X,∆) log canonical but not klt. Assume −KX−∆

is f -ample. For any z ∈ Z,

(a) there is a unique minimal lc center W meeting f −1(z).
(b) for any ample divisor A and any positive number ε, there is a divisor

∆′ ∼ ∆+εA such that (X,∆′) is plt around f −1(z) with the lc center W,
whose lc place is also an lc place of (X,∆).

1.10 Let (X,∆) be a klt pair, x a point and an ideal I ⊂ OX such that x ∈
CoSupp(I). Denote by c = lctx(X,∆; I). Then there exists a divisor S
over X such that

(a) it is geometrically irreducible and computes lctx(X,∆; I) with cX(S )
the minimal lc center of (X,∆ + Ic) around x. Moreover, there exists a
morphism µ : Y → X such that −S is µ-ample and (Y, S ∨ µ−1

∗ ∆) is plt.
(b) In the above setting, if there is an algebraic group G acting on x ∈

(X,∆) such that I is G-invariant. Then we can find S to be G-invariant.

If I is mx-primary, the divisor S constructed above is called a Kollár
component.

Note on history

The Okounkov body construction in Section 1.1 was introduced in Lazarsfeld
and Mustaţă (2009), based on Okounkov (1996, 2003). An alternative con-
struction, as in Exercise 1.2, was given in Kaveh and Khovanskii (2012). Fur-
ther results are given in Boucksom (2014). Restricted volumes are systemati-
cally studied in Ein et al. (2009) and Boucksom et al. (2009), without always
assuming E * B+(L).

The Abhyankar inequality (Theorem 1.24) is proved in Abhyankar (1956).
Proposition 1.29 is from Ein et al. (2003) (the same result is also known in
positive characteristics, see Knaf and Kuhlmann (2005). For the divisorial case,
see Exercise 1.3). The log discrepancy function of a general valuation, as in
Definition 1.34, is introduced in Jonsson and Mustaţă (2012).

The basic materials in Section 1.3 have been well studied, see (Lazarsfeld,
2004b, Chapter 11). For some later developments, see e.g. Takagi (2006), Ein
et al. (2006). It was initiated in Jonsson and Mustaţă (2012) to use general
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valuations to study asymptotic invariants for graded sequences of ideals. This
type of questions were first investigated using constructions involving multi-
plier ideals. Later in Section 4.3.2, we will revisit this topic, by using the deeper
tools of minimal model program and boundedness results.

The minimal model program is an indispensable tool in the development
of K-stability theory. The foundational results from the minimal model pro-
gram needed in this book are establish by Birkar-Cascini-Hacon-McKernan in
Birkar et al. (2010). Another major progress in higher dimensional geometry
is the development of the boundedness theory. For log general type varieties,
it is proved by Hacon-McKernan-Xu in Hacon et al. (2013, 2014); whereas for
Fano type varieties, it is established in Birkar (2019, 2021).



2
K-stability via test configurations

In this section, we will introduce the notion of K-stability and related con-
cepts, via invariants on test configurations. In Section 2.1, we will define test
configurations and their norms. Then we will define the Ding invariant and Fu-
taki invariant for a test configuration. The corresponding stability notions are
coined by looking at the sign of these invariants. In Section 2.2, we consider
the class of test configurations arising from Gm-actions. In Section 2.3, we
will show that by using a process of minimal model program, one can reduce
verifying K-stability to the class of special test configurations.

In hindsight, while the notion of K-stability defined via Futaki invariant has
a historic importance, for Fano varieties, Ding stability defined via Ding in-
variants better suits the latter algebraic development. In fact, all major results
in the latter part of this book are built on Ding stability. The minimal model
program process in Section 2.3 yields the equivalence of these two stability
notions for log Fano pairs.

2.1 Test configuration and invariants

2.1.1 Test configurations and norms

Let X be an n-dimensional projective equal-dimensional reduced scheme. Let
∆i be codimension one reduced subschemes of X, and ∆ a formal sum

∑
ai∆i

for some ai ≥ 0. Let L be an ample Q-line bundle on X. We call (X,∆, L) an
n-dimensional polarized pair .

Definition 2.1. A Gm-equivariant degeneration X of X is a scheme X with a
Gm-action, aGm-equivariant and a flat morphism π : X → A1 whereGm acts on
A1 by the multiplication (t, a)→ ta, such that for t , 0 there is an isomorphism
φt : Xt � X where Xt is the fiber of X over t ∈ A1.

57
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For (X,∆), and a Gm-equivariant degeneration X of X, we define ∆X the
formal sum ∆X =

∑
i ai∆X,i, where ∆X,i is the closure of Gm · φ

−1
1 (∆i) in X,

which is flat over A1 by the following.

2.2. Let R be a DVR with the fractional field K and residue field κ. Let A be a
flat finite R-algebra. Let I ⊂ A be an ideal of R, then A/I is flat over R if and
only if I = A ∩ IK ⊂ AK . In fact, A/I is flat over R if and only if it is torsion
free, which is equivalent to for any ideal I′ ⊇ I with I′K = IK then I′ = I. The
latter is equivalent to saying I = A ∩ IK .

Definition 2.3. Let L be an ample Q-line bundle on X and r ∈ N such that rL
is very ample. A test configuration (X,Lr) with index r of (X, L) is given by a
Gm-equivariant degeneration X of X and

· a Gm-linearized very ample line bundle Lr → X such that for t , 0 the
restriction of Lr on Xt is isomorphic to φ∗t L⊗r.

2.4. Geometrically, a test configuration with index r corresponds to the follow-
ing data: the linear system |L⊗r | induces an embedding X ↪→ PN = P(|L⊗r |∗).
Note that such an embedding is up to a choice of a basis of |L⊗r |, and different
choices of the basis differ by an element in PGL(N + 1). Fix an embedding
i : X ↪→ PN , then for any homomorphism ρ : Gm → PGL(N + 1), we get

X × Gm ⊆ P
N × Gm , (x, t)→

(
ρ(t)

(
i(x)

)
, t
)
.

In particular, we get a morphism j◦ : Gm → Hilb(PN). Since the Hilbert scheme
is proper, this can be extended to a morphirsm j : A1 → Hilb(PN). Pulling back
the universal scheme

(Univ(PN),O(1))→ Hilb(PN)

by j, we obtain (X,Lr).
Conversely, if we start with a test configuration (X,Lr) with index r, we will

see π∗(Lr) is a Gm-equivariant bundle over A1, which is isomorphic to a direct
sum of rank 1 bundles (see Example 2.14). Then this yields a Gm-equivariant
morphism

X ↪→ PA1 (π∗(Lr)∗) � PN × A1 .

Example 2.5. Let X be projective variety with a T(� Gr
m)-action. Let L be a po-

larization on X which is T-linearizable. Then for any coweight ξ ∈ Hom(Gm,T)
which corresponds to morphism φξ : Gm → T, we can define a test configura-
tion (Xξ, Lξ) as X := Xξ � X × A1:

t · (x, a)→ (φξ(t)(x), t · a)
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with the polarization L denoted by Lξ, defined the same way using the lin-
earization ξ acting on L.

This kind of test configuration is called a product test configuration. When
the action is trivial, it is called a trivial test configuration. We will investigate
product test configurations in more details in Section 2.2.

Example 2.6. The family (x2 + y2 + z2 + tw2 = 0) ⊂ P3 × A1, gives a test
configuration of

(x2 + y2 + z2 + w2 = 0) � P1 × P1 .

The central fiber (x2 + y2 + z2 = 0) ⊂ P3 is isomorphic to the cone over a conic
curve.

In general, given a test configuration π : (X,∆X,Lr) → A1, we identify the
fiber over {1} with (X, L) by the isomorphism φ1 : (X1,L|X1 ) � (X, L). Denote
by X◦ := X\X0, we have an isomorphism over A1 \ {0},

φ : (X,Lr) ×A1 (A1 \ {0})→ (X, L⊗r) × (A1 \ {0}) ,

(p, s) 7−→ (a−1 ◦ p, a−1 ◦ s) × {a} ,

where a = π(p) and Gm only acts by multiplication on the second factor of
(X, L⊗r)×(A1\{0}). Similarly, withGm-acting on the second factor of (X, L⊗r)×
(P1 \ {0}), we may have a Gm-equivariant gluing

(X,Lr) (X, L⊗r) × (P1 \ {0})⋃ ⋃
(X◦,Lr |X◦ ) −−−−−−−→

φ
(X, L⊗r) × (A1 \ {0}) .

Definition 2.7. Using the above gluing map, from a test configuration (X,Lr),
we get

π : (X,Lr)→ P1 ,

which is called∞-trivial compactification of the test configuration. Intuitively,
we add a trivial fiber X∞ � X with a trivial Gm-action over {∞} ∈ P1.

By abuse of notation, for a test configuration (X,Lr) of (X,∆, L) with index
r, we call (X,L := 1

rLr) a test configuration of rational index one, where L
is a Q-line bundle. Since in most of our studies, the index r will not play any
role, if we do not specify the index of a test configuration, we always assume
it is of rational index one.

In the following, we define the norm functions of test configurations.
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Definition 2.8. Let (X,L) be a test configuration of an n-dimensional polar-
ized pair (X,∆, L) with the ∞-trivial compactification X. Let Y be any bira-
tional model dominating X and X × P1:

Y

p

��

q

""

X X × P1 .

(2.1)

Denote by LP1 the line bundle on X × P1, which is the the pull back of L under
p1 : X × P1 → X. We define the I-norm

I(X,L) =
1
Ln

(
p∗L · q∗Ln

P1 − (p∗L − q∗LP1 ) · p∗(L)n
)

; (2.2)

and the J-norm

J(X,L) =
1
Ln

(
p∗L · q∗Ln

P1 −
1

n + 1
p∗(L)n+1

)
. (2.3)

By the projection formula, the definitions do not depend on the choice of Y.
We also define the minimum norm

‖(X,L)‖m = I(X,L) − J(X,L) .

Proposition 2.9. For a test configuration (X,∆X,L) of an n-dimensional po-
larized pair (X,∆, L), we have I(X,L) ≥ 0 and

1
n

J(X,L) ≤ I(X,L) − J(X,L) ≤ n · J(X,L) .

In particular, the norms I, J and ‖ · ‖m are equivalent.

Proof Since p∗L − q∗LP1 only supports over 0, by Lemma 1.74 for any j =

0, . . . , n, let

C j :=
1
Ln

(
(p∗L − q∗LP1 ) · (p∗L) j · (q∗LP1 )n− j

)
.

For any 0 ≤ j ≤ n − 1, by Lemma 1.74,

(p∗L−q∗LP1 )·(p∗L) j·(q∗LP1 )n− j ≥ (p∗L−q∗LP1 )·(p∗L) j+1·(q∗LP1 )n− j−1 , (2.4)

so we have C j ≥ C j+1. Since (q∗LP1 )n+1 = 0,

(p∗L − q∗LP1 ) · q∗Ln
P1 = p∗L · q∗Ln

P1 = C0 · Ln .

In particular,

I(X,L) = C0 −Cn ≥ 0 .
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It also follows that

(p∗L)n+1 = (p∗L)n+1 − (q∗LP1 )n+1

=

n∑
j=0

(p∗L − q∗LP1 ) · (p∗L) j · (q∗LP1 )n− j

= Ln ·

n∑
j=0

C j .

We have

J(X,L) =
1

(n + 1)Ln

n∑
j=1

(
p∗L · (q∗LP1 )n − (p∗L − q∗LP1 ) · (p∗L) j · (q∗LP1 )n− j

)
=

1
n + 1

n∑
j=1

(C0 −C j) .

Therefore,

(n + 1) · J(X,L) − I(X,L) =
1
Ln

n−1∑
j=1

(C0 −C j) ≥ 0 by (2.4) .

On the other hand, since C j ≥ Cn, we have

(n + 1) · J(X,L) =

n∑
j=1

(C0 −C j)

≤

n∑
j=1

(C0 −Cn) = n · I(X,L) .

�

Definition 2.10. We say two test configurations (X,L) and (X′,L′) of (X, L)
are almost isomorphic, if there are two open sets U ⊆ X and U′ ⊆ X′ with a
Gm-equivariant isomorphism

ϕ : (U,L|U) � (U′,L′|U′ ) ,

such that codimX(X \ U) ≥ 2 and codimX′ (X′ \ U′) ≥ 2.
We say (X,L) is almost trivial, if it is almost isomorphic to the trivial test

configuration.

Lemma 2.11. Assume X is an integral projective variety, I(X,L) = 0 if and
only if (X,L) is almost trivial.
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Proof Let Y be the normalization of the graph of the birational map X d

X × P1:

Y

p

��

q

""

X X × P1.

Then p∗L + q∗LP1 is ample over P1. Since

I(X,L) =
1
Ln

(
p∗L · q∗Ln

P1 − (p∗L − q∗LP1 ) · (p∗L)n
)

= −
1
Ln (p∗L − q∗LP1 )2

n−1∑
j=0

(p∗L) j · q∗Ln−1− j
P1 ,

if I(X,L) = 0, we have p∗L − q∗LP1 ∼P1,Q 0 by Lemma 1.74. This in partic-
ular implies p and q are finite and birational morphisms. Since X is smooth
at generic points, then Y and X × P1 as well as Y and X are almost isomor-
phisms. �

Lemma 2.12. Let (X,L) be a test configuration of (X,∆, L) of rational index
one. Let

πd : A1 → A1, z→ zd

be a base change and Xd := X ×A1,πd A
1, and Ld its pull back. Then

J(Xd,Ld) = d · J(X,L) . (2.5)

If X is normal, let ρ : Xn → X be the normalization and Ln = ρ∗L, then

J(Xn,Ln) = J(X,L) . (2.6)

Proof Let πd : P1 → P1 be the closure of πd, and the pull back of (2.1) by πd

be

Yd

pd

��

qd

&&

Xd (X × P1) ×P1,πd P
1 .

Therefore,

J(Xd,Ld) =
1
Ln ·

(
p∗dLd · q∗dLn

P1 −
1

n + 1
p∗d(Ld)n+1

)
=

deg(πd)
Ln ·

(
p∗L · q∗Ln

P1 −
1

n + 1
p∗(L)n+1

)
= d · J(X,L) .
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The proof of (2.6) is the same, using the fact that deg(ρ) = 1. �

2.1.2 Futaki invariants

For an ample Q-line bundle L on a projective scheme X and a sufficiently large
k ∈ r · N, we have

dk = dim H0(X,OX(kL)) = a0kn + a1kn−1 + O(kn−2) , (2.7)

where by Exercise 1.5,

a0 =
Ln

n!
and if X is normal a1 = −

KX · Ln−1

2(n − 1)!
. (2.8)

Let (X,L = 1
rLr) be a test configuration of (X, L). Let L0 be the restriction

of L over {0}. Since (X0,L
⊗k
0 ) is Gm-linearized for sufficiently divisible k, Gm

acts on H0(X0,L
⊗k
0 ). We denote the total weight of this action by wk.

Example 2.13. Let Gm act on A1 by (t, a) → ta. If A1
k = Spec(k[s]), then for

the function s on A1, we have t∗sk = t−k · sk, i.e. the weight of sk is −k.

Example 2.14. For a finite dimensional Gm-equivariant vector bundle V on
A1

s , since s has weight −1 with respect to the Gm-action on A1 (see Example
2.13), we have a weight decomposition

H0(A1,V) =
⊕
m∈Z

H0(A1,V)ms−m .

We choose a basis {s̄1, ...., s̄r} of

H0(A1,V) ⊗ k(0) �
⊕

m

H0(A1,V)m/H0(A1,V)m+1 ,

such that s̄i is an eigenvector with the weight mi. We lift s̄i to

si ∈ H0(A1,V)mi · s
−mi .

Let Vi := k[s] · si ⊆ V be the rank one Gm-equivariant subbundle of V
generated by si. Then the Gm-equivariant morphism

r⊕
i=1

Vi →V

is an isomorphism, as so is after restricting over 0.

Example 2.15. The total space of (X, L−1) = (P1,OP1 (−1)) is given by{(
[x0, x1], λ(x0, x1)

)
| [x0, x1] ∈ P1, λ ∈ k

}
⊂ P1 × A2 .
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Let Gm act on (X, L−1) by

t ◦ ([x0, x1], λ(x0, x1)) = ([x0, t · x1], λ(x0, t · x1)) .

In particular, we have Gm-actions on

OP1 (−1)|∞ : t ◦
(
[0, x1], λ(0, x1)

)
=

(
[0, x1], t · λ(0, x1)

)
,

and

OP1 (−1)|0 : t ◦
(
[x0, 0], λ(x0, 0)

)
=

(
[x0, 0], λ(x0, 0)

)
.

Their weights are 1 and 0 respectively. Therefore, the Gm-actions on OP1 (1)|0
and OP1 (1)|∞ have weight 0 and −1 respectively, as OP1 (1) = OP1 (−1)∗ . If we
let τ0 = x1, τ∞ = x0 be the sections of OP1 (1), the Gm-weights of τ0 and τ∞ are
−1 and 0.

Lemma 2.16. We can write

wk = b0kn+1 + b1kn + O(kn−1) , (2.9)

where b0 = 1
(n+1)! (L)n+1. Assume that X is normal, then

b1 = −
1

2 · n!
K
X/P1 · (L)n .

Proof For N � 0, the Q-line bundle M := L ⊗ π∗(OP1 (N · {∞})) is ample
on X. For a sufficiently divisible k, by Serre Vanishing Theorem, we have two
exact sequences:

A B C
‖ ‖ ‖

0 −→ H0(X,M⊗k(−X0))
⊗σ0
−→ H0(X,M⊗k) −→ H0(X0,M⊗k |X0 ) −→ 0

0 −→ H0(X,M⊗k(−X∞))
⊗σ∞
−→ H0(X,M⊗k) −→ H0(X∞,M⊗k |X∞ ) −→ 0

‖ ‖ ‖

A B D

where σ0, σ∞ are sections of π∗OP1 (1) which are pullbacks of τ0, τ∞ on P1,
with Gm-weights −1 and 0 (See Example 2.15).

Note the first terms in the two exact sequences are the same as

A := H0(X,M⊗k ⊗ π∗OP1 (−1)) .

For each vector space, we use d• and w• to mean its dimension and the total
weight for the Gm-action. We have the equation:

wB = wA − dA + wC = wA + wD . (2.10)
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Since the Gm-weight of OP1 (1)|∞ is −1 and the Gm-action on L
⊗ k

r
r |X∞

is trivial,
we have

wD = −kN · dimH0(X, L⊗k) = −kNdD . (2.11)

By (2.10) and (2.11), we get

wC = dA + wD = dB − dC − kNdD = dB − (kN + 1)dC . (2.12)

SinceGm acts trivially onOP1 (1)|0, we conclude that theGm-weight on H0(X0,L
⊗k
0 )

is the same as the weight on H0(X0,M⊗k |X0 ). Thus by (2.12), we have

wk = dim H0(X,M⊗k) − (kN + 1) dim H0(X, L⊗k) .

Expanding wk and applying Exercise 1.5, we get:

wk = b0kn+1 + b1kn + O(kn−1)

with

b0 =
Mn+1

(n + 1)!
− Na0 =

(L)n+1

(n + 1)!
, (2.13)

and if X is normal

b1 =
1
2

(−K
X

) · Mn

n!
− Na1 − a0 =

1
2

(−K
X/P1 ) · (L)n

n!
. (2.14)

�

Similarly, we write ∆ =
∑

i di∆i, where ∆i is a codimension one subscheme
of X. Let ∆X,i be the flat closure of ∆i × Gm on X, then we can write

H0(∆i,O∆i (kL|∆i )) = a0,ikn−1 + O(kn−2) ,

and

Gm-weight of H0
(
(∆X,i)0,O(∆X,i)0 (kL|(∆X,i)0 )

)
= b0,ikn + O(kn−1) .

Definition 2.17 (Futaki invariant). Under the above notion, the Futaki invari-
ant of the test configuration (X,Lr) of (X,∆, L) is defined to be

FutX,∆(X,Lr) =
2
(
a1b0 − a0b1 +

∑
i di(a0b0,i − b0a0,i)

)
a2

0

. (2.15)

We will often denote by Fut(X,Lr) if the pair (X,∆) is clear.

For any a ∈ N, Fut(X,L⊗a
r ) = Fut(X,Lr), therefore when L is only a Q-line

bundle, such that (X,L⊗a) is a test configuration of index r, we can define

Fut(X,L) := Fut(X,L⊗a) .
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There is an intersection formula description of the Futaki invariant for any
given normal test configuration.

Proposition 2.18. Assume (X,Lr) is a normal test configuration of an n-
dimensional normal polarized pair (X,∆, L) of index r. Denote by L = 1

rLr

and (X,L) the∞-trivial compactification over P1. Then we have the following
equality:

FutX,∆(X,L) =
1

(n + 1)Ln

(
nµ(L)n+1 + (n + 1)(K

X/P1 + ∆
X

) · (L)n
)
, (2.16)

where µ =
−(KX+∆)·Ln−1

Ln .

Proof It follows from (2.8), (2.13) and (2.14), we have the equalities

a0 =
1
n!

Ln, a1 = −
1

2(n − 1)!
KX · Ln−1,

b0 =
1

(n + 1)!
(L)n+1 , b1 = −

1
2 · n!

K
X/P1 · (L)n .

Similar we can apply Exercise 1.5 and Lemma 2.16 to each ∆i and conclude

a0,i =
1

(n − 1)!
∆i · Ln−1 and b0,i =

1
n!

∆
X,i · L

n
,

where ∆
X,i is closure of ∆X,i on X.

Plugging all these equalities into (2.15), we calculate out (2.16). �

We note that if X is normal, then for any equivariant line bundle L, a finite
multiple L⊗r is linearizable cf. (Dolgachev, 2003, Corollary 7.2). The above
intersection formula then means the Futaki invariant does not depend on the
choice of a linearization.

Definition 2.19. Let (X,∆, L) be an n-dimensional polarized pair. We say

(i) (X,∆, L) is K-semistable if for any test configuration (X,L) of (X,∆, L),
Fut(X,L) ≥ 0.

(ii) (X,∆, L) is K-polystable if (X,∆, L) is K-semistable, and for any test config-
uration with Fut(X,L) = 0, there exists a product test configuration (Xξ, Lξ)
(see Example 2.5) such that (X,L) and (Xξ, Lξ) are almost isomorphic.

(iii) (X,∆, L) is K-stable if (X,∆, L) is K-semistable, and for any test configura-
tion with Fut(X,L) = 0, X is almost trivial.

Remark 2.20. If (X,∆, L) admits an action by a group G, then we can define
the corresponding G-equivariant K-stability notions by only considering test
configurations (X,L) which admit a (G × T)-action such that the isomorphism

(X,L) ×A1 (A1 \ {0}) � X × (A1 \ {0})
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is (G × T)-equivariant, where the action on the right hand side is given by
(g, t)(x, a) = (g(x), t · a).

Proposition 2.21. Let (X,L) be a test configuration of an n-dimensional nor-
mal polarized pair (X,∆, L). Let ρ : Xn → X be the normalization and Ln =

ρ∗L. Then (Xn,Ln) yields a normal test configuration of (X,∆, L) with

Fut(Xn,Ln) ≤ Fut(X,L) ,

and the equality holds if and only if ρ is isomorphic outside a codimension two
locus of X.

Proof Let Q be the quotient sheaf such that the following sequence is exact:

0 −→ OX −→ ρ∗OXn −→ Q→ 0 .

Since X is normal, Q supports over 0. For k � 0, we have a commutative
diagram with exact horizontal rows:

0 −→ π∗OX(L⊗k)
ρ∗

−→ π∗ρ∗OXn (L⊗k) −→ Qk −→ 0
↓ ↓ ↓

0 −→ Pk −→ H0(X0,L
⊗k
|X0

)
ρ∗
−→ H0(Xn

0,L
⊗k
|Xn

0
) −→ (Qk)0 −→ 0 ,

where Qk = H0(Q ⊗ L⊗k) and

Pk = Tor1(Qk,OX0 ) � ker(Qk
s
−→ Qk) .

In particular, Pk and (Qk)0 are isomorphic, but theGm-actions are not the same.
More precisely, let p satisfy sp · Q = 0, thus sp · Qk = 0. We can filter Qk by

ker(s) ⊆ ker(s2) ⊆ · · · ⊆ ker(sp) = Qk ,

and then (Qk)0 by

· · · ⊆ ker(s j)/ker(s j) ∩ sQk ⊆ · · · ⊆ Qk/sQk � (Qk)0 .

Let the j-th graded piece of the filtration be

V j := ker(s j)/
(
ker(s j−1) + ker(s j) ∩ sQk

)
.

We define a morphism

δ :
p⊕

j=1

V j → Pk

as follows: Given q ∈ V j, we lift it to ker(Qk
s j

−→ Qk), and then to q̃ ∈
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π∗ρ∗OXn (L⊗k). The image of s jq̃ in Qk is zero by construction, and so is in
the image of f ∈ π∗OX(L⊗k). Since j ≥ 1,

f|0 ∈ H0(X0,L
⊗k
|X0

) 7→ s jq̃|0 = 0 ∈ H0(Xn
0,L

⊗k
|Xn

0
) .

Thus f|0 = δ(q) for some δ(q) ∈ ker(ρ∗).
If q ∈ ker(s j−1) + im(s) ∩ ker(s j), then by the above construction, s j−1q̃ is

the image of h for some h ∈ π∗OX(L⊗k). Therefore, f = sh and its image is 0.
So δ is well defined.

Then (
Gm-weight of H0(Xn

0,L
⊗k
|Xn

0
)
)
−

(
Gm-weight of H0(X0,L

⊗k
|X0

)
)

=
(
Gm-weight of (Qk)0

)
−

(
Gm-weight of Pk

)
=

p∑
j=1

j · dim V j = dim Qk

= akn + O(kn−1) ,

with a ≥ 0. Moreover, a = 0 if and only if

dim(Supp(Q)) = dim(Supp(Q|0)) ≤ n − 1 ,

i.e. ρ is isomorphic in codimension 1.
By the same argument, we can show that the difference between total Gm-

weights of the two vector spaces H0((ρ∗∆X,i)0,L
⊗k
|(ρ∗∆X,i)0

) and H0((∆X,i)0,L
⊗k
|(∆X,i)0

)
is equal to O(kn−1). �

Definition 2.22. We say an n-dimensional polarized pair (X,∆, L) is uniformly
K-stable of level δ if

Fut(X,L) ≥ δ · J(X,L)

for any test configuration (X,L) of (X,∆, L); and it is uniformly K-stable if it
is uniformly K-stable of level δ for some δ > 0.

Lemma 2.23. Let (X,L) be a test configuration of (X,∆, L) of rational index
one. Let

πd : A1 → A1, z→ zd

be a base change and Xd := X ×A1,πd A
1, and Ld its pull back. Then

Fut(Xd,Ld) = d · Fut(X,L) . (2.17)
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Proof For any Gm-equivariant vector bundle M over A1, we can decompose
the vector space M0 over 0 as

M0 =
⊕

j

V j,

where V j is the direct summand of weight j. Then (π∗d M)0 can be decomposed
as (π∗d M)0 =

⊕
j W j, where dim Wd j = dim V j, and (2.17) follows from the

definition of the Futaki invariant. �

2.1.3 Ding stability

Let (X,∆) be an n-dimensional log Fano pair. In this case, we always assume
L = −KX − ∆ unless we specify otherwise. Then we will say (X,L) is a test
configuration of (X,∆) instead of (X, L).

Definition 2.24. Let (X,L) be a normal test configuration of (X,∆) (of rational
index one). Denote by X0 the central fiber of X over 0 and a divisor DX,L ∼Q
−L − K

X/P1 − ∆
X

supported on X0. Then we define the Ding invariant as

Ding(X,L) = −
(L)n+1

(n + 1)(−KX − ∆)n − 1 + lct(X,∆X +DX,L;X0) . (2.18)

Lemma 2.25. If (X,∆) is a log Fano pair and X is normal. Let

πd : A1 → A1, z→ zd

be a base change, Xd := X ×A1,πd A
1 and Xn

d the normalization of Xd with the
composite morphism ρd : Xn

d → X. Let (Xn
d,L

n
d) the test configuration obtained

by taking the pull back of L. Then

Ding(Xn
d,L

n
d) = d · Ding(X,L) .

Proof By the definition, we have

ρ∗d(KX/P1 + ∆X +DX,L) = KXn
d/P

1 + ∆Xn
d

+DXn
d ,L

n
d
.

Since π∗d(KP1 ) = KP1 + (1 − d){0} + (1 − d){∞} for any c ∈ R,

ρ∗d(KX+∆X+DX,L+c ·X0) = KXn
d
+∆Xn

d
+DXn

d ,L
n
d
+ (1−d +cd)(Xn

d)0 . (2.19)

By the ramification formula, the left hand side of (2.19) is sublc if and only if
the right hand side is sublc. This implies

−1 + lct(Xn
d,∆Xn

d
+DXn

d ,L
n
d
; (Xn

d)0) = d(−1 + lct(X,∆X +DX,L;X0)) .

Thus Ding(Xn
d,L

n
d) = d · Ding(X,L). �
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Definition 2.26. Let (X,∆) be a log Fano pair. We say (X,∆) is

(i) Ding semistable if for any normal test configuration (X,L), Ding(X,L) ≥ 0;

(ii) Ding polystable if (X,∆) is K-semistable and for any normal test configura-
tion (X,L) with Ding(X,L) ≥ 0 and X0 being reduced, then there exists a
G-equivariant isomorphism X � X × A1;

(iii) Ding stable if for any normal test configuration (X,L) of (X,∆), Ding(X,L) ≥
0, and the equality holds only if X is the trivial test configuration; and

(iv) uniformly Ding stable of level η if

Ding(X,L) ≥ η · J(X,L)

for any normal test configuration (X,L), and it is uniformly Ding stable if it
is uniformly Ding stable of level η for some η > 0.

Definition 2.27. Let (X,∆) be a log Fano pair. Let (X,L) be a normal test
configuration of (X,∆). Then it is called

(i) weakly special if (X,∆X + X0) is log canonical and L ∼Q −KX − ∆X;

(ii) special if (X,∆X + X0) is plt and L ∼Q −KX − ∆X.

For a weakly special test configuration (X,∆X), we will drop L as it is
uniquely determined. If X is a special test configuration, then (X0,∆X0 ) is klt,
where

(KX + ∆X + X0)|X0 = KX0 + ∆X0 .

We say (X,∆) admits a special degeneration to (X0,∆X0 ) and write

(X,∆) (X0,∆X0 ) .

By (2.18) and (2.24), for a weakly special test configuration, we have

Ding(X) = Fut(X) =
−(−K

X
− ∆

X
)n+1

(n + 1)(−KX − ∆)n . (2.20)

2.2 T-variety and product test configurations

Product test configurations provide the first class of examples for test configu-
rations. In this section, we will establish some foundational results for them.
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2.2.1 Moment polytope

Let X be a proper integral variety with a faithful action by a torus group T �

G
p
m. Let M(T) = Hom(T,Gm) be the weight lattice so M(T) � Zp, and N(T) =

M(T)∗ = Hom(Gm,T) the co-weight lattice. Let ξ be a coweight in N(T), and
we denote by φξ : Gm → T the one parameter group. For K = Q,R, we denote
by MK(T) = M(T) ⊗Z K and similarly for NK(T).

Lemma 2.28. There exists a closed point x ∈ X which is fixed by T.

Proof Since X is proper the minimal closed orbit T · x = T · x is proper.
T · x � T/Gx where Gx is the inertial group. As the only subgroup of T is a
finite extension of a subtorus, T/Gx is proper if and only if it is a point. �

2.29. Let Y0 → X be a T-equivariant resolution of X. Fix x0 ∈ Y0 a T-fixed
point given by Lemma 2.28. Let Y1 → Y0 be the blow-up of x0 ∈ Y0 with the
exceptional divisor E1

1 ⊆ Y1. Let x1 ∈ E1
1 be a fixed point by T. Let Y2 → Y1 be

the blow-up and E2
1 → E1

1 the birational transform with an exceptional divisor
E2

2 ⊆ E2
1 ⊆ Y2. Assuming after i steps, we obtain Y i with a flag of T-invariant

irreducible smooth subvarieties

Ei
i ⊆ · · · ⊆ Ei

2 ⊆ Ei
1 ⊆ Ei

0 := Y i,

such that Ei
j is of codimension 1 in Ei

j−1 for 1 ≤ j ≤ i. Let Y i+1 → Y i be
the blow-up of a T-fixed point xi ∈ Ei

i, Ei+1
j → Ei

j (1 ≤ j ≤ i) the birational
transform, and Ei+1

i+1 the exceptional divisor of Ei+1
i → Ei

i. After n = dim(X)
steps, we obtain a T-invariant irreducible admissible flag (see (1.5))

H• : Yn ⊇ En
1 ⊇ En

2 ⊇ · · · ⊇ En
n−1 ⊇ En

n = a point P (2.21)

on a projective birational model µ : Yn → X, where T acts on Yn and µ is
T-equivariant.

2.30. Let L be a Q-ample line bundle over X such that for some integer r > 0
rL is a T-linearized line bundle. Let R =

⊕
m∈r·N H0(X,mL). Then T acts on R

by acting on each Rm

(t · s)(x) = s(t−1 · x) for any s ∈ Rm and x ∈ X . (2.22)

It has a weight decomposition Rm =
⊕

α∈M(T) Rm,α, where

Rm,α =
{
s ∈ Rm | ρ(t) · s = t〈ρ,α〉 · s for all ρ ∈ N and t ∈ k∗

}
. (2.23)

For any m ∈ r · N, denote by

dρm,T =
1

mn

∑
α

dim(Rm,α)δm−1α



72 K-stability via test configurations

the measure on MR(T).

Definition-Theorem 2.31. There exists a measure dνDH,T on MR(T) which is

the weak limit dρm,T
weak
−−−→ dνDH,T. We call it the T-equivariant Duistermaat-

Heckman measure.

Proof For each Rm, the valuation vH• associated to the T-invariant flag as in
(2.21) gives a Zn-filtration on Rm, where Zn is given the lexicological order.
Then the discrete measures dρm on Rn has a limit dρ by Lemma 1.4, which is
the Lebegue measure of the Okounkov body ∆.

If a = (a1, . . . , an) ∈ Zn such that dim(Rm)≥a/ dim(Rm)>a = 1, then there
is a T-invariant nonzero section s, with vH• (s) = a, and s has a weight of
mw0 − a1w1 − · · · − anwn, where w0 is the weight of T acting on mL|P and wi is
the weight of T acting on OY (Ei)|P. Thus if we let

pW : Rn → MR, a = (a1, . . . , an) 7→ w0 − a1w1 − · · · − anwn ,

then pW∗(dρm) = dρm,T. So the affine linear projection

dνDH,T = pW∗(dρ) (2.24)

gives the measure we seek for. �

Definition 2.32. For each integer m ∈ r ·N, we set Λm = {α ∈ M(T) |Rm,α , 0 }
and Λ =

⋃
m Λm. Set

Pm := convex hull of Γm ⊆ MR(T) .

We define the moment polytope P ⊆ MR(T) to be the convex closure of⋃
m

1
m Pm.

Denote by Nm = dim(Rm) for any m ∈ r ·N. We define the weighted barycen-
ter of P to be

αbc = lim
m→∞

1
mNm

∑
α∈M(T)

dim(Rm,α)α =
1

vol(P)

∫
P
α dνDH,T , (2.25)

which is the barycenter of P with respect to the measure dνDH,T.

Lemma 2.33. For a sufficiently divisible m, P = 1
m Pm. In particular, The poly-

tope P is rational. If T → Aut(X) has a finite kernel, furthermore we have the
following properties:

(i) P is of maximal dimension in MR(T).
(ii) Let dαP be the Lebesgue measure of P ⊆ MR(T), then dνDH,T = µ(α)dαP on

the weight polytope P ⊆ MR(T) is absolutely continuous with respect to dα.
(iii) the weighted barycenter αbc ∈ Int(P).
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Proof If Rm generates
⊕

m′∈m·N Rm′ , then 1
m′Pm′ = 1

m Pm, which is rational.
(i) Since P is rational, if it is not of maximal dimensional, there exists ξ ∈

N(T), such that 〈α, ξ〉 = 0 for any α ∈ P. So Gm generated by ξ trivially acts
on R, which implies its action on X is trivial.

(ii) Let pW : ∆ → P be the projection given by (2.24). For any α ∈ P, the
density function

µ(α) = vol(p−1
W (α)) ,

which is absolutely continuous since it is log concave by the Brunn–Minkowski
inequality.

(iii) It immediately follows from (i) and (ii). �

Definition 2.34. For any ξ ∈ MR(T) and positive p > 0, we define the Lp-norm
to be

‖(X, L, ξ)‖pLp =

∫
P
|〈α, ξ〉|pdνDH,T ,

and we define the minimum norm to be

‖(X, L, ξ)‖m = 〈αbc, ξ〉 −min
α∈P
〈α, ξ〉 . (2.26)

When (X, L) is clear, we will omit it in the notion, and denote it by ‖ξ‖Lp and
‖ξ‖m.

Lemma 2.35. We have the following properties:

(i) αbc ∈ MQ(T), and ξ → ‖(X, L, ξ)‖2L2 is a quadratic form with rational coeffi-
cients.

(ii) The function ξ → ‖(X, L, ξ)‖m is a convex, piecewise rational linear function
on MR(T).

Proof (i) Let ξ ∈ N(T). Let Xd,ξ := X ×Gm (Ad+1 \ 0)/Gm, where Gm acts on
X by ξ. So πd,ξ : Xd,ξ → (Ad+1 \ 0)/Gm = Pd with all fibers isomorphic to X.
Then there is a relative ample Q-line bundle on Xd,ξ over Pd. Let

H0(X,mL) =
⊕
λ∈Z

H0(X,mL)λ

be the weight decomposition with respect to the ξ-action. It implies that

(πd,ξ)∗OXd,ξ (mLd,ξ) =
⊕
λ∈Z

H0(X,mL)λ ⊗ OPd (λ) .

By relative ampleness of Ld,ξ, the higher direct images of mLd,ξ vanish for



74 K-stability via test configurations

m sufficiently divisible. Thus the Leray spectral sequence and the asymptotic
Riemann–Roch theorem therefore yield∑

λ∈Z

χ(Pd,OPd (λ)) · dim H0(X,mL)λ = χ(Pd, πd,ξ∗OXd,ξ (mLd,ξ))

= χ(Xd,ξ,mLd,ξ)

=
(Ld,ξ)n+d

(n + d)!
mn+d + O(mn+d−1) .

Since

χ(Pd,OPd (λ)) =
(λ − 1) · · · (λ − d + 1)

d!
=
λd

d!
+ O(λd−1) ,

by induction on d, we have

∫
P
〈α, ξ〉ddνDH,T =

(
n + d

n

)−1

·
Ln+d

d,ξ

Ld .

So for d = 1, it implies for any integral ξ ∈ N(T), 〈αbc, ξ〉 ∈ Q which implies
αbc ∈ NQ(T). For d = 2, and any integral ξ ∈ N(T), we also have ‖ξ‖2L2 ∈ Q.
Therefore it is a quadratic form with rational coefficients.

(ii) The function ‖·‖m is convex and piecewise linear by (2.26). Since αbc

and P is rational, ‖·‖m is rational. �

The associated quadratic form Q : NR(T)→ R of the weight decomposition
is defined by

Q(ξ) :=
∫

P
|〈α − αbc, ξ〉|

2 dνDH,T , (2.27)

where αbc (see (2.25)) is the weighted barycenter of the moment polytope.

Lemma 2.36. The function

Q(ξ) = ‖ξ‖2L2 − 〈αbc, ξ〉
2 .

In particular, it is a rational non-negative quadratic form.

Proof Q(ξ) is clearly non-negative. Since

〈α − αbc, ξ〉
2 = 〈α, ξ〉2 − 2〈α, ξ〉 · 〈αbc, ξ〉 + 〈αbc, ξ〉

2 ,
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we have

Q(ξ) =

∫
P
|〈α − αbc, ξ〉|

2 dνDH,T

=

∫
P

(
〈α, ξ〉2 − 2〈α, ξ〉 · 〈αbc, ξ〉 + 〈αbc, ξ〉

2
)

dνDH,T

=

∫
P
〈α, ξ〉2 dνDH,T − 2〈αbc, ξ〉

∫
P
〈α, ξ〉 dνDH,T + 〈αbc, ξ〉

2

=

∫
P
〈α, ξ〉2 dνDH,T − 〈αbc, ξ〉

2

= ‖ξ‖2L2 − 〈αbc, ξ〉
2 .

As ‖ξ‖2L2 and 〈αbc, ξ〉 are rational by Lemma 2.35, the result follows. �

Lemma 2.37. If the natural map T→ Aut(X,∆) has a finite kernel, then ‖ · ‖m
and ‖ · ‖22 are positive on NR(T) \ 0.

Proof By Lemma 2.33, αbc ∈ Int(P), this follows from (2.26) and (2.27). �

Definition 2.38. We define the associated L2-norm to be ‖ξ‖2 =
√

Q(ξ).

2.2.2 Stability function on the moment polytope

Let (X,∆) be an n-dimensional log Fano pair with an action of a torus T. Fix a
positive integer r so that r(KX + ∆) is a Cartier divisor and set

R :=
⊕
m∈r·N

Rm =
⊕
m∈r·N

H0 (X,OX(−m(KX + ∆))) .

The T-action on X induces a canonical action on each vector space Rm. We
denote by Rm =

⊕
α∈M(T) Rm,α, the weight decomposition as in (2.23).

Definition 2.39. For any ξ ∈ NR(T), we define

Fut(X,∆, ξ) = − lim
m→∞

1
Nmm

∑
α

(
dim(Rm,α) · 〈α, ξ〉

)
.

Lemma 2.40. We have the following equality

Fut(X,∆, ξ) = −〈αbc, ξ〉 . (2.28)
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Proof Denote by dim(Rm) = Nm. We have

Fut(X,∆, ξ) = − lim
m→∞

1
Nmm

∑
α

(
dim(Rm,α) · 〈α, ξ〉

)
= − lim

m→∞

mn

Nm

1
mn

∑
α

(
dim(Rm,α) · 〈

1
m
α, ξ〉

)
= − lim

m→∞

mn

Nm

∫
P
〈α, ξ〉 dρm,T

= −
n!
Ln

∫
P
〈α, ξ〉 dνDH,T

= −〈αbc, ξ〉 .

�

Lemma 2.41. For any ξ ∈ N(T), denote by (Xξ,∆ξ) the product test configu-
ration. We have

Fut(X,∆, ξ) = Fut(Xξ,∆ξ) .

In particular, if Fut(X,∆, ξ) = 0 for all ξ, e.g. (X,∆) is K-semistable (see Exer-
cise 2.1), then αbc = 0 ∈ MR(T).

Proof Fix ξ ∈ N(T), the induced Gm-action yields a weight decomposition

Rm,λ =
⊕

α∈M(T),〈α,ξ〉=λ

Rm,α . (2.29)

Then by (2.13) and (2.20),

Fut(Xξ,∆ξ) = − lim
m→∞

1
mNm

∑
λ∈Z

λ dim(Rm,λ)

= − lim
m→∞

1
mNm

∑
α∈M(T)

dim(Rm,α)〈α, ξ〉 = Fut(X,∆, ξ) .

�

Definition 2.42. We endow R2 with the lexicographic order. We define the
bi-valued stability function µ : NR(T) \ 0→ R2 defined by

µ(X,∆, ξ) := (µ1(ξ), µ2(ξ)) :=
(

Fut(ξ)
‖ξ‖m

,
Fut(ξ)
‖ξ‖2

)
(by abuse of notation, if (X,∆) is clear, we will abbreviate it as µ(ξ)).

We proceed to study minimizers of this function when restricted to a cone in
NR(T). Since µ1 and µ2 are invariant with respect to scaling by R>0, µ induces
a function on ∆(T) := (NR(T) \ 0)/R>0.
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Lemma 2.43. Assume T → Aut(X,∆) has finite kernel. Fix points ξ1, ξ2 ∈

NR(T) \ 0 with distinct images in ∆R and t ∈ (0, 1). If Fut(ξ1) and Fut(ξ2) are
non-positive, then

µi(tξ1 + (1 − t)ξ2) ≤ max{ µi(ξ1), µi(ξ2) } for i = 1, 2 .

Furthermore, if i = 2, then the inequality is strict if at least one of Fut(ξ1) and
Fut(ξ2) is negative and ξ1 , λξ2.

Proof Both statements are clear if at least one of Fut(ξ1) and Fut(ξ2) is 0. So
we may assume Fut(ξ1) and Fut(ξ2) are negative.

After scaling ξ1 and ξ2 by R>0, we may assume Fut(ξ1) = Fut(ξ2) and equals
Fut(tξ1 + (1− t)ξ2) by linearity. Next, note that ‖ · ‖m is convex and ‖ · ‖22 strictly
convex since it a quadratic form and positive definite by Lemma 2.37. There-
fore, the two norms satisfy

‖tξ1 + (1 − t)ξ2‖m ≤ max{ ‖ξ1‖m, ‖ξ2‖m }

and if ξ1 , ξ2,

‖tξ1 + (1 − t)ξ2‖2 < max{ ‖ξ1‖2, ‖ξ2‖2 } .

This implies the desired inequalities. �

Lemma 2.44. Let Q be a positive definite rational quadratic form on Rn. Let
σ ⊆ Rn be a rational convex cone and H an affine linear hyperplane with
0 < H. Then the point v0 attained the minimum of Q on H ∩ σ is rational.

Proof We make induction on the dimension of vector space Rn spanned by
σ. We may assume H is given by the equation { v ∈ Rn | v · l = 1 } for some
l ∈ Qn. Then the minimum of Q on H is given by the vector v∗ which satisfies
Q(v∗, ·) = 〈l, ·〉. It follows from Q and l are rational that v∗ is rational.

Since Q is strictly convex, if v0 ∈ Int(σ) ∩ H, then v0 = v∗. Otherwise, v0 is
contained in a face σ1 ⊆ ∂σ. So σ1 spans a rational linear subspace Rm ( Rn.
Then we can restrict H and Q on Rm, and apply induction on m. �

Let σ ⊆ NR(T) be a rational polyhedral cone with σ ∩ { Fut < 0 } , ∅, and
∆(σ) := (σ \ 0)/R>0.

Lemma 2.45. Set ∆i :=
{
ξ ∈ ∆(σ) | µi(ξ) = infξ∈∆(σ) µi(ξ)

}
for i = 1, 2. Then

∆1 is the image of a nonempty rational polyhedral cone and ∆2 is a rational
point.

Proof Since Fut(·) is rational linear and ‖ · ‖m is piecewise rational linear and
positive on NR(T) \ 0, the value

µ1 := inf
ξ∈∆(σ)

µ1(ξ) ∈ Q .
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Additionally, the assumption that σ ∩ {Fut < 0} , ∅ implies µ1 < 0. The
function g : σ→ R defined by

g(ξ) := Fut(ξ) − µ1‖ξ‖m

is non-negative on σ and σmin
1 = {v ∈ σ | g(ξ) = 0}. Since g is rational piece-

wise linear and convex, it follows that σmin
1 is a rational polyhedral cone, and

∆1 is the image of σ1.
Next, note that ∆2 is nonempty, since µ2 is a continuous function and ∆(σ)

is compact. Furthermore, ∆2 must be a point, by Lemma 2.43. The rationality
of the point follows from Lemma 2.44, as we may minimize ‖ · ‖2 on the affine
hyperplane Fut(ξ) = −1. �

Proposition 2.46. Assume T→ Aut(X,D) has finite kernel. Then the infimum

inf
ξ∈∆(σ)

µ(ξ) (2.30)

is achieved at a unique point in ∆(σ) and the point is rational.

Proof By Lemma 2.45, inf{ µ1(ξ) | ξ ∈ ∆(σ) } is achieved on a set ∆1 ⊆ ∆(σ),
which is the image of a nonempty rational polyhedral cone. Since R2 is en-
dowed with the lexicographic order, ξ ∈ ∆(σ) achieves inf{ µ(ξ) | ξ ∈ ∆(σ) }
if and only if ξ ∈ ∆1 and ξ achieves inf{ µ2(ξ) | ξ ∈ ∆1 }. Applying Lemma
2.45 again gives that (2.30) is achieved at a unique point and the point is ratio-
nal. �

2.3 Special test configurations

In this section, we will start to uncover the connection between K-stability and
minimal model program. More precisely, we will introduce a composition of
minimal model program type surgeries, and show that the invariants we use to
test stability are monotonically decreasing along the process.

2.3.1 A sequence of modifications

We consider two setting of smooth pointed curve p ∈ C: either C = Spec(R)
for a DVR R and p = Spec(κ) for the residue field κ; or C = A1 and p = 0.
For the latter, we will always consider Gm-equivariant data over C, i.e. we may
regard C as the stack Θ := [Spec(A1)/Gm] and p = [0/Gm] the only close point
on Θ.
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Proposition 2.47. Let p ∈ C be a pointed smooth curve. Let X → C be a
dominating morphism from a normal variety X to C and an effective R-divisor
∆X such that (X,∆X) ×C (C \ {p}) is klt. Assume components of ∆X dominate
C.

Then there exists a surjective base change π : (p′ ∈ C′) → (p ∈ C) from a
smooth pointed curve p′ ∈ C′, with the normalization X′ of X ×C C′, and a
projective morphisms f lc : Xlc → X′ with a reduced fiber Xlc

p′ over p′

Xlc X′ X ×C C′ X ,
f lc

πX

such that (Xlc, ( f lc)−1
∗ π

∗
X

∆ + Xlc
p′ ) is log canonical and KXlc + ( f lc)−1

∗ π
∗
X

∆ is
ample over X′.

Moreover, if (p ∈ C) = (0 ∈ A1) and X arises from a test configuration
(X,L) of a log Fano pair (X,∆), then we may assume (Xlc,Llc := Ls) is also
a test configuration of (X,∆), where

Ls := (1 + s) f lc∗L + s(KXlc + ( f lc)−1
∗ π

∗
X∆X) for 0 < s � 1 .

Proof Denote the special fiber Xp =
∑q

j=1 b jF j. Let p′ ∈ C′ → p ∈ C be
a morphism with a ramified degree d at p′ divided by lcm(b1, ..., bq). Let X′

be the normalization of X ×C C′. Replacing X/C by X′/C′ and ∆X by its pull
back, we may assume X is normal with a reduced fiber over p.

Consider a log resolution µ : Y → (X,∆X +Xp). We write Ex(µ) = ∆1 + ∆2,
where ∆1 precisely consists of components over p and ∆2 = Ex(µ) − ∆1. We
define Γ on Y via the following formula:

KY + (1 − ε)∆2 + ∆1 + µ−1
∗ (∆X + Xp)

∼X,Q KY + (1 − ε)∆2 + µ−1
∗ ∆X +

(
∆1 + µ−1

∗ Xp − ε0Yp

)
=: KY + Γ, (2.31)

for 0 < ε, ε0 � 1 and Yp is the fiber of Y over p ∈ C. By definition, (Y,Γ) is
klt.

Therefore, by Theorem 1.66, we can run a minimal model program for KY+

(1 − ε)∆2 + ∆1 + µ−1
∗ (∆X + Xp) over X, as it is the same as running a minimal

model program for KY + Γ, which yields a log canonical model f lc : Xlc → X.
Restricting over C \ {p}, the pushforward of KY + (1 − ε)∆2 + µ−1

∗ ∆X is
relatively Q-linearly equivalent to∑

E⊆Ex( f lc)

(AX,∆X (E) − ε) · E .

Since AX,∆X (E) > 0 for any E whose center is over C \ {p}, we can choose



80 K-stability via test configurations

sufficiently small ε such that AX,∆X (E) − ε > 0 for all E ⊆ Ex(µ) over C \ {p}.
By Lemma 1.73, this implies

∑
E⊆Ex( f lc)(AX,∆X (E) − ε) · E = 0, which implies

that f lc is isomorphic over C \ {p} and the pushforward of ∆2 on Xlc is equal to
0.

Let ∆lc
1 be the pushforward of ∆1 on Xlc. Then (Xlc,∆lc

1 + ( f lc)−1
∗ (∆X + Xp))

is log canonical and

KXlc + ∆lc
1 + ( f lc)−1

∗ (∆X + Xp)

is ample over X.
Taking a base change C′ → C, such that the multiplicity of any component

of Ex( f lc) divides d. Replacing Xlc by the normalization of Xlc ×C C′ and
X by X ×C C′, we can assume the fiber Xlc

p′ over p′ ∈ C′ is reduced. Then
∆lc

1 + ( f lc)−1
∗ Xp′ = Xlc

p′ . So (Xlc, ( f lc)−1
∗ (∆X) + Xlc

p′ ) is log canonical and

KXlc + ( f lc)−1
∗ (∆X) + Xlc

p′ ∼C′,Q KXlc + ( f lc)−1
∗ ∆X

is ample over X.
Next we assume (p ∈ C) = (0 ∈ A1) and X arises from a test configuration

(X,∆X,L) of a log Fano pair (X,∆). Then the base change can be chosen to be

πd : A1 → A1, z 7→ zd,

and Y being Gm-equivariant. The minimal model program is automatically
Gm-equivariant, as Gm is a connected group. Write

( f lc)∗L + KXlc + ( f lc)−1
∗ ∆X ∼Q Φ , (2.32)

for a Q-Cartier Q-divisor Φ supported over 0. For 0 < s � 1, we let Ls =

( f lc)∗L+s·Φ, which is ample onXlc. Therefore, (Xlc,Ls) is a test configuration
of (X,∆). �

Proposition 2.48. Let p ∈ C be a pointed smooth curve. Let Xlc → C be a
projective dominating morphism from a normal variety X to C and an effective
Q-divisor ∆Xlc such that (Xlc,∆Xlc )×C (C \ {p}) is klt and (Xlc,∆Xlc +Xlc

p ) is log
canonical. Assume −KXlc −∆Xlc is ample over C \{p}. Let H be a divisor onXlc

ample over C, such that its restriction over C \ {p} is equal to the restriction of
−(r+1)(KXlc +∆Xlc ) for some r > 0. Then one can run a minimal model program
of KXlc +∆Xlc with the rescaling of H, which produces a model (Xws,∆Xws ) such
that (Xws,∆Xws + Xws

0 ) is log canonical,

(Xlc,∆Xlc )|C\{p} � (Xws,∆Xws )|C\{p}

and −(KXws + ∆Xws ) is ample over C.
Moreover, if (p ∈ C) = (0 ∈ A1) and X arises from a test configuration
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(Xlc,Llc) of a log Fano pair (X,∆), then (Xws,∆Xws ) is a weakly special test
configuration.

Proof We run a (KXlc + ∆lc)-minimal model program over C with the scaling
of H as in Definition 1.64. Since KXlc + ∆lc is not pseudo-effective over A1, we
can apply Theorem 1.66.

Thus we get a sequence of numbers t0 = 1 > t1 ≥ t2 ≥ ... ≥ tm−1 ≥ tm, with
a sequence of models

Xlc = Y0 d Y1 d · · ·d Ym−1

such that if we let Hi (resp. ∆Yi ) be the pushforward of H (resp. ∆) on Yi,
KYi + ∆Yi + sHi is nef for any s ∈ [ti, ti+1]. In particular, denoted by (Yi)p =

Yi ×C p, (Yi,∆Yi + (Yi)p) is log canonical since (Xlc,∆Xlc +Xlc
p ) is log canonical,

and Xlc d Yi is a sequence of minimal model program for KXlc + ∆Xlc + Xlc
p .

The restriction of KY0 + ∆Y0 + sH is ample over A1 \ {0} when s > 1
r+1 , and

trivial when s = 1
r+1 . This means KY0 + ∆Y0 + 1

r+1 H is pseudo-effective but not
big over A1. Thus tm = 1

r+1 . The minimal model program terminates as soon
as KYm−1 + ∆Ym−1 + tmHm−1 is not big, this means tm−1 > tm. In particular, each
step of the minimal model program induces an isomorphism over C \ {p}, as
KY0 + ∆Y0 + tiH is ample over C \ {p} for i ≤ m − 1.

Since KYm−1 + ∆Ym−1 + 1
r+1 Hm−1 is relatively Q-linearly equivalent to a divisor

supported over p, the nefness implies it is relatively trivial by Lemma 1.74.
Therefore,

KYm−1 + ∆Ym−1 + tm−1Hm−1 ∼A1,Q (tm−1 − tm)Hm−1

is big and nef. Let f ws : Xws → C be the ample model of Hm−1 on Ym−1 over C,
i.e. there is a birational morphism Ym−1 → Xws given by a sufficiently divisible
multiple of Hm−1 and ∆Xws the pushforward of ∆Ym−1 . Then on Xws, we have
−KXws − ∆Xws is ample over C. Moreover, (Xws,∆Xws + Xws

p ) is log canonical
where Xws

p := ( f ws)−1(p), as the pull back of KXws + ∆Xws + Xws
p to Ym−1 is

KYm−1 + ∆Ym−1 + (Ym−1)p and (Ym−1,∆Ym−1 + (Ym−1)p) is log canonical.
If (Xlc,Llc) is a test configuration of (X,∆), then since the minimal model

program is Gm-equivariant and it is an identity over A1 \ {0}, we conclude that
(Xws,∆Xws ) is Gm-equivariant with Lws = −KXws − ∆Xws . �

Proposition 2.49. Let p ∈ C be a pointed smooth curve. Let (Xws,∆Xws ) →
C be a projective surjective morphism from a klt pair (Xws,∆Xws ) such that
−(KXws + ∆Xws ) is ample over C and (Xws,∆Xws + Xws

0 ) is log canonical. Then
there exists a surjective base change π : (p′ ∈ C′) → (p ∈ C) from a normal
pointed curve p′ ∈ C′ and a projective klt pair (Xs,∆Xs ) over C′, such that
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there is an isomorphism

(Xs,∆Xs )|C′\{p′} � (Xws,∆Xws ) ×C (C′ \ {p′})

over C′\{p′}, (Xs,∆Xs +Xs
p′ ) is plt andXs

p′ is a prime divisor of log discrepancy
0 with respect to (Xws ×C C′,∆Xws ×C C′ + Xws

p′ ).
Moreover, if (p ∈ C) = (0 ∈ A1) and Xws is a weakly special test con-

figuration of a log Fano pair (X,∆), then we may assume Xs is a special test
configuration of (X,∆).

Proof Let µ : Y → Xws be a log resolution of (Xws,∆Xws +Xws
0 ) such that the

exceptional locus Ex(Y/X) supports an effective divisor A with −A being am-
ple over Xws. Denote byY0 =

∑q
j=1 b jF j. Let (p′ ∈ C′)→ (p ∈ C) be a degree

d morphism such that the ramified degree at p′ is divided by lcm(b1, ..., bq).
We can replace Xws by X′ = Xws ×C C′, Y by the normalization Y′ of

Y ×C C′ and µ by the morphism µ′ : Y′ → X′. Let ∆X′ be the pull back of
∆Xws on X′, and A′ the pull back of A on Y′. Write A′ = A1 + A2 such that A1

precisely consists of components whose supports are over p′ and A2 the other
components. Let

LY′ := −µ′∗(KX′ + ∆X′ ) − ε0A′ for 0 < ε � 1

be an ample Q-divisor on Y′ over C′.
Write Ex(µ′) = ∆1 + ∆2, where ∆1 precisely consists of components over p′.

Since

KY′ + (1 − ε)∆2 + (µ′)−1
∗ (∆X′ + X′p′ ) + ∆1

∼C′,Q KY′ + (1 − ε)∆2 + (µ′)−1
∗ ∆X′ +

(
(µ′)−1

∗ X
′
p′ + ∆1 − εY

′
p′
)
,

which is a klt pair. We can run a minimal model program for KY′ + (1− ε)∆2 +

(µ′)−1
∗ (∆X′ + X′p′ ) + ∆1 with scaling of LY′ .

Then

KY′ + (1 − ε)∆2 + (µ′)−1
∗ (∆X′ + X′p′ ) + ∆1 +LY′

∼C′,Q KY′ + (1 − ε)∆2 + (µ′)−1
∗ (∆X′ + X′p′ ) + ∆1 − µ

′∗(KX′ + ∆X′ + X′p′ ) − ε0A′

∼C′,Q

∑
E⊆Ex(Y′/X′)

AX′,∆X′+X′p′ (E) · E − ε∆2 − ε0A′.

We can choose 0 < ε, ε0 � 1, such that if AX′,∆X′+X′p′ (E) > 0, then

AX′,∆X′+X′p′ (E) > multE(ε∆2 + ε0A′) .

In particular, this holds for all E over C\{p}. Thus, KY′+(1−ε)∆2+(µ′)−1
∗ (∆X′+

X′p′ ) + ∆1 +LY′ is pseudo-effective but not big over C. By Theorem 1.66, this
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terminates after finitely many steps, which is a minimal model φ : Y′ d Ym

of KY′ + (1 − ε)∆2 + (µ′)−1
∗ (∆X′ + X′p′ ) + ∆1 +LY′ .

After perturbing A1, we can find b > 0, such that∑
E⊆Y′p′

AX′,∆X′+X′p′ (E)E − ε0A1 + bYp′ ≥ 0

and its support consists of all components of Yp′ , except one, say E1. Since

Λ := φ∗
( ∑

E⊆Ex(Y′/X′)

AX′,∆X′+X′0 (E) · E − ε∆2 − ε0A1 + bYp′
)

is nef over C, by Lemma 1.73, we know over Λ|C′\{p′} = 0, i.e.

Λ = φ∗
( ∑

E⊆Y′p′

AX′,∆X′+X′p′ (E) · E − ε0A1 + bYp′
)
.

Since Λ is nef, it Q-linearly equivalent to a multiple of the pull back of p′,
which implies it is 0, as its coefficient along E1 is 0. Moreover, Ym

0 has pre-
cisely one component E1. We let Xs be the ample model of φ∗(LY′ ) ∼C,Q

−KYm − φ∗(µ′)−1
∗ ∆X′ , with ∆Xs the pushforward of (µ′)−1

∗ ∆X′ .
Since (

Y′, (1 − ε)∆2 + (µ′)−1
∗ (∆X′ + X′p′ ) + ∆1

)
is qdlt (see Definition 5.4), then (Ym, φ∗(µ′)−1

∗ ∆X′ + Ym
p′ ) is qdlt. However,

as Ym
p′ is irreducible, this implies that (Ym, φ∗(µ′)−1

∗ ∆X′ + Ym
p′ ) is plt, which

implies that (Xs,∆Xs + Xs
p′ ) is plt.

IfXws is a test configuration, then each step can be chosen to beGm-equivariant,
therefore Xs is a test configuration. �

Putting together Proposition 2.47-2.49, we have the following consequence.

Corollary 2.50. Let R be a DVR with fractional field K. Let (XK ,∆K) be a log
Fano pair over K.

Then there exists an extension of DVRs R→ R′ such that the extension of the
fractional field K → K(R′) is finite, and a projective morphism X′ → Spec(R′)
with a Q-divisor ∆′ such that (X′,∆′ + X′κ′ ) is plt where κ′ is the residue field of
R′, −KX′ − ∆′ is ample and

(X′,∆′)|Spec(K′) � (XK ,∆K) ×Spec(K) Spec(K′) .

Proof Fix r > 0 such that LK := OXK (−r(KXK + ∆K)) is a very ample line
bundle and set m := h0(XK ,LK) − 1. By taking the closure of XK under the
embedding

XK ↪→ P(H0(XK ,LK)) ' Pm
K ↪→ Pm

R
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and then normalizing, we see (XK ,∆K ,LK) extends to a family (XR,∆R,LR)→
Spec (R), where XR is a normal variety with a flat projective morphism XR →

Spec (R), ∆R is Q-divisor on XR whose support does not contain a fiber, and L
is a π-ample line bundle on XR.

Then we can apply the construction of Proposition 2.47-2.49 for

π : (XR,∆R,L)→ Spec(R)

to get the desired (X′,∆′)→ Spec(R′) (see Remark 1.75). �

2.3.2 Reduction to special test configurations

We track the change of invariants under the modifications in Section 2.3.1.

Theorem 2.51. Let (X,L) → A1 be a test configuration of a log Fano pair
(X,∆). Then there exists a base change

πd : A1 → A1, z 7→ zd

and a special test configurationXs → A1 which isGm-equivariantly birational
to (X,L) ×A1,πd A

1 over A1, such that

Fut(Xs) ≤ d · Fut(X,L)

Moreover, the equality holds if and only if the birational map

Xs d X ×A1,πd A
1

is a Gm-equivariant morphism which is isomorphism outside codimension 2.

Theorem 2.52. Let (X,L)→ A1 be a normal test configuration of a log Fano
pair (X,∆). Then there exists a base change

πd : A1 → A1, z 7→ zd

and a special test configurationXs → A1 which isGm-equivariantly birational
to (X,L) ×A1,πd A

1 over A1, such that for any δ ∈ [0, 1),

Ding(Xs) − δ · J(Xs) ≤ d ·
(
Ding(X,L) − δ · J(X,L)

)
.

Moreover, the equality holds if and only if the birational map

Xs d normalization of X ×A1,πd A
1

is a Gm-equivariant isomorphism.



2.3 Special test configurations 85

Proof of Theorem 2.51 We denote (−KX − ∆)n by V .

Step 0: Denote the special fiber X0 =
∑p

i=1 biEi. Let Xn → X be the normal-
ization, by Proposition 2.21, we have

Fut(X,L) ≥ Fut(Xn,Ln)

with the equality holding if and only if Xn → X is an isomorphism outside
codimension at least 2. Moreover, if Xd = X ×A1,πd A

1 then by Lemma 2.23,

Fut(Xd,Ld) = d · Fut(X,L) .

Step 1: We apply the construction in Proposition 2.47.
Let X

lc
be the∞-trivial compactification of Xlc, and we define a function

F1(s) =
1

(n + 1)V

(
n(Ls)n+1 + (n + 1)(K

X
lc
/P1 + ∆

X
lc ) · (Ls)n

)
,

then F1(0) = Fut(X,∆X,L). Let Φ as defined in (2.32),

d
ds

F1(s) =
n
V
Ln−1

s · Φ2 ≤ 0

by Lemma 1.74. Since Φ is ample over X, if Xlc → X is not isomorphic, then
Φ is not Q-linearly equivalent to 0 over X, which implies that Ln−1

s · Φ2 < 0
for 0 < s � 1.

Step 2: Fix a sufficiently large rational number r such that rLlc such that H :=
rLlc − KXlc − ∆lc is ample. Then we apply Proposition 2.48, and follow the
notation there.

As K
X

lc + ∆
X

lc + L
lc

is Q-linearly equivalent to a divisor Ψ supported over
0. For any s ∈ [ti+1, ti] where i < m − 1, we define

Gs :=
1

(r + 1)s − 1
(KYi + ∆Yi + sHi) (2.33)

on Yi. Let

Ψi = the pushforward of Ψ on Yi . (2.34)

Then

Gs + KYi + ∆Yi =
s

(r + 1)s − 1
((r + 1)(KYi + ∆Yi ) + Hi) ∼Q

sr
(r + 1)s − 1

Ψi

on Yi. In particular, Ψi is Q-Cartier.
We define

F2(s) :=
1

(n + 1)V

(
nG

n+1
s + (n + 1)(KY i/P1 + ∆Y i

) · G
n
s

)
,
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where Y i,∆Y i
and Gs mean the ∞-trivial compactifications. Since each MMP

step of Yi d Yi+1 is (KYi + ∆Yi + ti+1Hi)-trivial, F2(s) is well defined. If s ∈
[ti+1, ti], we have

d
ds

F2(s) =
n
V
Gn−1

s · (Gs + KY i/P1 + ∆Y i
) · (Gs)′

=
n
V
Gn−1

s ·
−rs(

s(r + 1) − 1
)3 Ψi ·

(
(r + 1)(KY i

+ ∆Y i
) + Hi

)
=

−nr2s

V ·
(
s(r + 1) − 1

)3G
n−1
s · Ψ2

i ≥ 0 , (2.35)

by Lemma 1.74. Therefore, we have

Fut(X,L) = F(1) ≥ F(t1) ≥ · · · ≥ F(tm−1) .

Since on Ym−1, we have Hm−1 ∼ −(r + 1)(KYm−1 + ∆Ym−1 ),

F2(tm−1) =
−1

(n + 1)V

(
− KYm−1/P1 − ∆Ym−1

)n+1

=
−1

(n + 1)V

(
− K

X
ws
/P1 − ∆

X
ws

)n+1

= Fut(Xws) .

We proceed to characterize the equality case. Assuming m > 1, we know
Llc is not Q-linearly equivalent to −KXlc − ∆Xlc over A1. This implies for any
s ∈ (t1, 1),

F2(1) = Fut(Xlc) > F2(s) ≥ Fut(Xws) .

Step 3: By Proposition 2.49, after a degree d base change, we can obtain a
special test configuration Xs from Xws. We aim to show that

Fut(Xs) ≤ d · Fut(Xws)

with the equality holding if and only if Xs = Xws.

We replace X
ws

by X
ws
×A1,πd A

1. Let Y be the normalization of the graph
of X

ws
d X

s
:

Y

p

~~

q

  

X
ws

X
s
.

Then multXs
0
(q∗Xws

0 ) = 1. We have q∗p∗(KXws + ∆Xws ) = KXs + ∆Xs . By Lemma
1.73,

p∗(KXws + ∆Xws ) − q∗(KXs + ∆Xs ) =: Γ ≥ 0 . (2.36)
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Therefore,

(−K
X

s − ∆
X

s )n+1 − (−K
X

ws − ∆
X

ws )n+1

=

n∑
j=0

Γ · (−KXs − ∆Xs ) j · (−KXws − ∆Xws )n− j

≥ 0 , (2.37)

which implies that

Fut(Xws) = −
1

(n + 1)V
(−KXws − ∆Xws )n+1

≥ −
1

(n + 1)V
(−KXs − ∆Xs )n+1 = Fut(Xs) .

Moreover, if Xs and Xws are not isomorphic, then Γ , 0. Since

−p∗(KXws + ∆Xws ) − q∗(KXs + ∆Xs )

is ample on Y over A1, which implies

n∑
j=0

Γ · (−KXs − ∆Xs ) j · (−KXws − ∆Xws )n− j > 0 . (2.38)

�

Proof of Theorem 2.52 We use the process of modifications in Proposition
2.47-2.49, and we will follow the notations there.

By Lemma 2.12 and 2.25, it suffices to prove that for any normal test con-
figuration (X,L), for the models (Xlc,Llc), (Xws,Lws) and (Xs,Ls), Ding(·) −
δ ·J(·) monotonically decreases in the process, after scaling by the base change
degree.
Step 1: Let Y give a common resolution:

Y

p

��

q

""

X
lc

X × P1 .

Write Xlc
0 =

∑h
i=1 Fi, and Φ =

∑h
i=1 eiEi (see (2.32)) and we may assume

e1 ≤ e2 ≤ · · · ≤ eh. Therefore,DXlc,Ls = −(1 + s)Φ, and

lct(Xlc,∆lc +DXlc,Ls ;X
lc
0 ) = 1 + (1 + s)e1 .

Denote by LP1 the pull back of −KX − ∆ on X × P1. Since L
i
0 · L

n−i
s · X

lc
0 = V ,
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we have

V
(
Ding(Xlc,Ls) − δ · J(Xlc,Ls) − d · (Ding(X,L) − δ · J(X,L))

)
=

1 − δ
n + 1

(
L

n+1
0 − L

n+1
s

)
− δsp∗Φ · q∗Ln

P1 + se1V

= −
1 − δ
n + 1

n∑
j=0

s(p∗Φ · L
j
0 · L

n− j
s − e1V) − δsq∗Ln

P1 · (p∗Φ − e1 p∗Xlc
0 )

=
(
−

1 − δ
n + 1

n∑
j=0

s · L
j
0 · L

n− j
s − δsq∗Ln

P1

)
· p∗(Φ − e1X

lc
0 )

≤ 0 .

The equality holds if and only if Φ − e1X
lc
0 ∼A1,Q 0, which implies Xlc =

X ×A1,πd A
1, since Φ is ample over X ×A1,πd A

1.

Step 2: Let Y give a common resolution:

Y

pi

��

q

""

Y i X × P1 .

For s1, s2 ∈ [ti+1, ti] and s1 ≤ s2, set

c =
s1r

(r + 1)s1 − 1
−

s2r
(r + 1)s2 − 1

≥ 0 .

On Yi, let Ψi =
∑hi

j=1 ei jFi j (see (2.34)) where ei1 ≤ ei2 ≤ · · · ≤ eihi . For
s ∈ [ti+1, ti], We define Ds = − sr

(r+1)s−1 Ψi on Yi, thus

lct(Yi,∆Yi + Ds; (Yi)0) =
srei1

(r + 1)s − 1
.

Let Gs be defined as in (2.33), set

G2(s) = −
1 − δ
n + 1

G
n+1
s − 1 +

srei1

(r + 1)s − 1
V − δp∗Gsq

∗Ln
P1 (2.39)

and it is well defined, i.e. if s is in more than one intervals, (2.39) does not
depend on which Yi to compute.

Let

Θi := Ψi − ei1(Yi)0 ≥ 0, (2.40)
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we have

G2(ti+1) −G2(ti)

= −
1 − δ
n + 1

(
G

n+1
ti+1
− G

n+1
ti

)
+ cei1V − δp∗i (Gti+1

− Gti ) · q
∗Ln

P1

= −
1 − δ
n + 1

n∑
j=0

c
(
Ψi · G

j
ti · G

n− j
ti+1
− ei1V

)
− δcq∗Ln

P1 · p∗i Θi

=
(
−

1 − δ
n + 1

n∑
j=0

cp∗i
(
G

j
ti · G

n− j
ti+1

)
− δcq∗Ln

P1

)
· p∗i Θi (2.41)

≤ 0 .

Thus for 0 < ε � 1,

Ding(Xlc,Llc) − δ · J(Xlc,Llc) =
1
V

G2(1)

≥
1
V

G2(
1

r + 1
+ ε)

= Ding(Xws) − δ · J(Xws) .

If Y0 , Y1, then Ψ0 is not Q-linearly equivalent to a multiple of fiber. Since G1,
Gs are relatively ample over A1 for any s ∈ (t1, 1),

G
j
1 · G

n− j
s · Θ0 = G

j
1 · G

n− j
s · Ψ0 > 0 .

The calculation in (2.41) implies G2(1) −G2(s) > 0.

Step 3: We replace X
ws

by X
ws
×A1,πd A

1. Let Y be the common resolution of
X

s
, X

ws
and X × P1:

Y

p1

xx

p2
��

q

''

X
ws

X
s

X × P1 .

By (2.36), we know that

Γ := p∗1(KXws + ∆Xws ) − p∗2(KXs + ∆Xs ) ≥ 0 .

We have

V
(
Ding(Xws) − δ · J(Xws) − (Ding(Xs) − δ · J(Xs))

)
=

1 − δ
n + 1

(
(−K

X
ws − ∆

X
ws )n+1 − (−K

X
s − ∆

X
s )n+1

)
+ δ · Γ · q∗Ln

P1

≥ 0 ,
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where by (2.37),

(−K
X

ws − ∆
X

ws )n+1 − (−K
X

s − ∆
X

s )n+1 ≥ 0 ,

and by (2.38) the equality holds only when Xws = Xs. �

Lemma 2.53. For a normal test configuration (X,L) of a log Fano pair (X,∆),
we have

Fut(X,L) ≥ Ding(X,L) (2.42)

and the equality holds if and only if it is weakly special.

Proof Assume −DX,L =
∑h

j=0 e jF j and X0 =
∑

m jF j with e1
m1

= min j{
e j

m j
}.

Fut(X,L) − Ding(X,L)

=
1
V

(Ls)n+1 +
1
V

(K
X

lc
/P1 + ∆

X
lc ) · L

n
s − lct(X,∆X +DX,L;X0) + 1

= −
1
V
DX,L · L

n
s − lct(X,∆X +DX,L;X0) + 1

≥
e1

m1
−

1 + e1

m1
+ 1 ≥

m1 − 1
m1

≥ 0 .

As Ls is ample over A1, the equality holds only if e1
m1

=
e j

m j
for all j. In this

case, the equality assumption implies m j = 1 for all j, i.e. −DX,L = e1X0, and

1 + e1 = lct(X,∆X +DX,L;X0) = e1 + lct(X,∆X;X0) .

As lct(X,∆X;X0) = 1, (X,∆X + X0) is log canonical, and L ∼A1,Q −KX − ∆X,
which means (X,L) is weakly special. �

Theorem 2.54. For a log Fano pair (X,∆), the following are equivalent

(i) (X,∆) is K-semistable,
(ii) (X,∆) is Ding semistable, and

(iii) Fut(X) ≥ 0 for all special test configuration.

Proof The equivalence between (i) and (iii) follows from Theorem 2.51. By
Theorem 2.52, we know to verify Ding-semistability, one only needs to look at
special test configurations, on which the Futaki invariant is equal to the Ding
invariant by Lemma 2.53. �

Theorem 2.55. For a log Fano pair (X,∆), the following are equivalent

(i) (X,∆) is K-stable,
(ii) (X,∆) is Ding stable, and

(iii) Fut(X) > 0 for any nontrivial special test configuration X.
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Proof We assume (iii) is true. By Theorem 2.51, Fut(X,L) ≥ 0 and the equal-
ity holds only if (X,L) ×A1,πd A

1 is isomorphic to a special test configuration
outside a codimension two locus, which is trivial by our assumption (iii). This
implies (X,L) is isomorphic to the trivial test configuration outside a codimen-
sion two locus.

Similarly, we can show (iii)=⇒(ii). �

Theorem 2.56. For a log Fano pair (X,∆), the following are equivalent

(i) (X,∆) is K-polystable,
(ii) (X,∆) is Ding polystable, and

(iii) (X,∆) is K-semistable, and Fut(X) > 0 for any special test configuration X
which is not a product.

Proof We assume (iii) is true. For a normal test configuration (X,L) with
Ding(X,L) = 0. After a normalization of a base change to get (X′,L′), we
may assume X′0 is reduced. Any base change (X′,L′) ×A1,πd A

1 is normal, and
it is special by Theorem 2.52. By our assumption (iii), (X′,L′) ×A1,πd A

1 is a
product test configuration. This can be true only if (X′,L′) is a product test
configuration, which also implies (X,L) is a product test configuration. Thus
(iii)=⇒(ii).

Similarly (iii)=⇒(i). �

Theorem 2.57. For a log Fano pair (X,∆), the following are equivalent

(i) (X,∆) is uniformly K-stable with level δ,
(ii) (X,∆) is uniformly Ding stable with level δ, and

(iii) Fut(X) ≥ δ · J(X) for any special test configuration X.

Proof By Theorem 2.52, (iii)=⇒(ii). Then (ii)=⇒(i), by Lemma 2.53. �

Exercises

2.1 Prove that for a K-semistable polarized pair (X,∆, L) with a T-action,
Fut(Xξ, Lξ) = 0 for all product test configurations (Xξ, Lξ).

2.2 Let (X,L) → A1
s be a test configuration of (X, L). Assume for some r

such that rL is Cartier, and

H0(X, rL) ⊗k[s] k(0) � H0(X0, rL|X0 ) .

Then any Gm-invariant section s0 in H0(X0, rL|X0 ) is the restriction of a
Gm-invariant section in H0(X, rL).
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2.3 Let (X,L) be a test configuration of (X, L). If X and X0 are integral, then
we define a divisor ∆X0 on X0 as follow: write ∆ =

∑
i di∆i for prime

divisors ∆i. Let ∆X,i be the flat closure of ∆i ×Gm, and I ⊂ OX0 the ideal
sheaf of ∆X,i ×A1 {0}. Then we set ∆X0,i to be

∆X0,i =
∑

ht(p)=1,p∈X0

length(OX0,p/Ip)Dp ,

where Dp is the divisor given by p. We define ∆X0 =
∑

i di∆X0,i to be
the R-Weil divisor on X. In this case, we say the pair (X0,∆X0 ) is a Gm-
equivariant degeneration of the pair (X,∆).

Show

FutX,∆(X,L) = FutX0,∆X0
((X0)ξ, (L|X0 )ξ) ,

where the Gm-action ξ on (X0,L|X0 ) is induced by (X,L).
2.4 Let (X, L) = (P1,OP1 (3)). Consider the test configuration

X ⊂ P3 × A1 = P(x, y, z,w) × Spec(k[s])

given by

I = (s2(x + w)w − z2, sx(x + w) − yz, xz − syw, y2w − x2(x + w)) .

The Gm-action on it is sending

X × Gm → X : (x, y, z,w; s) × {t} → (x, y, t · z,w; st).

Show Fut(X,L) = 0.
2.5 Let T be a torus faithfully acting on a projective variety X, and L a T-

linearized ample line bundle.

(a) There exists a variety Z, such that ρ : X d Z × T is T-equivariantly
birational, where T acts on Z × T via the second factor.

(b) K(X) is the quotient field of K(Z)[M] for a full lattice M ⊆ M(T).

2.6 Let (X,L) be a test configuration of a log Fano pair (X,∆) with rational
index one. Assume X0 is irreducible. Show L ∼Q −KX − ∆X and

Fut(X,L) = −
1

(n + 1)(−KX − ∆)n (−K
X/P1 − ∆

X
)n+1 .

2.7 Let (X,L) be a test configuration of a polarized pair (X,∆, L). Let Xd =

X ×A1,πd A
1 and Ld the pull back of L. Show

I(Xd,Ld) = d · I(X,L) .
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2.8 Let π : (X,L) → A1 be a normal test configuration of a polarized pair
(X,∆, L). We define the reduced Futaki invariant to be

Futred(X,L) =
1

(n + 1)Ln

(
nµ(L)n+1 + (n + 1)(Klog

X/P1
+ ∆

X
) · (L)n

)
,

where Klog
X/P1

:= K
X

+ red(X0) − π∗(KP1 + {0}). Show that

(a) (X,∆, L) is K-semistable if and only if Futred(X,L) ≥ 0.
(b) (X,∆, L) is K-stable if and only if Futred(X,L) > 0 for all non-trivial

normal test configurations.
(c) (X,∆, L) is K-polystable if and only if Futred(X,L) ≥ 0 and the only

test configurations with reduced fiber X0 satisfying the equality are
product test configurations.

Note on history

The concept of product test configurations and their Futaki invariants were first
considered in Futaki (1983). Test configurations with a nonisomorphic degen-
eration and their Futaki invariants were introduced in Ding and Tian (1992).
Using this work, the notion of K-stability was introduced in Tian (1997). In
these works, as observed in Mabuchi (1986), the Futaki invariant was viewed
as the derivative of K-energy along the pullbacks of the Fubini-Study metics
along test configurations.

Donaldson (2002) gave a purely algebraic formulation of Futaki invariants,
and extended it to test configurations of all polarized projective varieties. The
intersection formula of Futaki invariants was proved by Wang (2012) and
Odaka (2013a).

In Székelyhidi (2015), L2 norm of a test configuration was introduced and
the corresponding version of uniform stability was defined. Dervan (2016b)
and Boucksom et al. (2017) considered different norms, which turn out to be
equivalent to each other. These are the non-archimedean analogues of norms
in the analytic setting.

Berman (2016) introduced the algebro-geometric notion of Ding stability,
inspired by the analytic work on Ding functional Ding (1988).

Proposition 2.21 was proved in Ross and Thomas (2007), which studied K-
stability through the framework of the geometric invariant theory. It was first
noticed in Odaka (2013b) that the K-semistability assumption implies the un-
derlying variety admits singularities coming from the minimal model program
theory. Using the minimal model program, Li and Xu (2014) developed the
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birational surgeries, as in Section 2.3, to modify an arbitrary test configura-
tion to a special test configuration, and proved that along this process the Fu-
taki invariant decreased. Then Berman-Boucksom-Jonsson and Fujita (2019b)
showed that along this process Ding invariants also decreased.



3
K-stability via filtrations

In Chapter 3, we will extend the Ding stability notion to testings on filtrations.
In Section 3.1, we will introduce some basic notions for filtered linear series. In
Section 3.2, we will investigate S -invariants for a filtration. In Section 3.3, we
introduce log canonical slopes of a filtration and define Ding stability notions
using it together with S -invariants. In Section 3.4, we will prove that Ding
invariants on a filtration can be approximated by Ding invariants of a sequence
of approximating test configurations. In Section 3.5, we investigate some basic
invariants defined for two filtrations. We show two filtrations can be connected
by a geodesic segment, and the Ding invariants is convex along it.

3.1 Filtered linear series

We introduce the concept of filtered linear series.

3.1.1 Finite dimensional case

Filtered vector space
Let V be a vector space of finite dimensional N. For a totally ordered set I,
an I-valued decreasing filtration on V is a I-indexed vector subspace {F λV}λ∈I

such that if λ, λ′ ∈ I and λ ≥ λ′, then F λV ⊆ F λ′V .
We will mostly consider real valued decreasing filtrations.

Definition 3.1. A real valued decreasing filtration F λV on V is given by the
following data: for any λ ∈ R, we fix a vector subspace F λV ⊆ V with the
following properties:

(i) (Boundedness) F λ′V = V for some λ′ � 0 and F λV = 0 for λ � 0.
(ii) (Left continuous) For any λ, F λV = ∩λ′<λF

λ′V .

95
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We call λ a jumping number, if F λV ) F λ′V for any λ < λ′. We define
T (F ,V) to be the largest jumping number, i.e. F λV = 0 for any λ > T (F ,V).

For any s ∈ V , we define

ordF (s) := sup{λ ∈ R
∣∣∣ s ∈ F λV} .

We denote by

Grλ
F

V = F λV
/ ⋃
λ′>λ

F λ′V . (3.1)

For a subspace W ⊆ V , a filtration F on V induces a filtration on W given by
F λW = W ∩ F λV .

Definition 3.2. We say F on V is a Z-valued filtration if all jumping numbers
are integers.

Example 3.3. Consider a Z-valued filtration F on a finite dimensional vector
space V . We obtain a graded k[s]-module

ReeF (V) :=
⊕
m∈Z

F mV s−m .

It follows from our assumption F m+1V ⊆ F mV that s is torsion free, i.e.⊕
m∈Z F

mV s−m is a free k[s]-module. Therefore, it corresponds to aGm-equivariant
vector bundleVF on A1

s .
In fact, Example 2.14 means any finite dimensional Gm-equivariant vector

bundle overA1
s arises from this way: for such a bundleV, we set V = V×A1 {1}.

The weight decomposition

H0(A1,V) =
⊕
m∈Z

H0(A1,V)m · s−m

yields a Z-filtration F mV , with F mV defined as the image of

H0(A1,V)m · s−m ⊆ H0(A1,V)→ V ,

where the second map is the restriction. Since s has weight −1 with respect
to the Gm-action on A1 (see Example 2.13), multiplication by s induces an
injection F m+1V ⊆ F mV ,

Definition 3.4. We say a basis {s1, . . . , sN} of V is compatible with a filtration
F , if for any λ, F λV is generated by all si contained F λV .

Lemma 3.5. Let F λ
0 and F λ

1 be two decreasing filtrations on V. We can find a
basis {s1, . . . , sN} of V which is compatible with both F λ

0 and F λ
1 .
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Proof For any λ, the filtration F1 induces a filtration on the graded quotient
Grλ
F0

V such that for any λ′ ∈ R, F λ′

1 Grλ
F0

V is the image of F λ′

1 F
λ

0 V under the
morphism F λ

0 V → Grλ
F0

V .
Similarly F0 induces a filtration on Grλ

F1
(V). Then

Grλ
F0

(Grλ
′

F1
(V)) �

(
F λ

0 V ∩ F λ′

1 V
)
/
(
F >λ

0 V ∩ F λ′

1 V + F λ
0 V ∩ F >λ′

1 V
)

� Grλ
′

F1
(Grλ

F0
(V)) . (3.2)

Therefore, we may first choose a basis for each Grλ
F0

such that it is compatible
with the induced filtration of F1 on Grλ

F0
. Putting all λ together, we lift their

bases to get a basis of V which is compatible with both F0 and F1. �

Definition 3.6. We define the S -invariant

S (F ,V) :=
1
N

∑
λ∈R

λ dim Grλ
F

V . (3.3)

The above expression is a finite sum since there are only finitely many λ for
which Grλ

F
V , 0.

Lemma 3.7. For a basis {s1, . . . , sN} of V, the following are equivalent:

(i)
{
s1, . . . , sN

}
is compatible with the filtration F , and

(ii) 1
N

∑N
j=1 ordF (s j) = S (F ,V) .

Proof A basis
{
s1, . . . , sN

}
is compatible with F if and only if for any λ ∈ R,

then

#{si

∣∣∣ ordF (si) = λ} = dim(F λV/F >λV) . (3.4)

On the other hand, any basis
{
s1, . . . , sN

}
satisfies that

1
N

N∑
j=1

ordF (s j) ≤ S (F ,V)

and the equality holds if and only if (3.4) holds. �

Filtered linear system
Let X be a quasi-projective normal pair, L a line bundle on X and V ⊆ H0(X, L)
an N-dimensional vector subspace. Let F be a real valued decreasing filtration
on V .

Example 3.8. If E is a prime divisor over X. For any λ ∈ R, we define

F λV := { s ∈ V | ordE(s) ≥ λ } .
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Definition 3.9. We say D is a basis type (Q)-divisor of V if there exists a basis
{s1, . . . , sN} of V such that

D =
1
N

(
{s1 = 0} + · · · + {sN = 0}

)
,

and D a compatible basis type divisor of F if D is a basis type divisor given by
a basis compatible with F .

Definition 3.10. Denote by b(W) the base ideal attached to any linear system
W of finite dimensional. We define the base ideal (with a rational exponent) of
F on V to be:

I(F ,V) :=
∏
λ

b(F λ(V))
1
N dim Grλ

F
V .

We also consider a slightly modified construction.

Definition 3.11. For a positive integer m � 0 and any λ ∈ R, we choose
m · dim(Grλ

F
V) general elements in F λV . Putting together all these sections si

(i = 1, . . . ,mN), we define a general basis type Q-divisor compatible with F
as

D =
1

mN

(
(s1 = 0) + · · · + (smN = 0)

)
.

For a klt pair (X,∆), we set

δ(X,∆,V) := inf
D

{
lct(X,∆; D) |D is a basis type divisor of V

}
. (3.5)

Lemma 3.12. Let (X,∆) be a klt pair. Then for any a > 0, we have

lct(X,∆; aD) = lct(X,∆;I(F ,V)a) ,

where D is a general basis type Q-divisor compatible with F .

Proof We may assume m in Definition 3.11 satisfies that a
mN < 1, then this

directly follows from Lemma 1.41. �

Lemma 3.13. Let (X,∆) be a klt pair.

(i) We have

δ(X,∆,V) = inf
E

(
inf
D

AX,∆(E)
ordE(D)

)
,

where D runs through over all basis type divisors of V, and E runs through
over all divisors over X.

(ii) δ(X,∆,V) = infF lct(X,∆;I(F ,V)), where F runs though all filtrations of
V.

(iii) The infimum of (3.5) is achieved by some D.
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(iv) If D is a basis type divisor attaining the infimum of (3.5), and E a divi-
sor over X computing the log canonical threshold, then for any basis type
divisor D1 of V compatible with FE ,

δ(X,∆,V) =
AX,∆(E)

S (FE ,V)
= lct(X,∆; D1) .

Proof By definition,

δ(X,∆,V) = inf
D

(
inf

E

AX,∆(E)
ordE(D)

)
= inf

D,E

AX,∆(E)
ordE(D)

= inf
E

(
inf
D

AX,∆(E)
ordE(D)

)
,

which gives (i).

To see (ii), if N = 1, this is trivial; so we may assume N > 1. By the
proof of Lemma 1.41, if we choose dim Grλ

F
V general divisors Di in F λV ,

then D := 1
N

∑
Di is a basis type divisor, and

lct(X,∆; D) = lct(X,∆;I(F ,V)) .

On the other hand, for any basis type divisor given by {s1, . . . , sN}, we de-
fine a Z-valued filtration F by F iV = span{si, . . . , sN}. Then lct(X,∆; D) =

lct(X,∆;I(F ,V)).
Therefore,

δ(X,∆,V) = inf
D

lct(X,∆; D) = inf
F

lct(X,∆;I(F ,V)) .

Next we prove (iii). Given a filtration F on V , let λ1 < λ2 < · · · < λk be the
jumping numbers, so

0 ( F λ1 V ( · · · ( F λk V = V .

It corresponds to a point in the flag variety Flag(d1, . . . , dk), where di = dimF λi V
(in particular, dk = N). Conversely, for any point P in Flag(d1, . . . , dk), we get
a filtration

FP : 0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vk = V ,

and using the observation that I(F ,V) does not depend on the index λ, we can
well define I(FP,V) for the flag FP corresponds to P, which is isomorphic to
I(F ,V) if F yields P.

Therefore, for each d = (d1, . . . , dk), there is a flag variety Flag(d) and a
family of ideal sheaves IFlag(d) ⊂ O(X × Flag(d)), such that for each P ∈
Flag(d), IFlag(d) ×Flag(d) {P} is isomorphic to I(FP,V)N .

Putting all flag varieties together, since

P→ lct
(
X,∆, (IFlag(d) ×Flag(d) {P})

1
N
)
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is a constructible, lower semi-continuous function by Lemma 1.42, the mini-
mum is attained by a filtration F0. Then for any basis type divisor D which is
compatible with F0, we have

lct(X,∆,D) ≤ lct(X,∆;I(F0,V)) = inf
F

lct(X,∆;I(F ,V)) = δ(X,∆,V) ,

therefore lct(X,∆; D) = δ(X,∆,V).

To prove (iv), since ordE(D) ≤ S (FE ,V), then

δ(X,∆,V) = lct(X,∆; D) =
AX,∆(E)
ordE(D)

≥
AX,∆(E)

S (FE ,V)
≥ δ(X,∆,V) ,

therefore all inequalities in the above are equalities. For any basis type divisor
D1 of V compatible with FE , we have

δ(X,∆,V) ≤ lct(X,∆; D1) ≤
AX,∆(E)

ordE(D1)
=

AX,∆(E)
S (FE ,V)

= δ(X,∆,V) ,

thus all the inequalities above are also equalities. �

3.1.2 Filtered graded linear series

Let X be an n-dimensional projective variety, and L a big Q-line bundle. Fix a
sufficiently divisible r which satisfies that rL is Cartier. Denote by

R :=
⊕
m∈r·N

Rm =
⊕
m∈r·N

H0(X, L⊗m) .

Let V• =
⊕

m∈r·N Vm ⊆ R be a graded linear series belonging to L containing
an ample series (see Definition 1.7).

Definition 3.14. For any graded linear series V• containing an ample series,
a (real valued) graded multiplicative filtration F λ (λ ∈ R) on V• is defined in
the following way: for any m ∈ r · N, a filtration F λVm on Vm (see Definition
3.1) which satisfies

(iii) (Multiplicativity) for any m,m′ ∈ r · N, λ, λ′ ∈ R,

F λVm · F
λ′Vm′ ⊆ F

λ+λ′Vm+m′ .

We mainly consider linearly bounded graded multiplicative filtrations which
means

(iv) (Linear boundedness) there exist two real numbers e− ≤ e+ so that for all
m ∈ r · N,

F xmVm = Vm for x ≤ e− and F xmVm = 0 for x ≥ e+ . (3.6)
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For any λ ∈ R, we denote by F λV• :=
⊕

m∈r·N F
λVm .

Definition 3.15. For a multiplicative filtration F on V•, we define the associ-
ated graded ring

GrF (V•) =
⊕
m∈r·N

⊕
λ∈R

GrλVm . (3.7)

There are some easy operations on filtrations.

Definition 3.16. For a give filtration F λ on V• and C ∈ R, we define the C-shift
F λ

C of F λ by F λ
C Vm := F λ−CmVm.

We define the Z-valued filtration FZ associated to F as F λ
Z Vm := F dλeVm.

For any graded multiplicative decreasing filtration V• and m ∈ r · N, we
define

Tm(F ,V•) :=
1
m

T (F ,Vm) .

From the multiplicativity,

T (F ,Vm) + T (F ,Vm′ ) ≤ T (F ,Vm+m′ ) ,

thus by the Feteke Lemma 1.47, limm∈r·N Tm(F ,V•) exists which is equal to
supm∈r·N Tm(F ,V•). We denote it by T (F ,V•). We note that if V• is linearly
bounded, then T (F ,V•) is finite as T (F ,V•) ≤ e+.

Fix a linearly bounded graded multiplicative decreasing filtration F on V•
belonging to L. For any t ∈ R, we can define the graded subseries

V t
•(F ) :=

⊕
m∈r·N

F tmVm . (3.8)

When F is clear from the context, we sometimes write V t
• for V t

•(F ).

Lemma 3.17. For any t < T (F ,V•), the graded linear series V t
• contains an

ample series.

Proof Since V• contains an ample series, we can write L ∼Q A + E where A
is ample, E ≥ 0 and for a sufficiently divisible m,

H0(mA) ⊆ Vm ⊆ H0(m(A + E)) .

We may assume t > e−. Let a ∈ (t,T (F ,V•)), then by definition we know for a
sufficiently divisible m0, there exists a nonzero element F ∈ F m0aVm0 . Assume
t = λe− + (1 − λ)a for some λ ∈ (0, 1). After perturbing t to a larger number,
we can assume e−, λ, a ∈ Q. then

F tmVm ⊇ F
e−λmVλm · F

a(1−λ)mV(1−λ)m .
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Therefore, for a sufficiently divisible m,

H0(λmA) ⊆ F tmVm ⊆ H0(λmA + λmE + dF) ,

where d =
(1−λ)m

m0
. �

Fix an admissible flag H•. We apply the construction in Section 1.1 for each
t:

(i) Let Γt := Γ(V t
•) := v

(
V t
• \ {0}

)
be the lattice points associated to the graded

linear system V t
• via the admissible flag H•.

(ii) Γt
m := Γt ∩

(
Nn × {m}

)
= v(F tmVm \ {0}) for any m ∈ r · N.

(iii) the associated Okounkov body

∆(V t
•) = the closed convex hull containing

( ⋃
m∈r·N

1
m

Γt
m

)
⊆ ∆(V•) .

Lemma 3.18. For any t0, t1 and a ∈ [0, 1], denote by s = at0 + (1 − a)t1. Then

a · ∆(V t0
• ) + (1 − a) · ∆(V t1

• ) ⊆ ∆(V s
•) . (3.9)

Proof We first assume a ∈ (0, 1) ∩ Q. For any m1, m2, let m satisfy that m1

divides m and m2 divides m( 1
a − 1). Then from the multiplicativity of F , we

have
a

m1
Γt0

m1
+

1 − a
m2

Γt1
m2
⊆

a
m

Γt0
m +

1 − a
m( 1

a − 1)
Γ

t1
m( 1

a−1)

=
a
m

Γt0
m +

a
m

Γ
t1
m( 1

a−1)

⊆
a
m

Γs
m
a
⊆ ∆(V s

•) .

Therefore, this implies that

a · ∆(V t0
• ) + (1 − a) · ∆(V t1

• ) ⊆ ∆(V s
•) .

In general, we can find a sequence of ai ∈ Q converging to a, such that
si = ait0 + (1 − ai)t1 and si ≥ s. Since

ai · ∆(V t0
• ) + (1 − ai) · ∆(V t1

• ) ⊆ ∆(V si
• ),

letting ai → a, the result follows from ∆(V si
• ) ⊆ ∆(V s

•). �

Proposition 3.19. For t ∈ (−∞,T (F ,V•)), the function

t → vol(V t
•)

1
n

is concave. In particular, vol(V t
•) is a continuous and decreasing function on

(−∞,T (F ,V•)).
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Proof For any t0, t1 ∈ (−∞,T (F ,V•)) and a ∈ [0, 1], let

s = at0 + (1 − a)t1 ∈ (−∞,T (F ,V•)) .

Then by Lemma 3.17, V s
• contains an ample series, therefore by Theorem 1.11,

vol(V s
•) = n! · volRn (∆(V s

•)) .

By Lemma 3.18, the Brunn-Minkowski inequality implies

volRn (∆(V s
•))

1
n ≥ volRn

(
a · ∆(V t0

• ) + (1 − a) · ∆(V t1
• )

) 1
n

≥ a · volRn
(
∆(V t0

• )
) 1

n + (1 − a) · volRn
(
∆(V t1

• )
) 1

n .

Therefore,

vol(V s
•)

1
n ≥ a · vol(V t0

• )
1
n + (1 − a) · vol(V t1

• )
1
n .

�

Definition 3.20. We define the Duistermaat-Heckman measure νDH,F ,V• of the
filtration F on R to be

dνDH,F ,V• := −
1

vol(V•)
dvol(V t

•) . (3.10)

This is a probability measure, i.e.
∫
R

dνDH,F ,V• = 1. We denote its support by
[λmin(F ,V•), λmax(F ,V•)].

Example 3.21. Let R =
⊕

m∈r·N Rm. Let the trivial filtration Ftriv be:

F λ
trivRm =

0 if λ > 0

Rm if λ ≤ 0 .
(3.11)

Then νDH,F is the Dirac distribution δ0.

Lemma 3.22. We have T (F ,V•) = λmax(F ,V•).

Proof It is clear that T (F ,V•) ≥ λmax(F ,V•).
For any t < T (F ,V•), Lemma 3.17 implies that vol(V t

•) > 0, so t < λmax(F ,V•),
thus T (F ,V•) ≤ λmax(F ,V•). �

3.2 S -Invariants on filtrations

Let X be an n-dimensional projective variety, and L a big Q-line bundle. Fix a
sufficiently divisible r which satisfies that rL is Cartier. Let

V• =
⊕
m∈r·N

Vm ⊆ R =
⊕
m∈r·N

H0(X,mL)
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be a graded linear series belonging to L containing an ample series (see Defi-
nition 1.7).

Definition 3.23. Fix a filtration F on V•. We define the concave transform to
be the function

GF : ∆(V•)→ R , z ∈ ∆(V•)→ GF (z) := sup
{

t | z ∈ ∆(V t
•)

}
.

In other words, {
z ∈ ∆(V•)

∣∣∣ GF (z) ≥ t
}

= ∆(V t
•) . (3.12)

By Lemma 3.18, GF is a concave, upper semicontinuous function on ∆(V•)
with values in [λmin(F ,V•), λmax(F ,V•)]. Recall ρ is the Lebesgue measure on
∆(V•), thus by (3.12)

1
volRn (∆(V•))

GF∗ (ρ) = νDH,F ,V• .

Definition 3.24. For a linearly bounded multiplicative filtration F on V•, we
define the S -invariant as follows:

S (F ,V•) =

∫
R

t dνDH,F ,V• =
1

volRn (∆(V•))

∫
∆(V•)

GF dρ . (3.13)

For m ∈ r · N, let Nm = dim(Vm). We define am,1 ≤ · · · ≤ am,Nm to be

am, j = inf
{
λ ∈ R | codimVmF

λVm ≥ j
}
.

We define a distribution on R:

dνm,F :=
1

Nm

Nm∑
j=1

δ am, j
m
. (3.14)

Lemma 3.25. For m ∈ r · N, limm→∞ dνm,F = dνDH,F ,V• .

Proof For any fixed t, and m ∈ r ·N, let um(t) = n!
mn dimF tmVm. By definition,

lim
m→∞

um(t) = vol(V t
•) .

Since um(t) ≤ n!
mn h0(X,mL) are uniformly bounded, we have

lim
m→∞

um(t) = vol(V t
•) in L1

loc(R) .

Therefore, limm→∞ u′m(t) = dvol(V t
•) as distributions. Since

u′m(t) = −
n!
mn

Nm∑
j=1

δ am, j
m

= −
n!Nm

mn dνm,F ,
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by (3.10),

lim
m

dνm,F = −
1

vol(V•)
dvol(V t

•) = dνDH,F ,V• . (3.15)

�

Definition 3.26. We define the S m-invariant to be

S m(F ,V•) :=
1
m

S (F ,Vm) =
1

mNm

∑
λ∈R

λ dim Grλ
F

Vm . (3.16)

Thus

S m(F ,Vm) =
1

mNm

Nm∑
j=1

am, j =

∫
R

t dνm,F (t) .

Proposition 3.27. For m ∈ r · N, limm→∞ S m(F ,Vm) = S (F ,V•).

Proof We have

lim
m→∞

S m(F ,Vm) = lim
m→∞

∫
R

t dνm,F (t) by (3.14)

=

∫
R

t dνDH,F ,V• by (3.15)

= S (F ,V•) .

�

Lemma 3.28. Let FZ be the Z-valued filtration associated to F , then

dνDH,F ,V• = dνDH,FZ,V• .

Proof By definition, for any m ∈ r · N, if dνm,F := 1
Nm

∑Nm
j=1 δ am, j

m
, then

dνm,FZ := 1
Nm

∑Nm
j=1 δ bm, j

m
, where bm, j = dam, je. Since dνm,F and dνm,FZ have

the same weak limits, it follows that dνDH,F ,V• = dνDH,FZ,V• . �

Lemma 3.29. Let ρm be defined as in Lemma 1.4. We have the following in-
equality:

S m(F ,V•) ≤
mn

Nm

∫
∆(V•)

GF dρm .

Proof By Lemma 3.5, we can choose a basis {s1, . . . , sNm } of Vm compati-
ble with both F and vH• on Vm. After a reordering, we may assume am, j =

ordF (s j). We denote by x j = vH• (s j) ∈ Nn, thus it suffices to show that
GF ( x j

m ) ≥ am, j

m . This follows from

x j

m
∈

1
m

Γ
am, j

m
m ⊆ ∆(V

am, j
m
• ) .

�
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Lemma 3.30. Let e−, e+ satisfy Definition 3.14(iv). Then

S m(F ,V•) = e− +
1

Nm

∫ e+

e−
dimF mtVmdt

and

S (F ,V•) = e− +
1

vol(V•)

∫ e+

e−
vol(V t

•)dt . (3.17)

Proof Using integration by part,

S (F ,V•) = −
1

vol(V•)

∫ e+

e−
t · dvol(V t

•)

= −
1

vol(V•)
t · vol(V t

•)
∣∣∣∣e+

e−
+

1
vol(V•)

∫ e+

e−
vol(V t

•)dt

= e− +
1

vol(V•)

∫ e+

e−
vol(V t

•)dt .

The proof of S m(F ,V•) is similar. �

In the rest of this section, we will study filtrations that satisfy F 0Vm = Vm

for any m ∈ r · N. In particular, λmin(F ,V•) ≥ 0.

Lemma 3.31. If F 0Vm = Vm for all m ∈ r · N, we have

1
n + 1

T (F ,V•) ≤ S (F ,V•) ≤ T (F ,V•) .

Proof We may assume T (F ,V•) > 0, since otherwise the inequality is obvi-
ous. The second inequality is trivial. To see the first inequality, by Proposition
3.19, vol(V t

•)
1
n is concave. Therefore, for any t ∈ [0,T (F ,V•)],

vol(V t
•) ≥ (1 −

t
T (F ,V•)

)nvol(V•) .

By (3.17), for ε > 0 we have

S (F ,V•) =
1

vol(V•)

∫ T (F ,V•)+ε

0
vol(V t

•)dt

≥
1

vol(V•)

∫ T (F ,V•)

0

(
1 −

t
T (F ,V•)

)n
vol(V•)dt =

1
n + 1

T (F ,V•) .

�

Lemma 3.32. For any ε > 0, there exists a sufficiently large m ∈ r · N such
that for any concave function g : ∆(V•)→ [0, 1],∫

∆(V•)
g dρm ≤

∫
∆(V•)

g dρ + ε .
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Proof For any γ > 0, we define

∆γ :=
{

x ∈ Rn
∣∣∣ x + [−γ, γ]n ∈ ∆(V•)

}
.

Let γi → 0, ∆γi form a decreasing family of relatively compact subsets of ∆(V•)
whose union equals the interior of ∆(V•). Since ∂∆(V•) has zero Lebesgue
measure, we can pick γ > 0 such that ρ(∆(V•) \∆2γ) ≤ ε

2 . Since limm dρm = dρ
weakly on ∆(V•) (see Lemma 1.4),

lim sup
m

ρm
(
∆(V•) \ ∆γ

)
≤ ρ

(
∆(V•) \ ∆2γ

)
.

Therefore, we can pick m1 large enough so that ρm(∆ \∆γ) ≤ ε for any m ≥ m1

with m ∈ r · N. Now set m0 ≥ max{m1, γ
−1}. For m ≥ m0, we set

A′m =

{
x ∈

1
m
Zn

∣∣∣∣ x + [0,
1
m

]n ⊆ ∆(V•)
}

and

Am =

{
x ∈

1
m
Zn

∣∣∣∣ x + [−
1
m
,

1
m

]n ⊆ ∆(V•)
}
.

If λ denotes Lebesgue measure on the unit cube [0, 1]n ⊆ Rn, we see that∫
∆(V•)

g dρ ≥
∑
x∈A′m

∫
x+[0, 1

m ]n
g dρ

= m−n
∑
x∈A′m

∫
[0,1]n

g(x +
1
m

w) dλ(w)

≥ m−n
∑
x∈A′m

1
2n

∑
w∈{0,1}n

g(x +
1
m

w) (by concavity of g)

≥ m−n
∑
x∈Am

g(x)

≥

∫
∆γ

g dρm

(
as Am ⊇ (∆γ ∩

1
m
Zn)

)
≥

∫
∆(V•)

g dρm − ρm
(
∆(V•) \ ∆γ

)
(as g ≤ 1)

≥

∫
∆(V•)

g dρm − ε .

�

Theorem 3.33. For any ε > 0, there exists an m0 which only depends on V•
such that for any m ≥ m0 and m ∈ r ·N, and any linearly bounded filtration F
on V• with F 0Vm = Vm for all m ∈ r · N, we have

S m(F ,V•) ≤ (1 + ε)S (F ,V•) .
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Proof Applying Lemma 3.32 to g = 1
T (F ,V•)

GF , we know there exists m0 such
that for any m ∈ r · N and m ≥ m0,

S m(F ,V•) ≤
mn

Nm

∫
∆(V•)

GF dρm (by Lemma 3.29)

≤
mn

Nm

∫
∆(V•)

(GF +
ε

2n + 2
T (F ,V•)) dρ (by Lemma 3.32)

=
mnvolRn (∆(V•))

Nm

(
S (F ,V•) +

ε

2n + 2
T (F ,V•)

)
≤

mnvolRn (∆(V•))
Nm

(
1 +

ε

2
)
S (F ,V•) (by Lemma 3.31) .

Since limm→∞
Nm
mn = volRn (∆(V•)), after possibly replacing m0, we have

mnvolRn (∆(V•))
Nm

(
1 +

ε

2
)
S (F ,V•) ≤

(
1 + ε

)
S (F ,V•) .

�

Example 3.34. Let (X,L) be a test configuration of a polarized projective vari-
ety (X, L). Assume rL is Cartier. We can associate a Z-valued linearly bounded
multiplicative graded decreasing filtration FX,L on R as follow:

F λ
X,LRm =

{
f ∈ H0(X, L⊗m)

∣∣∣∣ s−λ f̄ ∈ H0(X,L⊗m)
}
, (3.18)

where f̄ is the pull back of f by XA1 → X considered as a rational section of
L⊗m; and s is the parameter onA1. We know

⊕
λ∈Z F

λ
X,L

R is finitely generated.

Lemma 3.35. Let (X,L) be the∞-trivial compactification of (X,L) (see Def-
inition 2.7). We have

S (FX,L) =
L

n+1

(n + 1)Ln . (3.19)

Proof For any sufficiently divisible m, Vm := H0(X,L⊗m) admits a Gm-
action. By Example 3.3, this gives a filtration on Rm = H0(X, L⊗m), which
coincides with the filtration (3.18).

Therefore if we denote the total weight by wm and Nm = dim(Rm), then
wm =

∑
λ∈Z λ · dim(GrλRm). Since S m(FX,L) = wm

mNm
and

S (FX,L) = lim
m→∞

S m(FX,L) ,

by Lemma 2.16,

S (FX,L) = lim
m→∞

wm

mNm
= lim

m→∞

1
n + 1

wm
mn+1

(n+1)!

mn

n!

Nm
=
L

n+1

(n + 1)Ln .
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�

Another type of filtrations is induced by valuations.

Example 3.36. Let X be a projective normal variety and L a bigQ-line bundle.
Let E be a non-zero effective Q-divisor on a normal birational model µ : Y →
X. Then as in Example 3.8, E induces a linearly bounded filtration

F λRm := { f ∈ Rm | µ
∗div( f ) ≥ λ · E}.

The constant T (E, L) := T (FE ,R) is the pseudo-effective threshold of E with
respect to µ∗L, i.e.,

T (E, L) = sup{ t | µ∗L − tE is pseudo-effective } .

It does not depend on the choice of µ. We will also denote by S (E, L) the
constant S (FE ,R).

Lemma 3.37. Let µ : Y → X be a birational morphism such that Y is normal
and E is a divisor on Y. Then

S (E, L) =
1
Ln

∫ +∞

0
vol(µ∗L − tE)dt . (3.20)

Proof For any t ∈ [0,T (E)),

vol(V t
•(FE ,R)) = lim

m→∞

n!
mn dimF tm

E H0(mL)

= lim
m→∞

n!
mn dim H0(µ∗mL − mtE)

= vol(µ∗L − tE) .

This equality indeed also holds for t ≥ T (E), as both sides are equal to 0. By
Lemma 3.30,

S (E, L) =
1
Ln

∫ +∞

0
vol(µ∗L − tE)dt .

�

Definition 3.38. Let (X,∆) be a projective klt pair and L a big Q-line bundle.
We define the α-invariant

αX,∆(L) := inf
E

AX,∆(E)
T (E, L)

,

where the infimum runs through over all divisors E on a birational model Y
over X.
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Lemma 3.39. Let r0 ∈ Z>0 and Gm ∈ |r0L| for m ∈ r · N. Then

lim
m→∞

S m(FGm ,R) =
1

r0(n + 1)
,

where n = dim X.

Proof Denote by Nm = dim Rm. For any p ∈ N, F p
Gm

Rm � H0(mL − pGm). If
we write m = r0a + b for a, b ∈ Z and 0 ≤ b < r0, then

S m((FGm )Z,R) =

a∑
p=1

dim H0(mL − pGm)

=
1

m · Nm
(Nb + Nb+r0 + · · · + Nm−r0 )

and 0 ≤ S m
(
FGm ,R

)
− S m

(
(FGm )Z,R

)
< 1

m . Therefore,

lim
m

S m(FGm ,R) = lim
m

S m((FGm )Z,R)

=

∫ 1
r0

0
(1 − r0t)n dt =

1
r0(n + 1)

.

�

Definition 3.40. For a linearly bounded multiplicative filtration F on V•, we
define the J-norm to be

J(F ,V•) = λmax(F ,V•) − S (F ,V•) .

Proposition 3.41. Let (X,L) be a test configuration of a polarized projective
variety (X, L). We have J(X,L) = J(FX,L).

Proof We follow the notation as in Definition 2.8. By Lemma 3.35, it suffices
to show that

λmax(FX,L) =
1
Ln (p∗L − q∗LP1 ) · q∗Ln

P1 . (3.21)

Write p∗L− q∗LP1 = λq∗(X0) +
∑

i biEi, such that Ei are distinct prime divisors
supported over 0 and it does not contain the birational transform of X0. By
Lemma 1.73, we have bi ≤ 0. This implies λmax(FX,L) = λ, and the latter is
equal to 1

Ln (λq∗(X0) +
∑

i biEi) · q∗Ln
P1 by the projection formula. �
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3.3 Log canonical slopes

In this section, we define another class of invariants. Fix a projective klt pair
(X,∆) and a big Q-line bundle L such that rL is Cartier. Let

R =
⊕
m∈r·N

H0(X,mL)

and F be a linearly bounded graded multiplicative decreasing filtration on R.

3.3.1 δ-log canonical slope and Ding invariants

Definition 3.42. For any m ∈ r·N and λ ∈ R, we define the base ideal sequence
Im,λ(F ) for a given filtration as following: Im,λ(F ) is the base ideal of the linear
system F λRm ⊆ Rm where Rm = H0(X,mL), i.e.,

Im,λ(F ) := Im
(
F λRm ⊗ OX(−mL)→ OX

)
. (3.22)

We define I(t)
• (F ) to be the sequence of graded ideals

{
Im,mt(F )

}
m∈r·N. When

F is clear in the context, we denote Im,λ(F ) (resp. I(t)
• (F )) by Im,λ (resp. I(t)

• ).

Lemma 3.43. If s = at0 + (1 − a)t1 for a ∈ [0, 1], then for any valuation v,

v(I(s)
• (F )) ≤ av(I(t0)

• (F )) + (1 − a)v(I(t1)
• (F )) .

Proof For m,m′ ∈ r · Z and λ, λ′ ∈ R, we have Im,λ · Im′,λ′ ⊆ Im+m′,λ+λ′ . We
first assume a ∈ Q. Then for any m such that ma ∈ r · N,

Iam,t0am · I(1−a)m,t1(1−a)m ⊆ Im,sm .

By Lemma 1.46, for any ε > 0, we can choose a sufficiently large m, such that

1
am

(
v(Iam,t0am) − v(I(t0)

• )
)
≤ ε and

1
(1 − a)m

(
v(I(1−a)m,(1−a)t1m) − v(I(t1)

• )
)
≤ ε .

Thus

av(I(t0)
• ) + (1 − a)v(I(t1)

• )

≥
1
m

v(Iam,t0am) +
1
m

v(I(1−a)m,(1−a)t1m) − ε

≥
1
m

v(Im,sm) − ε ≥ v(I(s)
• ) − ε .

Since ε > 0 is arbitrary,

av(I(t0)
• ) + (1 − a)v(I(t1)

• ) ≥ v(I(s)
• ) .
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Pick up a sequence of rational numbers ai ∈ [0, 1], such that limi→∞ ai = a
and si := ait0 + (1 − ai)t1 ≥ s. We have

av(I(t0)
• (F )) + (1 − a)v(I(t1)

• (F )) = lim
i→∞

(
aiv(I(t0)

• (F )) + (1 − ai)v(I(t1)
• (F ))

)
≥ lim sup

i→∞
v(I(si)
• (F )) ≥ v(I(s)

• (F )) .

�

Proposition 3.44. The function

f (t) := lct(X,∆; I(t)
• (F )) (3.23)

satisfies the following property

(i) f (t) is a continuous non-increasing function

f : (−∞, λmax(F ))→ (0,∞] .

(ii) Let

µ+∞(F ) = sup{ t
∣∣∣ lct(X,∆; I(t)

• (F )) = +∞} , (3.24)

then f is strictly decreasing on [µ+∞(F ), λmax(F )).

Proof When t ∈ (−∞,+∞), lct(X,∆; I(t)
• ) ∈ [0,+∞], and f (t) is non-increasing.

If s = at0 + (1 − a)t1, we have

1

lct(X,∆; I(s)
• )

= supAX,∆(v)=1v(I(s)
• ) (by Lemma 1.60)

≤ supAX,∆(v)=1
(
av(I(t0)

• ) + (1 − a)v(I(t1)
• )

)
(by Lemma 3.43)

≤ a · supAX,∆(v)=1v(I(t0)
• ) + (1 − a) · supAX,∆(w)=1w(I(t1)

• )

=
a

lct(X,∆; I(t0)
• )

+
1 − a

lct(X,∆; I(t1)
• )

.

So the function t → 1
f (t) is convex on (−∞, λmax(F )) and takes value in [0,+∞).

Therefore, this function, as well as f (t), is continuous on (−∞, λmax(F )). This
confirms (i). In particular, f (µ+∞(F )) = +∞.

To see the strict decreasing of (2), if

µ+∞(F ) ≤ t0 < t1 < λmax(F ) ,

then t0 = aµ+∞(F ) + (1 − a)t1 for some a ∈ (0, 1]. Then

1
f (t0)

≤
a

f (µ+∞(F ))
+

1 − a
f (t1)

=
1 − a
f (t1)

,

i.e., f (t0) ≥ f (t1)
1−a > f (t1).

�
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See Exercise 3.10 for an example of lct(X,∆; I(t)
• (F )) is not continuous at

λmax(F ).

Definition 3.45. Given a filtration F of R and δ ∈ R>0, we define the δ-log
canonical slope µ(F , δ) as

µ(F , δ) = sup
{

t ∈ R
∣∣∣ lct(X,∆; I(t)

• (F )) ≥ δ
}
. (3.25)

When δ = 1, we call it the log canonical slope and denote it by µ(F ). Then we
define the Ding invariant of the filtration F with slope δ as

D(F , δ) := µ(F , δ) − S (F ) ,

and the Ding invariant of F to be

D(F ) := D(F , 1) .

It is clear that for any C ∈ R,

D(F , δ) = D(FC , δ) for any δ ∈ R ,

where FC is the C-shift of F .

Lemma 3.46. Fix the filtration F . We have the following properties:

(i) The function δ 7→ µ(F , δ) is continuous on δ ∈ (0,+∞].
(ii) Denote by c = limt→λmax(F )− f (t), where f is defined as in (3.23). Then

µ(F , δ) =


µ+∞(F ) δ = +∞ ,

f −1(δ) δ ∈ (c,+∞) ,

λmax δ ∈ (0, c] .

Proof By Proposition (3.44), f (t) is continuous and strictly decreasing on
[µ+∞(F ), λmax(F )), it follows for δ > c, µ+∞(F ) = f −1(δ) is continuous and

lim
δ→c+

µ(F , δ) = λmax(F ) .

On the other hand, since I(t)
• (F ) = 0 for any t > λmax(F ), by definition for

any δ ∈ (0, c], µ(F , δ) = λmax(F ). �

Example 3.47. Let (X,∆) be a projective klt pair and L a bigQ-line bundle and
r ∈ Z such that rL is Cartier. Let E be a prime divisor divisor over X. Assume⊕

m∈r·N

⊕
λ∈N

F λ
E H0(mL)

is finitely generated. Denote by T the pseudo-effective threshold of E with
respect to L.
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Let µ : Y → X be a morphism from a smooth variety Y with E a Cartier
divisor on it. By our assumption,⊕

m∈r·N

⊕
λ∈N

H0(mµ∗L − λE)

is finitely generated. Then by Theorem 1.71, there are finitely many normal
birational models Y1, . . . ,Yp such that

(i) φ j : Y d Y j (1 ≤ j ≤ p) is a birational contraction, i.e. Ex(φ−1
j ) does not

contain any divisor, and
(ii) 0 < t1 < · · · < tp−1 < tp = T , with φ j∗(µ∗L − tE) being semiample on Y j for

t ∈ [t j−1, t j].

Let Z be a common log resolution of (Y, µ−1
∗ ∆+Ex(µ)+µ∗L+E) and (Y j, φ j∗(∆+

µ∗L + E)):

Z
ψ

��

ψ j

  

Y
φ j

// Y j .

Let

Ft = ψ∗(µ∗L) − ψ∗j(φ j∗(µ∗L − tE)) ≥ 0 .

Then for any prime divisor D, multD(Ft) is a linear function on t. Write ψ∗µ∗(KX+

∆) = KZ + ∆Z , then

f (t) = lct(X,∆;I(t)
• (FE)) = lct(Z,∆Z ; Ft) .

In particular, in this case the continuity of f (t) can be extended to [0,T ].

Lemma 3.48. For any 0 < a < 1 and 0 < δ0 ≤ δ1, if 1
δ
≥ a

δ0
+ 1−a

δ1
, then

µ(F , δ) ≥ a · µ(F , δ0) + (1 − a) · µ(F , δ1) . (3.26)

Proof If µ(F , δ) = λmax(F ), the inequality is obvious, so we may assume
µ(F , δ) < λmax(F ).

Denote by µ0 = µ(F , δ0), µ1 = µ(F , δ1) and µ′ = µ(F , δ′) < λmax(F ) for
some δ′ < δ. Then lct(X,∆; I(µ′)

• (F )) = δ′ by Lemma 3.46. Therefore, we can
fix t > 1 such that tδ′ < δ, and there exists a valuation v over X with

AX,∆(v) ≤ δ′t · v(I(µ′)
• (F )) < ∞ .

We set fv(λ) = v(I(λ)
• (F )) for λ ∈ R. Then

fv(µ′) = v(I(µ′)
• (F )) ≥

AX,∆(v)
tδ′

. (3.27)
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On the other hand, by the definition of µ(F , δ), we have

fv(µ0) ≤
1
δ0

AX,∆(v) and similarly fv(µ1) ≤
1
δ1

AX,∆(v) .

By the convexity of fv on (−∞, λmax) (see Lemma 3.43), we have

fv(aµ0 + (1 − a)µ1) ≤ AX,∆(v)
(

a
δ0

+
1 − a
δ1

)
.

Combined with (3.27) and our assumption, we get fv(µ′) > fv(aµ0 + (1− a)µ1)
since tδ′ < δ. Hence µ′ > aµ0 + (1 − a)µ1 as fv is non-decreasing. Choosing
δ′ → δ, since µ(F , δ) is continuous on δ, µ(F , δ) ≥ aµ0 + (1 − a)µ1. �

3.3.2 Log canonical slope larger than 1

We will show δ-log canonical slopes can be used to characterize uniform K-
stability, when L is big and nef.

Lemma 3.49. Let ν be a probability measure on R with compact support
such that

∫
R
λdν = 0. Assume the function g(λ) = ν{x ≥ λ}1/n is concave

on (−∞, λmax) where λmax = max supp ν. Then

g(−tλmax) ≥ 1 −
1
√

nt
for all t > 0 .

Proof After rescaling, we may assume for simplicity that λmax = 1. Since dν
is the distributional derivative of −g(λ)n, we have∫ 1

0
g(λ)ndλ =

∫ 1

0
λdν = −

∫ 0

−∞

λdν =

∫ 0

−∞

(1 − g(λ)n)dλ ,

where the first and third equalities follow from integration by parts, and the
second equality follows from the assumption that

∫ 1
−∞

λdν = 0.
Let a = −g′+(−t) ≥ 0 and b = g(−t) ∈ [0, 1]. Since g is concave on (−∞, 1),

we have

g(λ) ≤ −a(λ + t) + b on (−∞, 1) .

If a = 0, then letting λ → −∞ we see that b = 1 and the statement follows
trivially. Therefore, we may assume a > 0. Let λ0 be such that −a(λ0+t)+b = 1.
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Then we have∫ 1

0
(−a(λ + t) + b)ndλ ≥

∫ 1

0
g(λ)ndλ

=

∫ 0

−∞

(1 − g(λ)n)dλ

≥

∫ 0

λ0

(1 − (−a(λ + t) + b)n)dλ .

Computing the integrals, we deduce that

1 − (b − at − a)n+1

a(n + 1)
≥ −λ0 =

1 − (b − at)
a

,

hence (n + 1)u ≥ n + (u − a)n+1 where u = b − at. Note that

u − a = b − a(t + 1) ≥ g(1) ≥ 0 ,

thus u ≥ n
n+1 . As u + at = b = g(−t) ≤ 1, we see that u ≤ 1 and a ≤ 1

(n+1)t . We
then have

(n + 1)u ≥ n + (u − a)n+1 ≥ n + un+1 − (n + 1)aun ≥ n + un+1 −
un

t
.

It follows that

1
t
≥

un

t
≥ n + un+1 − (n + 1)u = (1 − u)2

n∑
i=1

1 − ui

1 − u
≥ n(1 − u)2 .

Therefore, g(−t) = b ≥ u ≥ 1 − 1
√

nt
as desired. �

Theorem 3.50. Fix a positive constant α. Let (X,∆) be a projective klt pair
and L a big and nef Q-line bundle such that rL is Cartier and α ≤ αX,∆(L).
For any η > 0, there exists a constant δ = δ(η, n, α) > 1 which depends on η,
n = dim(X) and α (but not F ), such that for any linearly bounded filtration F
which satisfies that D(F ) ≥ η · J(F ), then D(F , δ) ≥ 0.

Proof After shifting F by −S (F ), we may assume that S (F ) = 0. Let λmax =

λmax(F ). By Proposition 3.19, we can apply Lemma 3.49 to the Duistermaat-
Heckman measure of F . So for any t > 0,

vol(FR(−tλmax))
vol(L)

≥

(
1 −

1
√

nt

)n

> 1 −
√

n
t
. (3.28)

For any divisor E on a smooth birational projective model µ : Y → X, denote
by

AX,∆(E)
α(L)

2n

√
n
t

:= λ0 ,
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then we claim

ordE(I(−tλmax)
• (F )) < λ0 . (3.29)

Otherwise we have F −mtλmax Rm ⊆ F
mλ0
E Rm for all m ∈ N. Since by definition

the pseudo-effective threshold of E with µ∗L is at most AX,∆(E)
αX,∆(L) , it follows from

Exercise 1.6 that

vol(FR(−tλmax))
vol(L)

≤
vol(µ∗L − λ0E)

vol(L)
≤ 1 −

√
n
t
,

contradicting (3.28).
Since E is arbitrary, we deduce from (3.29) that

lct(X,∆; I(−tλmax)
• (F )) ≥ αX,∆(L) · 2n

√
t
n
≥ α ·

2n

√
t
n
.

Now choose t = t0 := n
(

2
α

)2n
, the above estimate becomes

lct(X,∆; I(−t0λmax)
• (F )) > 2

and thus µ2(F ) ≥ −t0λmax. By the assumption S (F ) = 0,

µ(F ) = D(F ) ≥ η · J(F ) = ηλmax .

If we choose δ = 1 +
η

2t0+η
(which only depends on η, α and n) and s =

η
t0+η

,
then it follows from Lemma 3.48 that

β(F , δ) = µ(F , δ) ≥ sµ(F , 2) + (1 − s)µ(F ) ≥ 0 .

�

3.3.3 L-invariants

In this section, we aim at proving Theorem 3.52, which essentially gives an
equivalent description of Ding invariants of F .

Denote by XA1 = X × A1
s , ∆A1 = ∆ × A1

s and X0 = X × {0}. For a linearly
bounded multiplicative filtration F on R, we pick e− and e+ as in Definition
3.14 such that e−, e+ ∈ Z. Let e = e+ − e− and for each m ∈ N divisible by r.
We set

Im(F ) := Im,me+
(F ) + Im,me+−1(F ) · s + · · · + (sme) ⊆ OX×A1 . (3.30)

Then I•(F ) = {Im(F )}m∈r·N is a graded sequence of ideals of OXA1 . Let

cm(F , e+) = lct(XA1 ,∆A1 + (Im(F ))
1
m ; X0)

= sup{c ∈ R | (XA1 ,∆A1 + (cX0) · (Im(F ))
1
m ) is sub log canonical} .
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By Lemma 1.50, the limit limm→∞ cm(F , e+) exists, which we denote it by

c∞(F , e+) = lct(XA1 ,∆A1 + I•(F ); X0)

as in Definition 1.51.

Definition 3.51. We define the L-invariant of a filtration F to be

L(F ) = c∞(F , e+) + e+ − 1 .

It is clear that the definition of L(F ) does not depend on the choice of e+. By
definition, if FZ is the Z-value filtration associated to F , then since Im,i(F ) =

Im,i(FZ) for any i ∈ Z, we have L(F ) = L(FZ). Moreover, for a C-shift FC of
F , L(F ) + C = L(FC).

Theorem 3.52. We have µ(F ) = L(F ).

Proof We first show µ := µ(F ) ≥ L(F ). Denote by

µ+∞ = µ+∞(F ) and λmax := λmax(F ) ,

in particular, µ ≤ λmax.

Claim. We have

λmax(F ) ≥ L(F ) . (3.31)

Proof Since F dmTm(F )e+1Rm = 0, sme+−dmTm(F )e−1 divides Im(F ). Therefore,

cm(F , e+) = lct(XA1 ,∆A1 + (Im(F ))
1
m ; X0)

≤ lct
(
XA1 ,∆A1 +

1
m

(me+ − dmTm(F )e − 1) X0; X0

)
= 1 −

1
m

(me+ − dmTm(F )e − 1)

= 1 − e+ +
1
m
dmTm(F )e +

1
m
.

Thus for any m ∈ r · N,

Tm(F ) +
2
m
≥ cm(F , e+) + e+ − 1 .

Taking the limit, we have λmax(F ) ≥ L(F ). �

If µ = λmax, then by (3.31), it follows that λmax ≥ L(F ). Hence we may
assume that µ < λmax in what follows. In particular, by Lemma 3.46, we know
lct(X,∆; I(µ)

• (F )) = 1. So by Lemma 1.60, for any t ∈ (0, 1) there is a divisorial
valuation v over X such that

0 < t · AX,∆(v) ≤ v(I(µ)
• (F )) . (3.32)
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We set fv(λ) = v(I(λ)
• (F )) for λ ∈ R. By Lemma 3.43, the function fv is convex,

continuous and nondecreasing on (−∞, λmax). Therefore,

fv(λ) ≥ fv(µ) + ξ(λ − µ) ≥ tAX,∆(v) + ξ(λ − µ) , (3.33)

where ξ = f ′−(µ) denotes the left derivative of f at µ, which is positive since
fv(µ) > 0. Moreover, since fv(µ+∞) = 0, we have

ξ(µ − µ+∞) ≥ fv(µ) > 0 . (3.34)

Let ṽ be the valuation on X × A1 given by

ṽ(
∑

i

fisi) = min
i

(v( fi) + i · ξ) where fi ∈ K(X) .

Using the same notation as in Definition 3.51, we have for any i ∈ N,

ṽ(Im,me−+i(F ) · sme−i) = v(Im,me−+i(F )) + ξ(me − i)

≥ m fv
(me− + i

m

)
+ ξ(me − i)

≥ m
(
ξ
(me− + i

m
− µ

)
+ tAX,∆(v)

)
+ ξ(me − i)

= m
(
ξ(e+ − µ) + tAX,∆(v)

)
,

where the second inequality follows from (3.33). It follows that

1
m

ṽ(Im(F )) ≥ ξ(e+ − µ) + tAX,∆(v) .

Hence by definition of cm for any m ∈ r · N,

cm(F , e+) ≤
1
ξ

(
A(X,∆)×A1 (ṽ) −

ṽ(Im(F ))
m

)
≤

1
ξ

(
AX,∆(v) + ξ − (ξ(e+ − µ) + tAX,∆(v))

)
= µ − e+ + 1 +

1
ξ

(1 − t)AX,∆(v)

≤ µ − e+ + 1 +
µ − µ+∞

fv(µ)
(1 − t)AX,∆(v) (by (3.34))

≤ µ − e+ + 1 +
1 − t

t
(µ − µ+∞) (by (3.32)) .

As t can be chosen arbitrarily close to 1, c∞(F , e+) ≤ µ − e+ + 1 and

L(F ) = c∞(F , e+) + e+ − 1 ≤ µ .

Next we show µ ≤ L(F ). If L(F ) = λmax(F ), then this is clear, as µ ≤
λmax(F ). So we may assume L(F ) < λmax(F ).
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Let w̃m be aGm-invariant valuation which computes the log canonical thresh-
old lct(XA1 ,∆A1 + (Im(F ))

1
m ; X0). By Lemma 1.33 it has the form (wm, am)

where we may assume am = 1. By the choice of w̃m, we know

cm(F , e+) + e+ − 1 = AXA1 ,∆A1 (w̃m) −
1
m

w̃m(Im(F )) + e+ − 1

= AX,∆(wm) −
1
m

w̃m(Im(F )) + e+ .

Claim 3.53. There exists a positive constant δ0 which does not depend on m,
such that AX,∆(wm) > δ0 for all sufficiently large m ∈ r · N.

Proof Since 1
m w̃m(Im(F )) = mini∈Z

1
m (wm(Im,me+−i(F )) + i), for any t ∈ R≥0,

1
m

wm(Im,bmtc(F )) ≥
1
m

w̃m(Im(F )) − (e+ −
1
m
bmtc)

= AX,∆(wm) − (cm(F , e+) + e+ − 1) + e+ − (e+ −
1
m
bmtc)

= AX,∆(wm) − (cm(F , e+) + e+ − 1) +
1
m
bmtc . (3.35)

We pick t0 = 1
2 (λmax(F ) + L(F )). For a fixed ε0 ∈ (0, 1

4 (λmax(F ) − L(F ))],
since

lim
m→∞

cm(F , e+) + e+ − 1 = L(F ) ,

for any sufficiently large m,

1
m

wm(Im,mt0 (F )) − AX,∆(wm) ≥
1
2

(λmax(F ) − L(F )) − ε0 . (3.36)

Set lct(X,∆; I(t0)
• ) = c > 0, therefore for m � 0, lct(X,∆; I

1
m
m,mt0 ) ≥ c

2 , which
implies

1
m

wm(Im,mt0 (F )) ≤
2
c

AX,∆(wm) .

Putting this together with (3.36), we know

AX,∆(wm) > δ0 :=
c(λmax(F ) − L(F ))

8
.

�

We pick t1 = L(F ) in (3.35),

1
m

wm(Im,bmt1c(F )) ≥ AX,∆(wm) − (cm(F , e+) + e+ − 1) +
1
m
bmt1c .

By Claim 3.53,

lim
m→∞

1
AX,∆(wm)

(
−(cm(F , e+) + e+ − 1) +

1
m
bmt1c

)
= 0 ,
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so lim infm
wm(Im,mt1 )
AX,∆(wm) ≥ 1. Therefore,

lct(X,∆; I(t1)
• (F )) = lim

m→∞
lct(X,∆; Im,mt1 (F ))

≤ lim sup
m→∞

AX,∆(wm)
wm(Im,mt1 )

≤ 1 ,

which implies µ ≤ L(F ). �

3.4 Approximation of filtrations

In this section, we will present that the Ding invariant of a filtration can be
approximated by Ding invariants of test configurations.

Let (X,∆) be an n-dimensional klt projective variety. Let L be an ample Q-
line bundle, and r ∈ N>0 such that rL is Cartier. Let

R :=
⊕
m∈r·N

H0(X,mL) .

We fix m0 such that for any m ≥ m0,
⊕

m′∈m·N Rm′ is generated by Rm.

3.4.1 Approximation at finite level

Example 3.54. We consider a generalization of Example 3.3.
Let F be a Z-valued filtration on R. We define the Rees construction k[s]-

module

ReeF (R) :=
⊕
m∈r·N

⊕
λ∈Z

F λRms−λ.

If we let the associated graded ring GrFR of F be

GrFR :=
⊕
m∈r·N

⊕
λ∈Z

Grλ
F

Rm , where Grλ
F

Rm =
F λRm

F λ+1Rm
,

then

ReesF (R) ⊗k[s] k[s, s−1] ' R[s, s−1] and
ReesF (R)

s · ReesF (R)
' GrFR . (3.37)

We claim GrFR is finitely generated if and only if ReeF (R) is finitely gen-
erated k[s]-algebra. In fact, we may assume a1, ..., ap ∈ GrFR give a set of
generators which are homogeneous with respect to both gradings. If we lift
them to a set of generators a1,..., ap which are homogeneous with respect to m.
Let R′m ⊆ Rm be the subspace generated by a1,..., ap in Rm. Since

ReeF (R′m) ⊆ ReeF (Rm) and GrF (R′m) � GrF (Rm) ,
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which implies that R′m = Rm.
Under this assumption, we can take

X := Projk[s]ReeF (R)→ A1
s ,

which admits a natural Gm-action, from the λ-grading. By (3.37),

X ×A1 A1 \ {0} ' X × (A1 \ {0}) and X0 ' Proj(GrFR) .

This can be viewed as a converse construction of Example 3.34.

In general, for a possibly non-finitely generated filtration, we can construct
a sequence of finitely generated filtrations approximating it.

Definition 3.55. Let F be a graded multiplicative filtration. For m ≥ m0, we
say {Fm}m∈r·N is an approximating sequence of F if for each m, the multiplica-
tive filtration Fm satisfies the following:

(i) F λ
mR ⊆ F λR,

(ii) F λ
mRm = F λRm for all λ,

(iii) if m′ = ms,

F λ
mRm′ =

∑
µ

F µ1 Rm · · · F
µs Rm ,

where the sum runs through all positive s and µ = (µ1, · · · , µs) ∈ Rs such
that µ1 + · · · + µs ≥ λ.

The following construction implies an approximating filtration sequence ex-
ists.

Definition-Lemma 3.56. Let F be linearly bounded with F e−mRm = Rm for
a fixed e− ∈ R. For any m ≥ m0, we define the m-th minimal approximating
filtration Fm of F in the following: for any m′ ∈ r · N,

(i) if m′ < m, F λ
mRm′ = Rm′ for λ ≤ e−m′ and F λ

mRm′ = 0 for λ > e−m′,
(ii) if m′ = m, F λ

mRm′ = F λRm′ for all λ,
(iii) if m′ > m,

F λ
mRm′ =

∑
µ

F µ1 Rm · · · F
µs Rm · Rm′−ms ,

where the sum runs through all positive s and µ = (µ1, · · · , µs) ∈ Rs such
that ms ≤ m′ and µ1 + · · · + µs ≥ λ − e−(m′ − ms).

Then {Fm} form an approximating sequence.
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Proof The definition of Fm directly implies it is multiplicative.
From the definition,

F µ1 Rm · · · F
µs Rm · Rm′−ms = F µ1 Rm · · · F

µs Rm · F
e−(m′−ms)Rm′−ms

⊆ F µ1+···+µs+e−(m′−ms)Rm′

⊆ F λRm′ ,

which implies that F λ
mR ⊆ F λR. When m′ is divided by m, i.e. m′ = ms′, then

F µ1 Rm · · · F
µs Rm · Rm′−ms = F µ1 Rm · · · F

µs Rm · F
me−Rm · · · F

me−Rm︸                   ︷︷                   ︸
(s′−s)−times

.

Therefore, {Fm} is an approximating sequence.
�

Lemma 3.57. Fix a linearly bounded filtration F with F 0R = R. Let {Fm}m∈r·N

be a sequence of filtrations with F 0
mR = R, such that for every m ∈ r · N,

F λRm = F λ
mRm for any λ. Then

lim inf
m

S (Fm) ≥ S (F ) .

Proof By Theorem 3.33, for any εk, there exists an mk such that for any fil-
tration G and m ≥ mk, S m(G) ≤ (1 + εk)S (G).

Applying this to G = Fm, thus

S m(F ) = S m(Fm) ≤ (1 + εk)S (Fm) . (3.38)

We fix a sequence εk with limit 0. For any nk → ∞ with S (Fnk ) converges,
after replacing by a subsequence, we may assume nk ≥ mk. Thus

S (F ) = lim
nk

S nk (F ) = lim
nk

S nk (Fnk ) by (3.38)

≤ lim
nk

(1 + εk)S (Fnk ) = lim
nk

S (Fnk ) .

�

Theorem 3.58. Let {Fm} be an approximation sequence of F . Then

lim
m→∞

S (Fm) = S (F ) .

Proof For any λ and m ∈ r · N, F λ
mR ⊆ F λR, thus S (Fm) ≤ S (F ).

After taking an e−-shift of all Fm and F , we may assume F 0R = R. Let
{F ′m} be the minimal approximation sequence as in Definition-Lemma 3.56 for
e− = 0, so F ′m

0R = R for any m. Thus by Lemma 3.57, we know that

lim inf
m

S (F ′m) ≥ S (F ) . (3.39)
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Moreover, for each m and s, we have

F λ
mRms = F ′

λRms for any λ ∈ R .

Thus S (F ′m) = S (Fm), and it follows limm S (Fm) = S (F ). �

Lemma 3.59. If an m-th approximation Fm of F has all jumping numbers as
integers, we have Im`(Fm) = Im(Fm)`.

Proof For any filtrationG, we have Im`,λ(G) ⊇ Im,µ1 (G) · · · Im,µ` (G) if
∑`

i=1 µi =

λ.
From Definition 3.55(iii),

F λ
mRm` =

∑
µ

F µ1 Rm · · · F
µ`Rm with

∑`
i=1 µi = λ .

A priori, the sum takes over all µ ∈ R`. However, since Fm is Z-valued, we can
only take µ ∈ Z`, which implies

Im`,λ(Fm) ⊆
∑
µ

Im,µ1 (Fm) · · · Im,µ` (Fm) ,

and this implies the statement by (3.30). �

Theorem 3.60. Let F be a Z-valued filtration on R. Let {Fm} be an approxi-
mating sequence of F . Then

lim
m→∞

L(Fm) = L(F ) and lim
m→∞

J(Fm) = J(F ) .

In particular, limm→∞ D(Fm) = D(F ).

Proof We fix e+ for F . Then F m′e+
m (Rm′ ) = 0 for any m,m′ ∈ r ·N. By Lemma

3.59,

c∞(Fm, e+) = cm(Fm, e+) = cm(F , e+) .

Since cm(F , e+)→ c∞(F , e+), thus we conclude

lim
m→∞

L(Fm)→ L(F ) .

To show J(Fm) = J(F ), by Theorem 3.58, it suffices to notice that

lim
m→∞

λmax(Fm) = lim
m→∞

T (Fm) = T (F ) = λmax(F ) .

�
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3.4.2 Filtrations from test configurations

Let (X,∆) be a log Fano pair. Let F be a linearly bounded multiplicative filtra-
tion on R =

⊕
m∈r·N H0(−m(KX + ∆)). Let Im(F ) be the base ideals defined as

in (3.30).

Lemma 3.61. Denote by LA1 the Q-line bundle −KXA1 −∆A1 . Let q : Y → XA1

be the normalized blow up of Im(F ) with the exceptional Cartier divisor E.
Then L := q∗(mL)(−E) is base point free.

Proof For any λ ≤ me+, since F λRm ⊗OX � Im,λ · OX(−m(KX + ∆)), we have

H0(X,OX(−m(KX + ∆) · Im,λ)
)
⊗ OX � Im,λ · OX(−m(KX + ∆)) .

Putting all degrees together,

H0(XA1 ,OXA1 (mLA1 ) · Im(F )
)
⊗ OXA1

=
(∑

i=0

H0(X,OX(−m(KX + ∆) · Im,me+−i)
)
si
)
⊗ OXA1

�
(∑

i=0

Im,me+−isi) · OXA1 (mLA1 )

= Im(F ) ⊗ OXA1 (mLA1 ) .

Pulling back by q, since q−1(OXA1 (mLA1 ) · Im(F )
)

= L,

H0(XA1 ,OXA1 (mLA1 ) · Im(F )
)
⊆ H0(Y,L) .

Therefore, H0(Y,L) ⊗ OY → L is surjective. �

Let p : Y → X be the birational morphism induced by L to a normal test
configuration, i.e.

X := Proj
⊕
m∈N

H0(Y,mL)

and LX the induced ample line bundle, such that L = p∗(LX). We denote the
closure of ∆ × Gm in X (resp. Y) by ∆X (resp. ∆Y).

Definition 3.62. The test configuration (X,LX) is called the normalized blow-
up test configuration along Im(F ).

The following result compares Ding invariants defined in two different set-
tings.

Theorem 3.63. Let (X,∆) be a log Fano pair. Let (X,L) be a normal test
configuration. Denote by FX,L the induced filtration (see Example 3.34), then

Ding(X,L) = D(FX,L) .
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Conversely, for a Z-valued filtration F with Iml(F ) = Im(F )` for some m ∈
r · N and any ` ∈ N, let (X,L) be the normalized blow-up test configuration
along Im(F ). Then D(F ) ≥ Ding(X,L) .

Proof Fix a test configuration (X,L) of (X,∆) with rational index one. It in-
duces a filtration FX,L on R. We fix e+ ∈ Z for FX,L. LetY be the normalization
of the graph with two morphisms q : Y → XA1 and p : Y → X.

Y

p

��

q

!!

X XA1 .

Let m be sufficiently divisible such that mL is globally generated over A1. By
definition, the choice of e+ satisfies that for any 0 , f ∈ H0(−m(KX + ∆)),
ordX,L( f̄ ) ≤ me+, i.e.

sme+ · H0(X,mL) ⊆ H0(XA1 ,mLA1 ) ,

which implies that

q∗p∗OX(mL(−me+ · X0)) ⊆ OXA1 (mLA1 ) .

Thus we can define Im(F ) ⊆ OXA1 such that

q∗p∗OX(mL(−me+ · X0)) = Im(F ) · OXA1 (mLA1 ) .

Since mL is globally generated over A1, p∗mL is q-globally generated. Thus
q−1Im(F ) = OY(−E), where

E := q∗mLA1 − p∗(mL − me+ · X0) .

By the definition ofDX,L as in Definition 2.24, we have

p∗(KX/P1 + ∆X +DX,L) = −p∗L

= −q∗LP1 − e+ p∗X0 +
1
m
E

= q∗(KXP1 + ∆P1 ) − e+ p∗X0 +
1
m
E , (3.40)

so it follows that

lct(X,∆X +DX,L;X0) = lct(X,∆ + Im(F )
1
m ; X0) + e+ .

Thus, we conclude

L(FX,L) = lct(X,∆ + Im(F )
1
m ; X0) + e+ − 1

= lct(X,∆X +DX,L;X0) − 1 . (3.41)
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By Lemma 3.35,

(L)n+1

(n + 1)(−KX − ∆)n = S (FX,L) .

Thus by Theorem 3.52,

D(FX,L) = L(FX,L) − S (FX,L)

= lct(X,∆X +DX,L;X0) − 1 −
(L)n+1

(n + 1)(−KX − ∆)n

= Ding(X,L) .

For any filtration F with Im`(F ) = Im(F )` for a fixed m ∈ r · N and
any ` ∈ N, let q : Y → XA1 be the normalized blow-up along Im(F ) with
the exceptional divisor E = q−1Im(F ). Let p : Y → X be the morphism to
a normal test configuration induced by a multiple of q∗(mLA1 )(−E), where
OY(−E) = q−1Im(F ). Denote by L the Q-line bundle on X, such that p∗mL =

q∗(mLA1 )(−E). As in (3.40) and (3.41), we have

q∗(KXA1 + ∆A1 ) +
1
m
E = p∗(KX + ∆X +DX,L) ,

which implies that

lct(X,∆X +DX,L;X0) = lct(XA1 ,∆A1 + Im(F )
1
m ; X0)

= c∞(F , e+) = L(F ) − e+ + 1 . (3.42)

We claim the (−e+)-shift

F λ
−e+
⊆ F λ

X,L for any λ ∈ R . (3.43)

In fact, since Im(F )` = Im`(F ),

s ∈ F λ
X,LRm` ⇔ t−λ s̄ ∈ H0(Y,OY(p∗m`L))

⇔ t−λ s̄ ∈ H0(Y,OY(m`q∗LA1 − `E)
)

⇐ t−λ s̄ ∈ H0(XA1 ,OXA1 (m`LA1 ) · Im(F )`
)

⇔ s ∈ H0(X,OX(−m`(KX + ∆)) · Im`,λ+m`e+

)
,

and Im`,λ+m`e+
is the base ideal of F λ

−e+
Rm` ⊆ Rm`. This implies that

(L)n+1

(n + 1)(−KX − ∆)n = S (FX,L) ≥ S (F−e+
) = S (F ) − e+ . (3.44)



128 K-stability via filtrations

Therefore,

D(F ) = L(F ) − S (F )

≥ lct(X,∆X +DX,L;X0) + e+ − 1 − (S (FX,L) + e+)

= Ding(X,L) .

�

Theorem 3.64. Let (X,∆) be a log Fano pair. If (X,∆) is Ding-semistable, then
D(F ) ≥ 0 for any linearly bounded filtration F .

If (X,∆) is uniformly Ding-stable of level η ∈ (0, 1], then D(F ) ≥ η · J(F )
for any linearly bounded graded multiplicative decreasing filtration F .

Proof For any linearly bounded graded multiplicative decreasing filtration
F , we can replace F by its associated Z-valued filtration FZ, since by Lemma
3.28,

D(F ) = D(FZ) and J(F ) = J(FZ) .

Assme X is Ding-semistable. Let {Fm} be an approximating sequence of F .
For each m, let (Xm,Lm) be the normal test configuration constructed as the
normalized blow-up of Im(Fm). By Theorem 3.63,

D(Fm) ≥ Ding(Xm,∆Xm ,Lm) ≥ 0 .

Then by Theorem 3.60,

D(F ) = lim
m→∞

D(Fm) ≥ 0 . (3.45)

Similarly, assume X is uniformly Ding-stable of level δ. We have

L(Fm) = lct(Xm,∆Xm + DXm,Lm ; (Xm)0) + e+ − 1 by (3.42) ,

λmax(Fm) − e+ ≤ λmax(FXm,Lm ) by (3.43) ,

and S (Fm) − e+ ≤ S (FXm,Lm ) by (3.44) .

Therefore,

D(Fm) − η · J(Fm)

= L(Fm) − (1 − η)S (Fm) − η · λmax(Fm)

≥ lct(Xm,∆Xm + DXm,Lm ; (Xm)0) − 1 − (1 − η)S (FXm,Lm ) − η · λmax(FXm,Lm )

= Ding(Xm,Lm) − η · J(FXm,Lm ) .

By Proposition 3.41, we have

D(Fm) − η · J(Fm) ≥ Ding(Xm,Lm) − η · J(Xm,Lm) ≥ 0 . (3.46)
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Then

D(F ) − η · J(F ) = lim
m→∞

(
D(Fm) − η · J(Fm)

)
≥ 0 .

�

Definition 3.65. Let (X,∆) be a projective klt pair. Let L be a big Q-line bun-
dle such that rL is Cartier for a positive integer r. We say (X,∆, L) is Ding
semistable, if D(F ) ≥ 0 for any linearly bounded multiplicative graded filtra-
tion F on R =

⊕
m∈r·N H0(X,mL); (X,∆, L) is uniformly Ding stable of level

η for some η ∈ (0, 1] if D(F ) ≥ η · J(F ) for any F , and it is uniformly Ding
stable if it is uniformly Ding stable of level η for some η.

For log Fano pairs, by Theorem 3.64 these definitions coincide with the
corresponding notions in Definition 2.26.

3.5 ∗ Relative study of two filtrations

Let (X,∆) be a klt pair, L an ample Q-line bundle and r such that rL is Cartier.
Let F0 and F1 be two linearly bounded graded multiplicative decreasing filtra-
tions on R =

⊕
m∈r·N H0(X,mL).

3.5.1 Measure over R2

Let W (x,y)
• be the graded linear series defined by

W (x,y)
m = F mx

0 Rm ∩ F
my

1 Rm ,

then W (x,y)
• is a graded sublinear series of R.

We define the following functions R2 → [0, 1] that are non-increasing in
both variables:

fm(x, y) =
dim(W (x,y)

m )
Nm

and f (x, y) := lim sup
m→∞

fm(x, y) =
vol(W (x,y)

• )
(Ln)

.

We also define the locus

Pm = Supp( fm) and P =
⋃
m≥1

Pm .

Proposition 3.66. The set P is convex and Int(P) = ∪mInt(Pm).

Proof It follows from the multiplicative assumption of F0,F1 that

(cmPm) + (dqPq) ⊆ (cm + dq)Pcm+dq for all c, d ∈ N,m, q ∈ r · N .
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Indeed, if (x, y) ∈ cmPm and (x′, y′) ∈ dqPq, then there exist nonzero sections

s ∈ F x/c
0 Rm ∩ F

y/c
1 Rm and s′ ∈ F x′/d

0 Rq ∩ F
y′/d

1 Rq .

Hence, sc · s′d ∈ F x+x′
0 Rcm+dq ∩ F

y+y′

0 Rcm+dq, i.e.

(x + x′, y + y′) ∈ (cm + dq)Pcm+dq .

This inclusion implies: if x, y ∈ ∪mPm and t ∈ [0, 1]∩Q, then x(1− t) + ty ∈
∪mPm. Therefore, the closure of ∪mPm is convex.

To show Int(P) = ∪mInt(Pm), first note that the inclusion “⊃” clearly holds.
To see “⊂” holds, fix (a, b) ∈ Int(P). Since Int(P) is open, we may choose ε > 0
so that (a′, b′) := (a + ε, b + ε) ∈ Int(P). Since P is the closure of ∪mPm, there
exists (x, y) ∈ ∪mPm so that a + ε/2 < x and b + ε/2 < y. Using that each fm
is ≥ 0 and non-increasing in both variables, the latter implies (a, b) ∈ ∪mPm as
desired. �

Proposition 3.67. On the locus R2 \ ∂P, f = limm→∞ fm and f is continuous.

Proof The statement clearly holds on R2 \ P, since fm and f are both zero on
that locus. It remains to verify the statement on Int(P).

Fix (a, b) ∈ Int(P). LetH denote the filtration of R defined by

HλRm := F λ+ma
0 Rm ∩ F

λ+mb
1 Rm and V t

•(H) =
⊕
m∈r·N

HmtRm ,

which is linearly bounded since both F0 and F1 are linearly bounded. If we set

gm(t) =
dimH tmRm

Nm
and g(t) = lim sup

m→∞

vol(V t
•(H))

(Ln)
,

then gm(t) = fm(a + t, b + t) and g(t) = f (a + t, b + t), sinceH tmRm = W (a+t,b+t)
m .

By Proposition 3.19 for t < λmax(H),

g(t) = limm→∞ gm(t) exists and g is continuous at t . (3.47)

We claim that λmax(H) > 0. Indeed, since gm(t) = fm(a + t, b + t), we see

Tm(H) = sup
{

t ∈ R
∣∣∣ (a + t, b + t) ∈ Pm

}
.

Since (a, b) ∈ Int(P), Proposition 3.66 implies there exists m′ > 0 so that
(a, b) ∈ Int(Pm′ ). Therefore, Tm′ (H) > 0 and, hence, T (H) > 0 as desired.

Using the above claim, it follows from (3.47) that limm→∞ fm(a, b) = f (a, b)
exists, and f (a + t, b + t) is continuous at t = 0. Since f is non-increasing in
both variables, the latter implies that f is continuous at (a, b). �
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For a fixed m ∈ r · N, applying Lemma 3.5 to get a basis (s1, . . . , sNm ) is
compatible with F0 and F1. Denote by

ordF0 (si) = λ0,(m)
i and ordF1 (si) = λ1,(m)

i . (3.48)

We define the probability measure on R2 by

dνm,F0,F1 :=
1

Nm

Nm∑
i=1

δ(m−1λ0,(m)
i ,m−1λ1,(m)

i ) = −
∂2

∂x∂y
dim(F mx

0 Rm ∩ F
my

1 Rm)
Nm

.

(3.49)
Since F0 and F1 are assumed to be linearly bounded, we may fix C > 0 so

that F Cm
i Rm = 0 and F −Cm

i Rm = Rm (i = 0, 1). Hence, supp(dνm(F0,F1)) is
contained in the bounded set [−C,C] × [−C,C].

Theorem 3.68. The sequence dνm converges weakly as m→ ∞ to a compactly
supported probability measure

dνDH,F0,F1 := −
∂2

∂x∂y
vol(W (x,y)

• )
Ln .

Proof As m → ∞, fm converge pointwise to f away from a set of measure
zero by by Propositions 3.66 and 3.67. Since 0 ≤ fm ≤ 1, the dominated
converges theorem implies

fm → f in L1
loc(R2) .

Therefore, fm → f as distributions and, hence,

dνm,F0,F1 = −
∂2

∂x∂y
fm → −

∂2

∂x ∂y
f

as distributions. Since each distribution dνm,F ,G is a measure, it follows that

dνDH,F0,F1 := − ∂2

∂x ∂y f is a measure and dνm,F0,F1

weak
−→ dνDH,F0,F1 as measures.

Furthermore, the measure dνDH,F0,F1 is a compactly supported probability mea-
sure, since it is a weak limit of probability measures with uniformly bounded
support. �

Definition 3.69. We call dνDH,F0,F1 the compatible Duistermaat-Heckman mea-
sure on R2 of the two filtrations F0 and F1.

Definition-Lemma 3.70. For any a ∈ [0, 1], we define the geodesic segment
Fa,F0,F1 connecting F0 and F1 as follow: F λ

a,F0,F1
R =

⊕
F λ

a,F0,F1
Rm and

F λ
a,F0,F1

Rm =
∑

aα+(1−a)β≥λ

F
β

0 Rm ∩ F
α

1 Rm . (3.50)

For any fixed a ∈ [0, 1], Fa,F ,G is a linearly bounded multiplicative filtration.
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In fact, let s ∈ F λ
a,F ,GRm and s′ ∈ F λ′

a,F ,GRm′ . Then we can write s =
∑

j c j f j for

some c j ∈ k, and f j ∈ F
β j

0 Rm∩F
α j

1 Rm with aα j+(1−a)β j ≥ λ. Similarly, we can
write s′ =

∑
j′ c j′ f j′ with c j′ ∈ k, f j′ ∈ F

β j′

0 Rm′ ∩F
α j′

1 Rm′ and aα j′ + (1−a)β j′ ≥

λ′.
So s · s′ =

∑
j, j′ c jc j′ f j f j′ . For each pair ( j, j′), f j f j′ ∈ F

β j+β j′

0 Rm+m′ ∩

F
α j+α j′

1 Rm+m′ and

a(α j + α j′ ) + (1 − a)(β j + β j′ ) ≥ λ + λ′ ,

so s · s′ ∈ F λ+λ′

a,F ,GRm+m′ . In particular, F0,F ,G = F0 and F1,F ,G = F1.

Lemma 3.71. There is an isomorphism GrFa (R) � GrF0

(
Gr
F1

(R)
)

for any a ∈
(0, 1).

Proof To see this, we note that

Grα
F0

Grβ
F1

R �
F α

0 R ∩ F β
1 R

(F >α
0 R ∩ F β

1 R) + (F α
0 R ∩ F >β

1 R)

(see (3.2)) and for any a > 0, it naturally maps to Gr(1−a)α+aβ
Fa

R. This induces
the map

ϕ : GrF0 (GrF1 R)→ GrFa R .

To check it is an isomorphism, since both sides are graded with respect to m
and Rm has a finite dimension, it suffices to check that ϕ is surjective; but this
is clear as any s̄ ∈ GrFa (Rm) can be lifted to an element s ∈ Rm, whose image
in GrF0 (GrF1 Rm) maps to s̄ under ϕ. Hence ϕ is an isomorphism. �

By (3.48) ordFa,F0 ,F1
(si) = (1 − a)λ0,(m)

i + aλ1,(m)
i , and by (3.14),

dνm,Fa,F0 ,F1
=

1
Nm

∑
i=1

δm−1((1−a)λ0,(m)
i +aλ1,(m)

i ) . (3.51)

We also define a probability measure on R by

dνrel
m,F0,F1

:=
1

Nm

Nm∑
i=1

δ(m)−1(λ0,(m)
i −λ1,(m)

i ) . (3.52)

Proposition 3.72. Fix a ∈ [0, 1]. Consider the maps p, q : R2 → R defined by
p(x, y) = (1 − a)x + ay and q(x, y) = x − y. The following hold:

(i) dνDH,Fa,F0 ,F1
= p∗(dνDH,F0,F1 ), and

(ii) dνrel
F0,F1

:= q∗(dνDH,F0,F1 ), then dνrel
F0,F1

is a compactly supported probability
measure which is the weak limit of dνrel

m,F0,F1
.
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Proof We have p∗(dνm,F0,F1 ) = dνm(Fa,F0,F1 ) and q∗(dνm,F0,F1 ) = dνrel
m,F0,F1

.
Therefore, by Theorem 3.68 and the continuity of p,

p∗(dνm,F0,F1 )
weak
−→ p∗(dνDH,F0,F1 ) = dνDH,Fa,F0 ,F1

.

Similarly,

dνrel
m,F0,F1

= q∗(dνm,F0,F1 )
weak
−→ q∗(dνDH,F0,F1 ) = dνrel

F0,F1
.

�

Definition 3.73. The L1-distance between F0 and F1 is defined to be

d1(F0,F1) :=
∫
R

|λ| dνrel
F0,F1

(λ) .

We say F0 and F1 are equivalent if d1(F0,F1) = 0.

3.5.2 Geodesic convexity of Ding functional

Proposition 3.74. Assume F0 and F1 are linearly bounded,

S (Fa,F0,F1 ) = (1 − a) · S (F0) + a · S (F1) .

Proof Set dν := dνDH,F0,F1 . We compute

S (Fa,F0,F1 ) =

∫
R

λ dνDH,Fa,F0 ,F1
(λ) =

∫
R2

((1 − a)x + ay) dν

= (1 − a)
∫
R2

x dν + a
∫
R2

y dν

= (1 − a)
∫
R

x dνDH,F0 (x) + a
∫
R

y dνDH,F1 (y)

= (1 − a) · S (F0) + a · S (F1) , (3.53)

where the second equality is by Proposition 3.72.
�

Definition 3.75. Let a• = {ai}i∈N and b• = {bi}i∈N be two graded sequences of
ideals. We define a graded sequences of ideals a• � b• as follows

(a• � b•)m =

m∑
i=0

(ai ∩ bm−i) .

Lemma 3.76. For any two graded sequences of ideals a•, b• and any t > 0,
we have

J(ct•) ⊆
∑
λ+µ=t

J(aλ•) ∩ J(bµ•) , (3.54)
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where c• = a• � b•.

Proof Let m be a sufficiently large and divisible integer such that J(ct•) =

J(ct/mm ). By the summation formula of multiplier ideals (Theorem 1.53), which
says that for any two ideals a and b,

J
(
(a + b)t) =

∑
t1+t2=t

J(at1 · bt2 ) ,

we have

J(ct/mm ) = J


 m∑

i=0

ai ∩ bm−i

t/m =
∑

t0+···+tm=t/m

J

 m∏
i=0

(ai ∩ bm−i)ti

 .
(The right hand side is a finite sum.) Since am!/i

i ⊆ am!, each individual term in
the above right hand side is contained in

J

 m∏
i=0

a
ti
i

 ⊆ J  m∏
i=0

a
iti
m!
m!

 = J
(
a
λ/m!
m!

)
⊆ J(aλ•) ,

where λ :=
∑m

i=0 iti. By symmetry, it is also contained in J(bµ•) where µ :=∑m
i=0(m − i)ti. Note that λ + µ =

∑m
i=0 mti = m · t

m = t, thus for any (t0, . . . , tm),

J

 m∏
i=0

(ai ∩ bm−i)ti

 ⊆ J(aλ•) ∩ J(bµ•)

is contained in the right hand side of (3.54). This completes the proof. �

Theorem 3.77. Let x ∈ (X,∆) be a klt singularity. Let a• = {ai}i∈N and b• =

{bi}i∈N be two graded sequences ofmx-primary ideals. Denote by c• = (a•�b•).
Then lct(X,∆; c•) ≤ lct(X,∆; a•) + lct(X,∆; b•).

Proof Let α = lct(a•), β = lct(b•) and let t = α + β. For any λ, µ ≥ 0 with
λ + µ = t we have either λ ≥ α or µ ≥ β, therefore

J(aλ•) ∩ J(bµ•) ⊆ mx .

By Lemma 3.76 we see that J(ct•) ⊆ mx and hence

lct(c•) ≤ t = lct(a•) + lct(b•) .

�

Theorem 3.78. Let (X,∆) be a log Fano pair and L = −KX −∆. For a ∈ [0, 1],
we have

µ(Fa,F0,F1 ) ≤ (1 − a)µ(F0) + aµ(F1) .

In particular, D(Fa,F0,F1 ) ≤ (1 − a)D(F0) + a · D(F1).
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Proof If one of Fi, say F0, satisfies µ(F0) = λmax(F0). Let

λ > (1 − a) · λmax(F0) + aλ1 .

By Definition 3.70,

F λm
a,F0,F1

Rm =
∑

aα+(1−a)β≥λm

F
β

0 ∩ F
α

1 ,

so if F β
0 , 0, β ≤ mλmax(F0), which implies α > mλ1. Thus F λm

a,F0,F1
Rm ⊆

F
λ1m

1 Rm. Therefore, if λ > (1 − a)λmax(F0) + aµ(F1), there exists a sufficiently
small ε > 0 such that

lct(X,∆;I(λ)
• (Fa,F0,F1 )) ≤ lct(X,∆;I(µ(F1)+ε)

• (F1)) < 1 .

Thus µ(Fa,F0,F1 ) ≤ (1 − a)λmax(F0) + aµ(F1).

We may assume µ(Fi) < λmax(Fi) for i = 0 and 1. For any t < 1, we may
find divisorial valuations v0 and v1 over X such that

vi(I
(µ)
• (Fi)) ≥ t · AX,∆(vi) for i = 0 and 1 .

If we shift F0 by C0 and F1 by C1, then

Fa,(F0)C0 ,(F1)C1
= (Fa,F0,F1 )(1−a)C0+aC1 .

So it suffices to prove the same result after shiftings. Thus it follows from

(3.33) that after replacing vi by a rescaling
(

dvi(I
(t)
• (Fi))
dt

∣∣∣∣
µ−

)−1
vi and shifting the

filtration Fi by tAX,∆(vi) − µ(Fi), we may assume

µ(Fi) = t · AX,∆(vi) and vi(I
(λ)
• (Fi)) ≥ λ for any λ ∈ R .

In particular,

F λ
i R ⊆ F λ

vi
R for any λ ∈ R . (3.55)

Denote by (Y = Spec(R),Γ) the affine cone over (X,∆), i.e. Y = Spec
⊕

m∈r·N Rm

and Γ is the pull back of ∆ on Y . Let wi be theGm-invariant valuation on Y given
by

wi(s) = m + vi(s) for s ∈ Rm .

Let ba,• := a•((1− a)w0)� a•(aw1) be the graded sequence of ideals defined by

ba,m :=
m∑

i=0

am−i((1 − a)w0) ∩ ai(aw1) .

In other words, ba,m is generated by those s ∈ R with

b(1 − a)w0(s)c + baw1(s)c ≥ m .
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For any k ∈ Z, by (3.50) and (3.55), F k+2
a,F0,F1

Rm is generated by s satisfying

(1 − a)w0(s) + aw1(s) ≥ m + k + 2 .

Since x + y ≥ k + 2 then bxc + byc ≥ k,

F k+2
a,F0,F1

Rm ⊆ ba,m+k for any k ∈ Z .

We have

lct(ba,•) ≤ lct(a•((1 − a)w0)) + lct(a•(aw1)) (by Theorem 3.77)

≤ (1 − a)AY,Γ(w0) + aAY,Γ(w1)

= 1 + (1 − a)AX,∆(v0) + aAX,∆(v1)

= 1 +
1
t

(
(1 − a)µ(F0) + aµ(F1)

)
.

Thus, for any rational c > 1
t

(
(1 − a)µ(F0) + aµ(F1)

)
and m ∈ r · N with cm ∈

Z, the pair (Y,Γ + 1
m {s = 0}) is not lc for any s ∈ F cm+2

a,F0,F1
Rm ⊆ ba,(1+c)m. It

follows that the base
(
X,∆ + 1

m {s = 0}
)

is not lc. By definition, this implies that
µ(Fa,F0,F1 ) ≤ c. Hence

µ(Fa,F0,F1 ) ≤ (1 − a)µ(F0) + aµ(F1) ,

as t < 1 and c > 1
t

(
(1 − a)µ(F0) + aµ(F1)

)
can be chosen arbitrarily. �

Exercises

3.1 Find an example of a vector space V with three filtrations Fi (i = 1, 2, 3)
such that there does not exist any basis of V compatible with all Fi.

3.2 Show a Gm equivariant quasi-coherent sheaf F on A1 = Spec (k[s]) cor-
responds to a Z-graded k[s]-module

⊕
p∈Z Fps−p, which corresponds to

diagram of k-vector spaces: · · · → Fp+1
s
−→ Fp

s
−→ Fp−1 → · · · . Prove the

restriction of F along 1 is

colim(· · · → Fp+1
s
−→ Fp → · · · )

and along 0 is the associated graded
⊕

p Fp/sFp+1. Moreover, F is flat
and coherent if and only if each Fp is flat and coherent, the maps s are
injective, Fp = 0 for p � 0 and s : Fp → Fp−1 is an isomorphism for
p � 0.

3.3 (Filtered linear system for Q-divisor) Let D be a Q-Cartier Q-divisor
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on a normal variety X. Let V ⊆ H0(X,D)(= H0(X, bDc)) be a finite di-
mensional subspace, thus any nonzero element s ∈ V yields a rational
function fs ∈ K(X). Let E be a prime divisor over X, show a filtration

F λ
E V := { s ∈ V | ordE(s) := ordE(div( fs)) + D) ≥ λ } ∪ {0}

is well defined.
3.4 Show that

I(X,L) ≤ λmax(FX,L) − λmin(FX,L)

and the equality holds if X0 is irreducible.
3.5 Notion as in Lemma 2.41. We have

‖(Xξ,∆ξ)‖m = 〈αbc, ξ〉 −min
α∈P
〈α, ξ〉 . (3.56)

3.6 Let (X,L) be a test configuration of (X, L) with an integral special fiber
X0. Denote by ξ the induced Gm-action of (X0,L0). Then

‖(X,L)‖m = ‖(X0,L0, ξ)‖m .

3.7 For any ε > 0, find an example of a filtration F such that

0 < J(F ) ≤ ε(λmax(F ) − λmin(F )) .

(Compare to Proposition 2.9.)
3.8 Define ‖F ‖1 =

∫
|λ − λ|dνDH,F , where λ =

∫
λ dνDH,F is the barycenter

of νDH,F . Show

cn · J(F ) ≤ ‖F ‖1 ≤ 2 · J(F ) ,

where cn = 2nn

(n+1)n+1 .
3.9 Let X be a projective variety and L an ample line bundle. Let Rm =

H0(X,mL). We fix a divisor E on X and a constant a > 0. Define

F λRm =


0 λ > −am ,

H0(mL − E) 0 < λ ≤ ma ,

Rm λ ≤ 0 .

Then λmin(F ) = a, but sup{ λ | F λRm = Rm } = 0.
3.10 Consider the following filtration

F λRm =

0 λ > −1 ,

Rm λ ≤ −1 .

Then

lct(X, I(t)
• (F )) =

0 t ≥ 0 ,

+∞ t < 0 .
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3.11 Let L be a big and nef line bundle on a projective normal surface S . Let
C ⊂ S be an integral curve and ν : Cn → C a normalization. Let Vm be

Im
(
H0(S ,mL)→ H0(C,mL)→ H0(Cn,mν∗L)

)
the image. Then

lim
m

1
m

dim Vm = degCn (µ∗L) .

3.12 If L is big and nef, show

λmin(F ) = µ+∞(F ) . (3.57)

3.13 Let L be an ample Q-line bundle on a projective variety X such that rL is
Cartier. We define

B(F tL) =
⋂

m∈r·N

Bs(F mtH0(X,mL)→ H0(X,mL)) ,

and we denote by η(F , L) the movable threshold of F

η(F , L) = sup
{
t | B(F tL) is of codimension ≥ 2

}
. (3.58)

(a) Show there is at most one irreducible Q-divisor D ∼Q L such that
ordF (D) > η(F , L).

(b) Assume X is Q-factorial and ρ(X) = 1. If T (F , L) > η(F , L), show
there exists a unique irreducible divisor D with ordF (D) > η(F , L).
Moreover, ordF (D) = T (F , L).

3.14 For two linear bounded graded multiplicative filtrations F0 and F1,

|S (F0) − S (F1)| ≤ d1(F0,F1) .

3.15 Let F be a linearly bounded graded multiplicative decreasing filtration
and {Fm} an m-th approximation sequence of FZ. Show

lim
m→∞

d1(F ,Fm) = 0 .

3.16 If F0 and F1 are equivalent, then dνDH,F0 = dνDH,F1 .

3.17 Let V• ⊆ W• be two graded linear series belonging to a bigQ-line bundle
L which contain ample series. Let F be a filtration on W•. By abuse of
notation, we also denote by F its restriction on V•, i.e. F λVm = F λWm∩

Vm. Assume vol(W•) = vol(V•), then S (F ,W•) = S (F ,V•).
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Note on history

Foundational results on filtered graded linear system were established in Bouck-
som and Chen (2011) and Boucksom et al. (2015) using Okounkov bodies. The
study of K-stability via filtrations was first considered by Witt Nyström (2012)
and later in Székelyhidi (2015) as well as Boucksom et al. (2017). However,
they faced the essential difficulty of defining well-behaved Futaki invariants on
general filtrations. A remarkable observation was then made in Fujita (2018),
which showed that, unlike Futaki invariants, Ding invariants can be extended
to general filtrations as L(F ) − S (F ) with the desired approximation property
(see Section 3.4). Further foundational results, including Theorem 3.33, were
established later in Blum and Jonsson (2020).

The log canonical slope type invariants were invented in Xu and Zhuang
(2020), where Theorem 3.50 and one direction of Theorem 3.52 were proven.
Another direction of Theorem 3.52 was addressed by Blum-Liu-Xu-Zhuang
in Blum et al. (2023). These results together show that we can use the more
conceptual quantity µ(F ) − S (F ) to define D(F ).

The relative study of two filtrations were investigated in Boucksom and Jon-
sson (2024), Blum et al. (2023), and Reboulet (2022). The convexity was di-
rectly proven in Blum et al. (2023) using Theorem 3.77 established in Xu and
Zhuang (2021).

The extension from test configurations to filtrations can be regarded as a
similar step of taking the completion of the space of smooth Kähler met-
rics, see e.g. Guedj and Zeriahi (2017). In fact, a non-archimedean approach
to study the Kähler-Einstein/K-stability question was developed, see Berman
et al. (2021); Boucksom and Jonsson (2024, 2023) etc., where filtrations yields
more general non-archimedean metrics than the algebraic ones induced by test
configurations.
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K-stability via valuations

In this chapter, we will investigate the concept of K-stability using valuations.
In Section 4.1, we will prove the Fujita-Li criterion, which enables us to study
K-stability of a log Fano pair by looking at the function FLX,∆(v) = AX,∆(v) −
S X,∆(v). An advantage of considering valuations is that since all valuations
form a space, i.e. ValX , one can investigate the minimizing question function
of AX,∆(·)

S X,∆(·) on the space Val<+∞
X . Studying the minimizer of AX,∆(·)

S X,∆(·) will be crucial
for our understanding of K-stability for log Fano pairs.

In Section 4.2, we establish a subclass of valuations, named (weakly) special
valuations, which precisely correspond to (weakly) special test configurations.
This draws a direct connection between test configurations and valuations.

In Section 4.3, using approximation of minimizers by special valuations, we
show all minimizers of AX,∆(·)

S X,∆(·) are quasi-monomial when δ(X,∆) < dim(X)+1
dim(X) .

In Section 4.4, we show that the stability notions do not depend on the base
field, and if there is a group acting on the log Fano pair (X,∆), K-semistability
is the same as equivariant K-semistability.

In Section 4.5, we introduce the Abban-Zhuang method, and use it to prove
n-dimensional smooth Fano hypersurfaces of degree d are K-stable for 3 ≤ d ≤
dim(X) + 2 − dim(X)1/3.

4.1 Fujita-Li’s valuative criterion

In this section, for a klt projective pair (X,∆) and a bigQ-line bundle L, we aim
to prove Fujita-Li’s criterion of using valuations to characterize Ding semista-
bility and uniform Ding stability, as in Theorem 4.14.

140
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4.1.1 Invariants on valuations

Let L be a big Q-line bundle on an integral projective variety X and r is a
positive integer such that rL is Cartier. Assume

V• ⊆ R =
⊕
m∈r·N

H0(X,mL)

is a graded linear series containing an ample series.

Definition 4.1. Let v be a valuation on X. We define the filtration Fv on R by

F λ
v Vm := {s ∈ Vm | v(s) ≥ λ}, ∀m ∈ r · N} (4.1)

(see (1.18)).

If s and s′ ∈ H0(X,mL), then v(λ · s) = v(s) for λ ∈ k× and v(s + s′) ≥
min{v(s), v(s′)}. In particular F λ

v Vm ⊆ Vm is a linearly subspace. For s ∈
H0(X,mL) and s′ ∈ H0(X,m′L), v(s · s′) = v(s) + v(s′), so Fv is multiplica-
tive. In general, Fv may not be linearly bounded, but we have the following
statement.

Lemma 4.2. For a valuation v over a projective variety X with v ∈ Val<+∞
X

(see Definition 1.37), then

(i) the induced filtration Fv is linearly bounded.
(ii) if L is big and nef, then λmin(Fv,R) = 0.

Proof (i) We can choose e− = 0.
For a divisorial valuation ordD over X. Let µ : Y → X be a birational mor-

phism from a smooth model Y with D a divisor on it. Then the pseudo-effective
threshold σ of µ∗L with respect to D is finite. Thus we can choose e+ = σ + ε

for any ε > 0.
For a general valuation v, let ξ = cY (v). For any f ∈ mY,ξ, multξ( f ) > 0, and

(Y, 1
multξ( f ) ( f = 0)) is log canonical at ξ by Lemma 1.43. Thus

v( f ) ≤ AY (v) · ordξ . (4.2)

The valuation ordξ arises from a divisorial valuation Eξ. In particular, FEξ
in-

duces a linearly bounded valuation, which implies that Fv is linearly bounded
by (4.2).

(ii) As F 0
v Vm = Vm, λmin(Fv,R) ≥ 0. By (4.2), F εm

v Rm ⊆ F
εm

AY (v)

Eξ
Rm, i.e.

Vε
• (Fv) ⊆ V

ε
AY (v)
• (FEξ

) (see (3.8)) .
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By Lemma 4.3, for any t > 0 and ρ : Z → Y a resolution such that Eξ is a
divisor on Z,

vol(VAY (v)·t
• (Fv)) ≤ vol(ρ∗µ∗L − tEξ) < vol(L) ,

thus λmin(Fv,R) ≤ 0. �

Lemma 4.3. Let X be a smooth project variety, with L a big and nef divisor.
Let E be a non-zero effective. Then for any t > 0, vol(L − tE) < vol(L).

Proof We could assume E is irreducible. By Theorem 1.15, it suffices to show
that volX|E(L− tE) > 0 for t sufficiently small. Let L = A + F where A is ample
and F ≥ 0.

Let 0 ≤ a := multE(F). Then

volX|E(L − aE) ≥ volX|E(A) = An−1 · E > 0 .

�

Lemma 4.4. A filtrationF on V• arises from a valuation if and only if ordF (k×) =

0 and the graded ring GrF (V•) (see Definition 3.15) is integral.

Proof If F = Fv for a valuation v, then for any s ∈ Vm, s ∈ Vm′

ordF (s · s′) = v(s · s′) = v(s) + v(s′) = ordF (s) + ordF (s′),

which implies GrF (V•) is integral.
Conversely, since GrF (V•) is integral, for s ∈ Vm and s′ ∈ Vm′ ,

ordF (s · s′) = ordF (s) + ordF (s′) . (4.3)

So we define a function v : K× → R in the following way: since V• contains
an ample series, for any f ∈ K×, there exists a section s ∈ Vm for a sufficiently
large m such that s′ := f · s ∈ Vm. We let

v( f ) = ordF (s′) − ordF (s) ,

and (4.3) implies this is well defined. This yields a valuation v ∈ Val(X). �

We will denote S (Fv,V•) by S (v,V•) and similarly for other invariants.

Definition 4.5. We call a Q-divisor D an m-basis type divisor of V• if D is of
the form 1

m D′ where D′ is a basis type divisor of Vm (see Definition 3.9).

By Lemma 3.7, for any m ∈ r · N, S m(v,V•) = supD v(D) where D runs
through over all basis type divisors of Vm. Moreover, S m(v,V•) = v(D) if and
only if {s1, ...., sNm } is compatible with Fv, where Nm = dim Vm.
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Proposition 4.6. Let X be a projective variety, and V• ⊆ R a graded linear
series containing an ample series. Let (Y, E) → X be a log smooth model.
Then

(i) For any fixed m ∈ r·N, v→ S m(v,V•) is a continuous functions on QM(Y, E).
(ii) v→ S (v,V•) is a continuous functions on QM(Y, E).

Proof (i) By Lemma 1.30, there are only finitely many functions

ψD : v→ ordv(D)

when D runs through all m-basis type divisors of V•. Therefore, S (v,V•) as the
maximum of all these function, is also continuous.

(ii) Fix a very ample divisor H on Y . We may assume H − L is ample.
Let DC(Y, E) be the dual complex consisting of valuations v in QM(Y, E) with
AY (v) = 1.

For any effective Q-divisor D ∼Q L, and any closed point x on Supp(D),
multxD ≤ C0 where C0 = L · Hn−1. By Lemma 1.43, (Y, 1

C0
D) is log canonical,

which implies v(D) ≤ C0 as AY (v) = 1. Therefore,

T (v,V•) ≤ T (v,R) ≤ C0 .

For any J ⊆ I, EJ =
⋂

j∈J E j,

L · Hn−|J|−1 · EJ ≤ Hn−|J| · EJ .

Denote by C1 = maxJ
{
Hn−|J| · EJ

}
. By Theorem 1.31, for any s ∈ Vm,

1
m
|v(s) − w(s)| ≤ C‖v − w‖ ,

where C can be chosen to be A·C0 +B·C1 for constants A, B only depending on
Y and H. Since for any two valuations v, w, we can choose an m-basis divisor
D compatible with both v and w (see Lemma 3.5),

|S m(v,V•) − S m(w,V•)| = |v(D) − w(D)| ≤ C‖v − w‖ .

Thus the sequence of functions S m : v → S m(v,V•) is equicontinuous and
uniformly bounded. By the Arzeà–Ascoli theorem, we know a subsequence of
S m converges to a continuous function on DC(Y, E), which has to be S : v →
S (v,V•).

�

Let (X,∆) be a projective klt pair. We set

δm(X,∆,V•) := inf { lct(X,∆; D) |m-basis type divisor D of V• } . (4.4)
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Lemma 4.7. The infimum δm(X,∆,V•) is attained by an m-basis type divisor
D. Moreover,

δm(X,∆,V•) = inf
E

(
inf
D

AX,∆(E)
ordE(D)

)
,

where D runs through over all m-basis type divisors of V•, and E runs through
over all prime divisors over X.

Proof Since δm(X,∆,V•) = m · δ(X,∆,Vm) and D is an m-basis type divisor
of V• if mD is a basis type divisor of Vm, the statements follow from Lemma
3.13. �

Definition 4.8. We define

δ(X,∆,V•) := inf
E

AX,∆(E)
S (E,V•)

and E runs through all divisors over X.
If (X,∆) is a projective klt pair, L a big Q-line bundle on X, and V• =⊕
m∈r·N H0(mL), we denote by

δ(X,∆, L) := δ(X,∆,V•) .

When (X,∆) is a log Fano pair, L = −KX − ∆, we denote by

δ(X,∆) := δ(X,∆, L) ,

and we call it the stability threshold of (X,∆).

Theorem 4.9. We have the following results:

(i) limm→∞ δm(X,∆,V•) exists, which is equal to δ(X,∆,V•).
(ii) For any valuation v with AX,∆(v) < +∞, we define δX,∆(v,V•) =

AX,∆(v)
S (v,V•)

. Then

δ(X,∆,V•) = inf
AX,∆(v)<+∞

δX,∆(v,V•) .

Proof (i) Fix a sequence of positive numbers εi → 0. Let Ei be a sequence of
prime divisors over X, such that limi→∞

AX,∆(Ei)
S (Ei,V•)

= δ(X). By Proposition 3.27,
for each i, we can find mi such that for any m ≥ mi,∣∣∣∣ AX,∆(Ei)

S (Ei,V•)
−

AX,∆(Ei)
S m(Ei,V•)

∣∣∣∣ < εi .

As AX,∆(Ei)
S m(E,V•)

≥ δm(X,∆,V•), this implies that

lim sup
m→∞

δm(X,∆,V•) ≤ δ(X,∆,V•) . (4.5)

On the other hand, by Theorem 3.33, there exists mi ∈ r ·N, such that for any
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m ≥ mi and any E, S m(E,V•) ≤ (1 + εi)S (E,V•). In particular, if we choose
Ei, such that δm(X,∆,V•) =

AX,∆(Ei)
S m(Ei,V•)

. Then for any m ≥ mi,

δm(X,∆,V•) ≥
AX,∆(Ei)

(1 + εi)S (Ei,V•)
≥

1
1 + εi

δ(X,∆,V•) . (4.6)

This implies that

lim inf
m

δm(X,∆,V•) ≥ δ(X,∆) . (4.7)

(ii) From the above discussion, we see there exists a sequence of divisors Ei,
such that

lim
i

AX,∆(Ei)
S (Ei,V•)

= δ(X,∆,V•) .

On the other hand, for any valuation v with AX,∆(v) < +∞, by Lemma 4.2,
it induces a linear bounded graded multiplicative filtration Fv. Let D be an
m-basis type divisor compatible with Fv on Vm, then

AX,∆(v)
S m(v,V•)

≥ lct(X,∆; D) ≥ δm(X,∆,V•) .

Therefore,

δX,∆(v,V•) =
AX,∆(v)
S (v,V•)

= lim
m→∞

AX,∆(v)
S m(v,V•)

≥ lim
m→∞

δm(X,∆,V•) = δ(X,∆,V•) .

�

Definition 4.10. Any valuation v with AX,∆(v) < +∞ satisfies that

δ(X,∆,V•) = δX,∆(v,V•) (4.8)

is called a valuation computing δ(X,∆,V•).

Definition 4.11. For any valuation v with AX,∆(v) < +∞, we define the Fujita-
Li invariant

FLX,∆(v,V•) = AX,∆(v) − S (v,V•) .

If (X,∆) is clear in the context, we often abbreviate it as FL(v,V•).

As before, if V• =
⊕

m∈r·N H0(mL), we will write S (v, L) = S (v,V•) and
similarly for other invariants.

Lemma 4.12. Let L be a big Q-line bundle on a projective klt pair (X,∆).

(i) There exists a constant a > 0 depending on X and L such that for any
valuation v with AX,∆(v) < +∞, T (v, L) ≥ (1 + a)S (v, L).
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(ii) If L is ample, T (v, L) ≥ n+1
n S (v, L) for any valuation v with AX,∆(v) < +∞.

Proof (i) We can write L = A + B for Q-Cartier divisors A and B, where A
is ample and B is big. Fix M such that MA − L is Q-linearly equivalent to an
effective Q-divisor. Fix m0 and G ∈ |m0A| such that G does not contain cX(v).
Then for any m divided by m0, we can choose an m-basis type divisor Dm of
|mL| which is compatible with FG and Fv, so Dm = D′m + amG.

Since any basis type divisor of |mA| can be extended to a basis type divisor
|mL|, we have

S m(FG, |mA|) ≤ S m(FG, |mL|) = am .

Thus lim infm am ≥
1

m0(n+1) by Lemma 3.39. Since

S m(v, L) = ordv(Dm) = ordv(D′m) ≤ T (v,D′m) ,

we have

T (v, L) ≥ T (v,D′m) + amT (v,G) ≥ S m(v, L) +
amm0

M
T (v, L) .

Letting m→ +∞,

T (v, L) ≥
(n + 1)M

(n + 1)M − 1
S (v, L) . (4.9)

(ii) In the above argument, we can take L = A and M = 1. Thus we have
n

n+1 T (v, L) ≥ S (v, L). �

A characterization of δ(X,∆, L) can be obtained using the invariant intro-
duced in Definition 3.45.

Theorem 4.13. Let (X,∆) be a projective pair and L a big Q-line bundle. We
can characterize δ(X,∆, L) as follows:

δ(X,∆, L) = sup
{
δ
∣∣∣ D(F , δ) ≥ 0 for any F

}
,

where F means a linearly bounded filtration.

Proof Denote by δ = δ(X,∆, L) and

δ0 = sup
{
δ
∣∣∣ D(F , δ) ≥ 0 for any F

}
.

δ ≥ δ0: For any divisor E over X, v(I(λ)
• (FE)) ≥ λ. Thus

lct(X,∆; I
( 1
δ ·AX,∆(E))
• (FE)) ≤ δ, i.e. µ(FE , δ) ≤

AX,∆(E)
δ

. (4.10)
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If δ′ > δ(X,∆), by Definition 4.8 there exists a divisor E, such that AX,∆(E) <
δ′ · S X,∆(E, L). Thus

D(FE , δ
′) ≤

AX,∆(E)
δ′

− S (E, L) < 0 .

which implies δ0 ≤ δ
′. Therefore, δ ≥ δ0.

δ ≤ δ0: It suffices to show that for any F , D(F , δ) ≥ 0. Since λmax(F ) ≥ S (F ),
we may assume µ := µ(F , δ) < λmax(F ). So lct(X,∆; I(µ)

• ) = δ by Lemma 3.46.
It follows from Lemma 1.60, we can find a sequence of divisors Ei and ti ↗ 1,
such that

ti · AX,∆(Ei) = δ · ordEi (I
(µ)
• ) .

Set vi = 1
ξi

ordEi , where ξi = limt→µ−
1
dt ordEi (I

(t)
• (F )) > 0, and fi(λ) =

vi(I
(λ)
• (F )). By (3.33), for any λ,

fi(λ) ≥ fi(µ) + (λ − µ) ≥
tiAX,∆(vi)

δ
+ (λ − µ) . (4.11)

For any fixed i, if we translate the filtration F by ti
δ
AX,∆(vi)−µ, which preserves

D(F , δ), we have fi(λ) ≥ λ, i.e. F λ ⊆ F λ
vi

. In particular, S (F ) ≤ S (Fvi ). Thus

D(F , δ) =
ti
δ

AX,∆(vi) − S (F ) ≥
ti − 1
δ

AX,∆(vi) + (
1
δ

AX,∆(vi) − S (Fvi )) .

We conclude by (3.34),

µ − µ+∞(F ) ≥ fi(µ) =
ti
δ

AX,∆(vi) . (4.12)

By the definition of δ, 1
δ
AX,∆(vi) ≥ S (Fvi ). Combining with (4.12), we have

D(F , δ) ≥
ti − 1

ti
(µ − µ+∞(F )) . (4.13)

As ti → 1, D(F , δ) ≥ 0. �

Theorem 4.14 (Fujita-Li’s valuative criterion). Let (X,∆) be a projective klt
pair and L a Q-line big bundle on X, then

(i) (X,∆, L) is Ding semistable (see Definition 3.65) if and only if δ(X,∆, L) ≥ 1.
(ii) (X,∆, L) is uniformly Ding stable if and only if δ(X,∆, L) > 1.

Proof (i) By (4.10), FLX,∆(v, L) ≥ D(Fv). Conversely, by Theorem 4.13, if
δ(X,∆, L) ≥ 1 then D(F ) ≥ 0 for any F .

(ii) Similarly, if (X,∆) is uniformly Ding stable, then there exists ε > 0, such
that for any v with AX,∆(v) < ∞,

FLX,∆(v, L) ≥ D(Fv) ≥ ε · J(Fv) .
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Since J(Fv) = T (v, L) − S (v, L) ≥ aS (v, L) by Lemma 4.12 for some a > 0
(depending on X and L but not v), thus

AX,∆(v) ≥ (1 + aε)S (v, L) .

Conversely, we assume δ := δ(X,∆, L) > 1. By Theorem 4.13, D(F , δ) ≥ 0.
Let µ = µ(F , 1). We may assume µ < λmax(F ), since otherwise D(F ) = J(F ).
So there exists a divisorial valuation vi and δ+1

2δ ≤ ti, such that

ti · AX,∆(vi) = ordvi (I
(µ)
• ) .

Then as in the proof of Theorem 4.13, after a rescaling of vi and a shifting of
the filtration, we may assume

F ⊆ Fvi and µ(F ) = tiAX,∆(vi) . (4.14)

In particular, λmax(F ) ≤ T (vi) and by (4.10),

µ(F , δ) ≤ µ(Fv, δ) ≤
AX,∆(v)
δ

. (4.15)

If S (F ) ≥ 0, we set ε = δ−1
2δ αX,∆(L), and

D(F ) = tiAX,∆(vi) − S (F )

≥ (ti −
1
δ

)AX,∆(vi) + D(F , δ) (by (4.15))

≥ (ti −
1
δ

)αX,∆(L) · T (vi) (since D(F , δ) ≥ 0)

≥
δ − 1

2δ
αX,∆(L) · λmax(F )

(
ti −

1
δ
≥
δ − 1

2δ

)
≥
δ − 1

2δ
αX,∆(L) · J(F ) (since S (F ) ≥ 0)

= ε · J(F ) .

If S (F ) ≤ 0, we set ε = min{1, 1
δ
αX,∆(L)}. Since

tiAX,∆(vi) ≥ tiαX,∆(L)T (vi) ≥ ελmax(Fvi ) ≥ ελmax(F ) ,

we have

D(F ) = tiAX,∆(vi) − S (F ) ≥ ε(λmax(F ) − S (F )) = ε · J(F ) .

So we conclude by Theorem 1.44, as αX,∆(L) > 0. �

Definition 4.15. For δ ≥ 0, we say (X,∆, L) is δ-semistable if δ(X,∆, L) ≥ δ.

In particular, by Theorem 4.14, 1-semistable is the same as Ding semistable.
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4.1.2 Dreamy valuations

Let (X,L) be a test configuration of polarized pairs (X,∆, L) with rational index
one. Denote by its special fiber X0. Then for any irreducible component E of
X0, ordE is a valuation on K(X) = K(X × A1

s) = K(X)(s). By Lemma 1.33, it
is of the form

ordE = (v, p · ords) where p = multE(s) .

Its restriction to K(X) yields the valuation v. If X is a trivial test configuration,
then X0 is given by s = 0, and the restriction of ords on K(X) is trivial. More
generally, we have

Lemma 4.16. If X is not a trivial test configuration, then v is a divisorial
valuation, i.e. v = c · ordE for some c ∈ Z>0 and E over X.

Proof Since tr.deg(K(X)/K(X)) = 1, by Abhyankar’s inequality (Lemma
1.24), we know that

tr.deg(K(v)) + rankQ(v)

≥ tr.deg(K(ordX0 )) + rankQ(ordX0 ) − 1

= dim(X).

This implies v is an Abhyankar valuation, whose value group is nontrivial and
contained in Z. So the statement follows from Proposition 1.29. �

Let (X,L) be a test configuration with an integral fiber X0, with an∞-trivial
compactification X. Let Y be the normalized graph of X × P1 d X:

Y

X × P1 X.

pq

Let LP1 be the pull back of L on X × P1. We define a number A ∈ Q such that

p∗q∗(LP1 ) ∼Q L + A · X0 .

Lemma 4.17. Assume the restriction of X0 on K(X) is v. Let FX,L be the
induced filtration. Then Fv is the shift of FX,L by A.

Proof Consider a section f ∈ H0(mL) for m ∈ r · N. Let D f be the closure of
Div( f ) × P1 on X × P1. Fix a common log resolution Y of X and X × P1

Denote by X0 the special fiber of X. So

q∗(D f ) = D̃ f + ordX0 ( f̄ ) · X̃0 + E ∈ H0(q∗(mLP1 )) ,
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where D̃ f and X̃0 are the birational transforms of D f andX0 onY and Supp(E)
supporting over 0 do not contain the birational transform of X × {0} and X0.
Thus

p∗q∗(D f ) = p∗D̃ f + ordX0 ( f̄ ) · X0 ∈ H0(p∗q∗(mLP1 )) = H0(mL + mA · X0).

By Lemma 1.73,

q∗(mLP1 ) − p∗(p∗q∗(mLP1 )) ≤ 0 . (4.16)

Therefore,

f ∈ F λ
v Rm ⇐⇒ ordX0 f̄ ≥ λ

⇐⇒ smA−λ f̄ ∈ H0(mL) by (4.16)

⇐⇒ f ∈ F λ−mA
X,L Rm ,

i.e. by Definition 3.16, F λ
v is the A-shift of FX,L. �

Definition 4.18. Let E be a prime divisor over X. We say E is dreamy if the
graded ring ⊕

m∈r·N

⊕
λ∈N

F λRms−λ (4.17)

is finitely generated.

Lemma 4.19. Lemma 4.16 and Example 3.54 yield a one-to-one correspon-
dence 

test configurations
X with an integral

special fiber

 ←→


a divisorial valuation
v = c · ordE with dreamy

E and c ∈ N

 .
Proof If X is a test configuration (X,∆,L) with an integral fiber X0, then
ordX0 is of the form (c ·ordE , 1). By Lemma 4.17, Grv(R) = GrFX,L (R) is finitely
generated. Thus v is dreamy.

If E is a dreamy divisor, then by the definition,

GrE(R) =
⊕
m∈r·N

⊕
λ∈N

F λ
E Rm/F

λ+1
E Rm (4.18)

is finitely generated. Since the Rees construction satisfies

ReesFE (R)/s · ReesFE (R) � GrE(R) ,

thus ReesFE (R) is a finitely generated k[s]-algebra (see Example 3.54). There-
fore, for v = c · ordE with c ∈ N>0, ReesFv (R) is finitely generated. Let
X := Proj

(
ReesFv (R)

)
→ A1 be a test configuration. It has an integral fiber,
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since the associated graded ring of any valuation is integral. Then the restric-
tion of ordX0 on K(X) is the same as v. �

Lemma 4.20. Let (X,∆) be an n-dimensional log Fano pair. Let X be test con-
figuration of (X,∆) with an integral fiber. Assume the special fiber X0 induces
a valuation v. Then

FLX,∆(v) = Fut(X) .

Proof SinceX0 is irreducibe,L ∼Q −KX−∆X as their restriction overA1\{0}
is isomorphic.

Therefore, after twisting by a pull back of a multiple of 0 ∈ P1, we can
assume L = −K

X/P1 − ∆
X

. Then

multX0 (q∗π∗1(−KX − ∆) + p∗(K
X/P1 + ∆

X
)) = AX×P1,∆×P1 (X0) − 1

= AX,∆(v) .

By Lemma 4.17, thus Fv is the shift of FX,L by AX,∆(v). In particular, S (v) =

AX,∆(v) + S (FX,L). So by Lemma 3.35 and Exercise 2.6,

FLX,∆(v) = AX,∆(v) − S (v) = −S (FX,L)

=
−(−K

X/P1 − ∆
X

)n+1

(n + 1)(−KX − ∆)n = Fut(X) .

�

Lemma 4.21. Let (X,∆) be an n-dimensional log Fano pair, and a test config-
uration X of (X,∆) with an integral fiber. Assume the special fiber X0 induces
a valuation v. Then

L(Fv) = AX,∆(v) + lct(X,∆X;X0) − 1 .

Proof After replacing L by L(aX0), we may choose the polarization L on X
such thatL = −K

X/P1 −∆
X

. In particular,DX,L = 0. Thus by (3.41), L(FX,L) =

lct(X,∆X;X0) − 1.
As in the proof of Lemma 4.20, Fv is the shift of FX,L by AX,∆(v). Therefore,

L(Fv) = AX,∆(v) + lct(X,∆X;X0) − 1. �

4.2 Geometry of special valuations

Let (X,∆) be a log Fano pair. We will give a more geometric characterization
of a smaller class of valuations, which plays a key role in the further study of
K-stability.
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4.2.1 Special valuations

Definition 4.22. A divisorial valuation E over a log Fano pair is called special
(resp. weakly special) if there is a non-trivial special test configuration (X,∆X)
(resp. weakly special test configuration X with an integral fiber), such that the
restriction of ordX0 on K(X) is c · ordE .

It follows from Corollary 1.70 weakly special divisors are dreamy.

Theorem 4.23. A divisor E is weakly special if and only if there exists a Q-
complement ∆+ = ∆ + D of X such that E is an lc place of (X,∆+).

Proof Assume E is an lc place of (X,∆+). Then EA1 := E×A1 is an lc place of
the trivial family (XA1 ,∆+

A1 ) := (X,∆+)×A1. Since EA1 and X0 := X×{0} are lc
places of (XA1 , X0 +∆+

A1 ), the divisor E1 corresponding to (ordE , 1) (see Lemma
1.33) is an lc place of (XA1 , X0 +∆+

A1 ). So there exists a morphism q : Y → XA1

which precisely extracts E1 and we may assume Y and q are Gm-equivariant.
We can run an minimal model program for

(
Y, q−1

∗

(
X0 + ∆+

A1

)
+ (1 − ε)E

)
for

some ε ∈ (0, 1) to get a model X′ which contracts q−1
∗ X0 as

KY + q−1
∗

(
X0 + ∆+

A1

)
+ (1 − ε)E ∼A1,Q εq−1

∗ X0 .

Let ∆X′ and ∆+
X′

be the closure of ∆ × (A1 \ {0}) and ∆+ × (A1 \ {0}). We can
then run a Gm-equivariant −(KX′ + ∆X′ )-MMP for X′ over A1 to get a weakly
special test configuration X of (X,∆). In fact, we can pick a general Q-divisor
L ∼Q −KX − ∆, and denote by L the closure of L × (A1 \ {0}) on X′, then
−KX′ − ∆X′ ∼Q L, and the pair (X′,∆+

X′
+ εL) satisfies the assumption of

Corollary 1.69. Since ordX0 is ordE1 which corresponds to (ordE , 1), thus E is
weakly special.

Now we consider the converse direction. Let ordE be the induced divisorial
valuation by the weakly special test configuration. Since lct(X,∆X;X0) = 1,
by Lemma 4.21, we know

AX,∆(E) = L(FE) = µ(FE) ,

where the second equality follows from Theorem 3.52. We claim

lct(X,∆; I(AX,∆(E))
• (FE)) = 1 .

In fact, this is always true by Lemma 3.46 if AX,∆(E) < T (E); and if AX,∆(E) ≤
T (E), this follows from Example 3.47. Moreover, as GrE(R) is finitely gener-
ated, then

lct(X,∆; I(AX,∆(E))
• (FE)) = m · lct(X,∆; Im,mAX,∆(E))(FE)) = 1
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for some sufficiently divisible m. This means there is a divisor D ∈ |−m(KX+∆)|
with ordE(D) ≥ mAX,∆(E) and (X,∆ + 1

m D) is log canonical. Thus E is an lc
place of (X,∆ + 1

m D). �

Remark 4.24. In the above argument, if we let ∆+
X

be the closure of ∆+× (A1 \

{0}) in the weakly test configuration X corresponding to E. Then (X,∆+
X

) is log
canonical.

Lemma 4.25. For a positive integer n and a finite set I ⊂ Q∩[0, 1], there exists
a positive integer N = N(n, I) with N · I ⊂ Z, such that for any n-dimensional
log Fano pair (X,∆) with coeff(∆) ⊂ I, if E is an lc place of a Q-complement,
then E is indeed an lc place of an N-complement.

Proof By definition, there exists a 0 ≤ D ∼Q −KX − ∆, such that E is an lc
place of the log canonical pair (X,∆ + D). There exists a divisor µ : Y → X
which precisely extracts E such that −E is ample over X. Thus (Y, µ−1

∗ ∆ ∨ E)
is log canonical, and (Y, µ−1

∗ (∆ + (1 − ε)D) + tE) is a log Fano where t =

1 − AX,∆+(1−ε)D(E) + ε0 with 0 < ε0 � ε � 1, such that t > 0 and −εµ∗(KX +

∆) − ε0E is ample. Therefore, we can run an minimal model program

µ−1
∗ D − (µ−1

∗ D ∧ E) ∼ −KY − µ
−1
∗ ∆ ∨ E

to get a model ψ : Y d Y ′ with ψ∗(E) , 0,

Z
p

||

q

��

E ⊂ Y

µ

��

ψ
// Y ′

X

such that −KY ′ −ψ∗(µ−1
∗ ∆∨ E) is nef. Since ψ : Y → Y ′ is a birational contrac-

tion, and Y is of Fano type, thus Y ′ is of Fano type.
By Theorem 1.82 (also see Remark 1.83 if k is not algebraically closed),

(Y ′, ψ∗(µ−1
∗ ∆ ∨ E)) has an N-complement G′ where N = N(n, I) and N · I ⊂ Z.

Then G′ yields an N-complement G := p∗q∗G′ of (Y, µ−1
∗ ∆ ∨ E) for a common

resolution Z of Y and Y ′ such that E is an lc place of (Y, µ−1
∗ ∆∨E+G). Therefore

DN := µ∗G is an N-complement (X,∆) with E an lc place of (X,∆ + DN). �

Putting Theorem 4.23 and Lemma 4.25 together, we have

Corollary 4.26. Fix a positive integer n = dim(X) and a finite set I ⊂ Q∩[0, 1]
containing all coefficients of ∆. There exists a constant N = N(n, I) which only
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depends on n and I, such that E is weakly special if and only if E is an lc place
of an N-complement.

We also want to give a description of special divisors (see Definition 4.22).

Lemma 4.27. Let (X,∆) be a log Fano pair. Let E be a weakly special divisor.
Then E is special if and only if for any effective Q-Cartier Q-divisor D, there
exists ε ∈ (0, 1] and an effective Q-divisor D′ ∼Q −KX − ∆ − εD such that
(X,∆ + εD + D′) is log canonical with E as an lc place.

Proof If (X,∆ +X0) is not plt, then there is an lc center W properly contained
in X0. For a sufficiently large m ∈ r · N,

0 , H0(X0,OX0 (−m(KX + ∆X)|X0 ) ⊗ IW
)
⊆ GrE(Rm) :=

⊕
λ∈Z

GrλE(Rm).

As IW is Gm-invariant,

H0(X0,OX0 (−m(KX + ∆X)|X0 ) ⊗ IW
)

=
⊕
λ∈Z

(
H0(X0,OX0 (−m(KX + ∆X)|X0 ) ⊗ IW

)
∩ GrλE(Rm)

)
.

Therefore, we can assume there exists a λ ∈ Z, and

0 , s̄ ∈ H0(X0,OX0 (−m(KX + ∆X)|X0 ) ⊗ IW
)
∩ GrλE(Rm),

where s ∈ Rm. Then 1
m (s = 0) corresponds to a divisor D, such that the closure

DX of D × (A1 \ {0}) in X contains W. This implies for any ε > 0, the closure
of (X,∆ + εD) × (A1 \ {0}) in X is not log canonical. Thus E can not be the lc
place of an Q-complement of (X,∆ + εD) by Theorem 4.23.

Conversely, if (X,∆X + X0) is plt, then for any D, we can find a sufficiently
small ε, such that (X,∆X + εDX + X0) is plt and −KX − ∆ − εD is ample. As
ordX0 still corresponds to ordE , we can apply Theorem 4.23 to (X,∆+εD). �

Theorem 4.28. For a log Fano pair (X,∆), the following are equivalent:

(i) a divisor E over X is special.
(ii) AX,∆(E) < T (E) and there exists a Q-complement D∗, such that E is the only

lc place of (X,∆ + D∗).
(iii) there exists a divisor D ∼Q −KX −∆ and t ∈ (0, 1) such that (X,∆ + tD) is lc

and E is the only lc place for (X,∆ + tD).
(iv) there exists a birational projective morphism µ : Y → (X,∆) and an effective

Q-divisor DY on Y such that (Y, E + DY ) is plt, DY + E ≥ µ−1
∗ ∆ and −KY −

E − DY is ample.
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Proof (i)=⇒(ii): If we take D1 to be a general Q-divisor whose support does
not contain cX(E), then by Lemma 4.27, for some ε > 0, E is an lc place of
(X,∆+εD1+(1−ε)D′1) for some effectiveQ-divisor D′1 ∼Q −KX−∆. Therefore,

AX,∆(E) = ordE(D′1) ≤ (1 − ε)T (E) . (4.19)

As in the proof of Lemma 4.25, we can precisely extract E to get a model
µ : Y → (X,∆). Then we run a minimal model program for −KY − (µ−1

∗ (∆)∨E)
to get ψ : Y d Y ′. In particular, (Y ′, ψ∗(µ−1

∗ (∆) ∨ E)) is log canonical.

Claim. (Y ′, ψ∗(µ−1
∗ (∆) ∨ E)) is plt.

Proof Otherwise, since AX,∆(E) < T (E) by (4.19), −KY − (µ−1
∗ ∆ ∨ E) is big,

therefore we can find an effective Q-divisor

G′ ∼Q −KY ′ − ψ∗(µ−1
∗ ∆ ∨ E)

such that Supp(G′) does not contain ψ∗E but another lc center of (Y ′, ψ∗(µ−1
∗ (∆)∨

E)). In particular, (Y ′, ψ∗(µ−1
∗ ∆ ∨ E) + εG′) is not log canonical for any ε > 0.

This yields an effective Q-divisor G ∼Q −KY − (µ−1
∗ ∆ ∨ E) on Y such that

ψ∗G = G′.
We denote by D = µ∗(G). However, D violates our assumption, since if

there exists an ε and D′ as in Lemma 4.27, then
(
Y, E ∨ µ−1

∗

(
∆ + D′

)
+ εG

)
is log canonical and KY +

(
E ∨ µ−1

∗ (∆ + D′) + εG
)
∼Q 0. This implies that

(Y ′, ψ∗(µ−1
∗ ∆∨E)+εG′) is log canonical, contradicting to our choice of G′. �

We pick up a general Q-divisor A′ ∼Q −(KY ′ + ψ∗(µ−1
∗ ∆ ∨ E)). Let A ∼Q

−(KY + (E∨µ−1
∗ ∆)) be the corresponding section and D∗ = µ∗A as above. Then

E is the only lc place of (X,∆ + D∗).

(ii)=⇒(i): We assume E satisfies the conditions in (ii) and we aim to check
the statement in Lemma 4.27. From the condition AX,∆(E) < T (E), there exists
an effective Q-divisor G1 ∼Q −KX − ∆ such that AX,∆(E) < ordE(G1). Fix
a ∈ (0, 1) such that a · ordE(D) < AX.∆(E), let G2 be a general effective Q-
divisor G2 ∼Q −KX − ∆ − aD. Replacing D by t(aD + G2) + (1 − t)G1 with
t ∈ (0, 1) satisfying

ta · ordE(D) + (1 − t)ordE(G1) = AX,∆(E) ,

We may assume AX,∆(E) = ordE D and D ∼ −KX − ∆. We claim

Claim 4.29. For a sufficiently small ε > 0,
(
X,∆ + εD + (1 − ε)D∗

)
is lc and

has E as its lc place.

To see the claim, consider a log resolution of µ : Y → (X,Supp(∆+D+D∗)).
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We can write µ∗(KX + ∆ + D) = KY + E +
∑

i aiEi where the sum runs through
over all components that are not E. Similarly, µ∗(KX+∆+D∗) = KY +E+

∑
i biEi

with bi < 1. Thus

µ∗
(
KX + ∆ + εD + (1 − ε)D∗

)
= KY + E +

∑
i

(εai + (1 − ε)bi)Ei .

We can choose ε sufficiently small such that εai + (1 − ε)bi < 1 for all i as
bi < 1.

(ii)=⇒(iii): By assumption, there is an effectiveQ-divisor G ∼ −KX−∆ with
AX,∆(E) < ordE(G). For ε ∈

(
0, AX,∆(E)

ordE (G)

)
, denote by Dε = εG +

(
1 − ε·ordE (G)

AX,∆(E)

)
D∗,

then Dε ∼Q −t(KX + ∆) for some t < 1. For any ε,

AX,∆(E) = ordE

(
εG +

(
1 −

ε · ordE(G)
AX,∆(E)

)
D∗

)
= ordE(Dε) .

Then as in the proof of Claim 4.29, if we let µ : Y → (X,∆ + D∗ + G) be a log
resolution, for Ei , E,

AX,∆(Ei) −multEi

(
εG + (1 −

ε · ordE(G)
AX,∆(E)

)D∗
)

= bi − εai ,

where ai = multEi (G −
ordE (G)
AX,∆(E) D∗) and bi = AX,∆+D∗ (Ei). Since bi > 0, and there

are finitely many Ei, for a sufficiently small ε, bi − εai > 0. Thus (X,∆ + Dε)
has E as it unique lc place.

(iii)=⇒(ii): This is clear.

(iii)=⇒(iv): By (iii) there is an effective Q-divisor D ∼Q −KX − ∆ such that
E is the only place of (X,∆ + tD) for some t ∈ (0, 1). This implies that there
exists a birational projective morphism µ : Y → (X,∆) such that E is on Y and
(Y, E ∨ µ−1

∗ ∆) is plt. So t · ordE D = AX,∆(E) and for any δ < 1. Write

KY + DY + E = µ∗(KX + ∆ + tδD) + (1 − δ)AX,∆(E) · E ,

then DY is an effective Q-divisor. Since

−µ∗(KX + ∆ + tδD) − (1 − δ)AX,∆(E) · E ∼Q µ∗(1 − tδ)D − (1 − δ)AX,∆(E) · E ,

and E is ample over X, if we pick δ such that 0 < 1 − δ � 1,

−(KY + DY + E) ∼Q µ∗(1 − tδ)D − (1 − δ)AX,∆(E) · E

is ample.

(iii)⇐=(iv): If such DY exists, then for a sufficiently small ε > 0, we can
write

−KY − E − DY ∼ εµ
∗D0 + D1,
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where D0 ∼Q −KX−∆ isQ-divisor in general position on X, and D1 is an ample
Q-divisor on Y in general position. Since D0 and D1 are in general positions,
by Bertini’s Theorem, (Y, E + DY + εµ∗D0 + D1) is plt and ordE D0 = 0. Thus if
we set D = (µ∗(E+DY +D1)−∆), and E is the only lc place of the log canonical
pair (X,∆ + D), and KX + ∆ + D ∼Q −εD0. Thus D ∼Q −(1 − ε)(KX + ∆). �

The following approximating result can be considered as a version of results
in Section 2.3 for valuations.

Theorem 4.30. Let (X,∆) be an n-dimensional log Fano pair. If δ(X,∆) < n+1
n ,

then

δ(X,∆) = inf
E
δX,∆(E)

for all geometrically irreducible E which are special.

Proof By the proof of Theorem 4.9, for any sequence of divisors Em comput-
ing δm(X,∆), limm→∞ δX,∆(Em) = δ(X,∆). So it suffices to find a sequence of
geometrically irreducible prime divisor Em computing δm.

Fix m0 ∈ r · N such that | − m0(KX + ∆)| is base point free. For m ∈ r · N, let
δm := δm(X,∆), and by Lemma 4.7, there is an m-basis type divisor D′m whose
log canonical threshold is equal to δm. Let Em be a prime divisor over X which
computes the log canonical threshold of D′m, then

AX,∆(Em)
S m(Em)

= lct(X,∆; D′m) = δm .

Let Hm be a general divisor in | −m0(KX + ∆)| for some sufficiently divisible
m0 which does not contain the center of Em. For any sufficiently divisible m, we
can find an m-basis type divisor Dm which is compatible with both Em and Hm

by Lemma 3.5. We write Dm = Γm + amHm where Supp(Γm) does not contain
Hm. Then

lct(X,∆; Dm) ≤
AX,∆(Em)

ordEm (Dm)
=

AX,∆(Em)
S m(Em)

= δm ,

where the equality ordEm (Dm) = S m(Em) follows from the fact that Dm is cho-
sen to be an m-basis type divisor compatible with Em. By definition of δm,
lct(X,∆; Dm) ≥ δm. Thus lct(X,∆; Dm) = δm and the log canonical threshold is
computed by Em. So δm = lct(X,∆; Dm) = lct(X,∆; Γm), and any E′m comput-
ing the log canonical threshold δm of (X,∆; Γm) also computes the log canonical
threshold of (X,∆; Dm).

It suffices to verify the following claim.

Claim. There exists a geometric irreducible special divisor E′m computing the
log canonical threshold lct(X,∆; Γm).
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Proof Since Hm does not contain the center of Em, it follows that Em is an lc
place of the log canonical pair (X,∆ + δmΓm). By Theorem 4.9, limm→∞ δm =

δ(X,∆) < n+1
n ; and by Lemma 3.39, we have limm→∞ am = 1

m0(n+1) . Therefore,
for sufficiently large m, we get

δmΓm = δm(Dm − amH) ∼Q −λm(KX + ∆)

where λm = δm(1 − m0am) ∈ (0, 1).
By Exercise 1.9, there is a unique minimal lc center W of (X,∆ + δmΓm),

which has to be geometrically irreducible. Moreover, after perturbing δm to δ′m
and Γm to Γ′m we may assume

δ′mΓ′m ∼Q −λ
′
m(KX + ∆) with λ′m ∈ (0, 1)

and (X,∆ + δ′mΓ′m) is plt with a unique (geometrically irreducible) lc place E′m,
which is also an lc place of (X,∆+δmΓm). By Theorem 4.28, E′m is special. �

�

We complete the equivalence of Figure 0.1.

4.3 Minimizer of δ(X,∆)

In this section, we will show when δ(X,∆) < n+1
n , there exists a valuation which

computes δ(X,∆). Moreover, any such valuation is quasi-monomial and an lc
place of a Q-complement.

4.3.1 The existence of a minimizer

4.31. Let (Y, F =
∑

Fi) → B be a proper log smooth morphism over an ir-
reducible B. If all stratum of E has geometric irreducible fibers, then we can
identify the dual complexes DC(Yb, Fb) for geometric points b→ B.

In general, given a strata Z which is a component of

FI = ∩ ji∈I F ji , I = { j1, . . . , jp}

and a point b ∈ B, we fix a component Zb of

Z ×B b ⊆ ∩ ji∈I F ji,b , where F ji,b = (F ji )|Yb .

Let p = codimZY = codimZb Yb. Fix α ∈ Rp
>0, then we get valuations

vB,α ∈ QMη(Z)(Y, F) and vb,α ∈ QMη(Zb)(Yb, Fb) (4.20)

as in Example 1.27, where the i-th coordinate around η(Z) (resp. η(Zb)) is given
by F ji (resp. F ji,b).
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Theorem 2.51 and 2.52 Theorem 4.23 and 4.30
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Figure 4.1 Test stability by different objects

Definition 4.32. Let (X,∆) → B be a morphism from a pair (X,∆) to a nor-
mal variety B, we say that a project birational morphism µ : Y → (X,∆) is a
fiberwise log resolution, if

(
Y,Supp(Ex(µ) + µ−1

∗ ∆)
)
→ B is log smooth.

For a variety B, we denote by XB the product of X × B and similarly ∆B :=
∆ × B for a R-divisor ∆ on X.

Proposition 4.33. Let (X,∆) be a log Fano pair. Let D ⊂ XB be an effec-
tive relative Q-Cartier divisor over a (connected) smooth variety B, such that
D ∼B,Q p∗1(−KX −∆) where p1 : XB → X is the natural projection. If (XB,∆B +

D) → B admits a fiberwise log resolution g : Y → XB such that any strata of
(Y,Ex(g) + Supp(g−1

∗ (∆B) +D)) over B has geometric irreducible fibers.
Let F be a toroidal divisor with respect to (Y,Ex(g) + Supp(g−1

∗ (∆B) +D))
satisfying AXB,∆B+D(F) < 1, then for any b ∈ B, the functions S (Fb) and T (Fb)
are locally constant for b ∈ B, where Fb is base change of F over b.
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Proof By shrinking B, we may assume B is affine. By repeatedly blowing up
the center of F on Y , we may assume F is a prime divisor on Y . For any b ∈ B,
we denote the base change of g over b ∈ B to be gb : Yb → (X,∆ + Db). We
aim to show

Claim 4.34. For any t ∈ R≥0, the function

b ∈ B 7→ vol(−g∗b(KX + ∆) − tFb) (4.21)

is locally constant.

Proof It suffices to show the claim for t ∈ Q≥0. Let Γ1,Γ2 be the two effective
Q-divisors without common support on Y such that

KY + cF + Γ1 − Γ2 = µ∗(KXB + ∆B +D) ,

where F 1 Supp(Γi) (i = 1, 2). Note that Supp(Γ1 + Γ2 + F) is relative snc over
B and c = 1 − AX,∆+D(F) > 0.

Since −KXB − ∆B is f -ample, we may use Bertini’s Theorem to find an ef-
fective Q-divisor H ∼B,Q −

c
t (KXB + ∆B) such that Γ1 + g∗H has coefficients in

[0, 1) and Supp(Γ1 + g∗H) is relative snc over B. Applying Theorem 1.72(ii)
gives that

vol
(
KYb + (Γ1)b + g∗bHb

)
is independent of b ∈ B. (4.22)

We have

KY + Γ1 + g∗H = g∗(KXB + ∆B +D + H) − cF + Γ2

∼B,Q −
c
t
g∗(KXB + ∆B) − cF + Γ2

and, hence,

KYb + (Γ1)b + g∗bHb ∼Q
c
t

(
−g∗b(KXb + ∆b) − tFb +

t
c

(Γ2)b

)
.

Since (Γ2)b is gb-exceptional and Fb 1 Supp(Γ2),

vol
(
−g∗b(KXb + ∆b) − tFb

)
= vol

(
−g∗b(KXb + ∆b) − tFb +

t
c

(Γ2)b

)
=

t
c

vol
(
KYb + (Γ1)b + g∗bHb

)
.

Hence, (4.21) is independent of b ∈ B. �

Since this holds for each t ∈ R≥0, S (Fb) and T (Fb) are also independent of
b ∈ B. �
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Lemma 4.35. Let (X,∆) be a log Fano pair. For a fixed N such that N∆ is
integral, there is a scheme B of finite type, and a relative Cartier divisor Γ ⊂ XB

over B, such that for any b ∈ B, (X,∆ + Db) is strictly log canonical where
Db := 1

N Γb and N(KX + ∆ + Db) ∼ 0. Moreover, any N-complement D such
that (X,∆ + D) is strictly log canonical is isomorphic toDb for some b ∈ B.

Proof Let P := P(H0(−N(KX + ∆))∗) and Γ ⊂ X × P → P be the universal
family of divisors. Then the function

b ∈ P 7→ lct(X,∆; Γb)

is lower semi-continuous and constructible by Lemma 1.42. Therefore, there
is a reduced locally closed subset B of P, such that b ∈ B if and only if
lct(X,∆; Γb) = 1

N , and we letD = 1
N (Γ ×P B). �

Let X be a (geometrically irreducible) variety over k. Denote by k̄ the alge-
braic closure of k. A valuation v on K(X) is geometrically irreducible if it is a
restriction of a valuation v̄ on K(Xk̄) such that v̄ is Gal(k̄/k)-invariant.

Theorem 4.36. Let N be given by Lemma 4.25. Let (X,∆) be a log Fano pair
of dimension n such that δ(X,∆) < n+1

n . Then there exists a geometrically ir-
reducible valuation v, which is an lc place of an N-complement, computing
δ(X,∆).

Proof By Theorem 4.30, there exists a sequence of geometrically irreducible
divisors Ei over X such that δ(X,∆) = limi

AX,∆(Ei)
S (Ei)

and each Ei is a geomet-
rically irreducible lc place of a Q-complement. By Lemma 4.25, Ei is indeed
an lc place of an N-complement for some N that only depends on dim(X) and
Coeff(∆).

Taking B and D ⊆ XB as in Lemma 4.35, then each Ei corresponds to a k-
point bi ∈ B. After stratifying B into a disjoint union of reduced locally closed
subschemes {Bk}k, replacing B by a strata Bk and base-changing the data over
Bk, we may assume

(i) B is connected and smooth, which contains infinitely many bi;
(ii) there exists a fiberwise resolutionW→ (XB,∆B +D)→ B over B.

Let F =
∑

F j be the sum of all prime divisors onW with log discrepancy 0
over (XB,∆B + D). Thus ordEi ∈ QM(Wi, Fi), where (Wi, Fi) is the fiber of
(W, F) over bi. After passing through a subsequence again, we may assume
the centers of Ei correspond to the same strata over B under the identification
as in 4.31. Fix i0, then after a reordering of j, the center Zi0 of Ei0 which is
geometrically irreducible smooth over k, is a component of the intersection
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of F1, . . . , Fp and Wi0 . In particular, any F j,i0 = F j ∩ Wi0 (1 ≤ j ≤ p) is
geometrically irreducible around Zi0 .

For any i, let Ei correspond to a vector ~αi = (α1,i, . . . , αp,i) ∈ Zp. Therefore,
we can define a divisor E∗i over Xi0 (� X), whose center onWi0 is Zi0 , corre-
sponding to ~αi with respect to the coordinates given by the equations of F j,i0

(1 ≤ j ≤ p) around Zi0 . After passing through a subsequence, we may assume
the limiting vector

~α∞ = lim
i→∞

1∑p
j=1 α j,i

~αi

exists, which corresponds to a valuation v∗ ∈ QMη(Zi0 )(Wi0 ,
∑p

j=1 F j,i0 ). Then
v∗ is geometrically irreducible as so is F j,i0 .

Applying Proposition 4.33 to a base change of B, we see S (Ei) = S (E∗i ). By
Proposition 4.6, v→ AX,∆(v)

S (v) is continuous on QMη(Zi0 )(Wi0 ,
∑p

j=1 F j,i0 ), then

AX,∆(v∗)
S (v∗)

= lim
i→∞

AX,∆(E∗i )
S (E∗i )

= lim
i→∞

AX,∆(Ei)
S (Ei)

= δ(X,∆) .

So v∗ computes δ(X,∆).
Since AX,∆+Di0

(F j,i0 ) = 0 for any 1 ≤ j ≤ p, we have AX,∆+Di0
(v∗) = 0. �

Remark 4.37. We will show in Theorem 4.49 that any valuation computing
δ(X,∆) satisfies this property.

It is also known that when the ground field k is uncountable, then a valuation
v computing δ(X,∆) always exists (see Blum and Jonsson (2020)).

4.3.2 Quasi-monomialness of a minimizer

In this section, we aim to show that any valuation computing δ(X,∆) is always
quasi-monomial. We consider a more general setting for valuations computing
the log canonical threshold of a graded sequence of ideals.

Let x ∈ (X,∆) be a klt singularity, where X = Spec(R) is affine. Let a• =

{am}m∈N be a graded sequence of mx-primary ideals with c = lct(X,∆, a•) <
+∞. Let am (m ∈ N) be the m-th element in the graded sequence of ideals.
Denote by cm := lct(X,∆; 1

mam). In particular, limm cm = c.
Let S m be a geometrically irreducible component which computes the log

canonical threshold of am (see Exercise 1.10 for its existence), i.e.,

cm · ordS m (am) = m · AX,∆(S m) .

We consider the valuation

vm :=
1

AX,∆(S m)
ordS m =

m
cm · ordS m (am)

ordS m . (4.23)
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Note that AX,∆(vm) = 1.
Assume mp

x ⊆ a1 for some p > 0, as a1 is mx-primary. Then mpm
x ⊆ a

m
1 ⊆ am.

Thus for any m,

vm(mx) ≥ vm(am) ·
1

pm
=

1
cm p

≥ δ , (4.24)

for some positive constant δ.

Proposition 4.38. Notation as above. There exists a constant N which depends
on (X,∆) (but not m) and a family of Cartier divisors D ⊆ X × V parametrized
by a variety V of finite type, such that for any u ∈ V, (X,∆ + 1

N Du) is lc but
not klt; and for any m, S m computes the log canonical threshold of a pair
(X,∆ + 1

N Dum ) for some um ∈ V.

Proof Denote by vm := 1
AX,∆(S m) · ordS m . By Corollary 1.68, we may assume

µm : Ym → X to be the morphism which precisely extracts S m, i.e., Ex(µm) is
S m and −S m is ample over X.

By Theorem 1.82 (see also Remark 1.83), there is a uniform N0 such that for
each m, we can find an effectiveQ-divisor Ψm with the property that (X,∆+Ψm)
is log canonical with S m a log canonical place, and N0(KX +∆+Ψm) is Cartier.
Let Tm → S m be the normalization, so if we write

µ∗m(KX + ∆ + Ψm)|Tm = KTm + ∆+
Tm
,

then (Tm,∆
+
m) is log canonical by adjunciton.

Set N = rN0 where r is a positive integer such that r(KX + ∆) is Cartier, then
both N(KX + ∆) and N · Ψm are Cartier for all m. Thus we can assume N · Ψm

is given by div(ψm) for some regular function ψm.
Fix a positive integer M, such that δ · M > N (see (4.24)). Let g1, ..., gp be

p-elements in R, such that their reductions

[g1], ..., [gp] ∈ OX,x/m
M
x

yield a basis (over the ground field k). So for any m, there exists a linear com-
bination hm of g1, ..., gp such that the image of ψm and hm are the same in
OX,x/m

M
x .

Claim 4.39. Let Φm := div(hm), then (X,∆ + 1
N Φm) is log canonical and has

S m as its log canonical place.

Proof Since sm = hm − ψm ∈ m
M
x , by (4.24)

vm(sm) ≥ M · vm(mx) > N .

On the other hand, since vm computes the log canonical threshold of (X,∆ +
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Ψm),

N = N · AX,∆(vm) = vm(ψm) ,

which implies

vm(hm) = vm(ψm + sm) = N .

It follows that µ∗m(Φm)|Tm = µ∗m(N · Ψm)|Tm . Therefore,

µ∗m(KX + ∆ +
1
N

Φm)|Tm = µ∗m(KX + ∆ + Ψm)|Tm

= KTm + ∆+
Tm
.

Since (Tm,∆
+
Tm

) is log canonical, by inversion of adjunction, (X,∆ + 1
N Φm) is

log canonical and S m computes its log canonical threshold. �

Then applying Lemma 1.42 to the family of Cartier divisors DU ⊆ X × U,
where

U = {(x1, ..., xp) ∈ Ap
k | (x1, ..., xp) , (0, ..., 0)}

and DU = (
∑p

i=1 xigi = 0), we could find a bounded family of divisors D ⊆
X × V → V for some V ⊂ U, such that (X,∆ + 1

N Du) is log canonical but not
klt if and only if u ∈ V . From our argument, we know D ⊂ X ×V is the desired
family of Cartier divisors. �

Theorem 4.40. Let x ∈ (X,∆) be a klt singularity. Let vm be the sequence of
valuations defined as in (4.23). Then there is an infinite subsequence which has
a geometrically irreducible quasi-monomial limit v ∈ Val=1

X,x computing the log
canonical threshold of lct(X,∆; a•).

Proof Applying Proposition 4.38, we get a bounded family of Cartier divisors
(D ⊆ X × V) → V such that for any b ∈ V , (X,∆ + 1

N Db) is log canonical but
not klt, and any S m is the lc place of (X,∆ + 1

N Dbm ) for some bm ∈ V .
It follows from Theorem 4.41 that after passing through a subsequence,

limp vp exists, denoted by v.
Finally, we check v computes lct(X,∆; a•) = c. By definition

1
m

vm(am) =
1
cm

and
1

mp
vmp(amp) =

1
cmp

.

Since ap
m ⊆ amp,

v(am) = lim
p→∞

vmp(am) ≥ lim sup
m

1
m

vmp(amp) = lim sup
m

p
cmp

=
m
c
.

Thus v(a•) = limm→∞
1
m v(am) ≥ 1

c . So AX,∆(v)
v(a•)

≤ c and v computes the log
canonical thresholds of a•. �
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Theorem 4.41. Let (X,∆) be a klt pair, V a variety of finite type, and Y → X×V
a fiberwise log resolution of (X × V,∆ × V + D) over V. Let bm ∈ V be an
infinite sequence of k-points, and vm a valuation such that vm ∈ QM(Ybm , Ebm )
with AX,∆(vm) = 1. Then after passing through a subsequence, vm admits a
quasi-monomial limit v. Moreover, if all vm are geometrically irreducible over
k, then so is v.

Proof Consider the set of closed subsets

{Z ⊂ V |Z is a closure of an infinite subset of {bm} } .

Replacing V by a minimal element in the above set, we can further assume
{bm} form a dense set of points on V , and there is no infinite subsequence of
{bm} whose closure is proper subset of V . Then after replacing by its smooth
open subset, we may assume V is smooth and irreducible.

Let F be the sum of exceptional divisor and the birational transform of ∆

on Y . Applying (4.20), for each vm, we obtain wm ∈ QM(YK , FK) for K =

K(V). Since the set of valuations in QM(YK , EK) with log discrepancy one
(with respect to (XK ,∆K)) is compact, after passing to an infinite subsequence,
the valuations wm converges to a quasi-monomial valuation w over XK .

We claim that the restriction v of w to K(X) ⊂ K(XK) satisfies the properties.
In fact, if for any effective Cartier divisor G ⊂ X, we denote by GK its pullback
under the injection XK → XV → X. Then Lemma 4.42 implies that,

v(G) = w(GK) = lim
m→∞

wm(GK) = lim
m→∞

vm(G) ,

thus v is the limit of vm.
Abhyankar’s inequality (see Lemma 1.24) says

rankQ(w) + tr.deg(w) ≤ rankQ(v) + tr.deg(v) + tr.deg(K(XK)/K(X)) .

Since w is quasi-monomial, the left hand side is equal to dim(X) + dim(V).
Therefore, rankQ(v) + tr.deg(v) = dim(X), thus v is quasi-monomial by Propo-
sition 1.29.

A valuation v on K(X) is geometrically irreducible, if and only if v is the
restriction of a Gal(k̄/k)-invariant valuation v̄ ∈ Val(Xk̄). This property is pre-
served after taking the limit of a sequence. �

Lemma 4.42. The notation as above, wm(GK) ≤ vm(G), and the equality holds
for all but finitely many m.

Proof The first inequality is straightforward. To see the equality, we can take
a log resolution (Z, F′) of

(
Y, F + ϕ∗G

)
, where ϕ : Y → X × V → X is the
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composite morphism. There is an open set V◦ ⊂ V , such that

(Z, F′) ×V V◦ → (Y, F + ϕ∗G
)
×V V◦ → V◦

yields a fiberwise log resolution. For a divisor E in QM(Z, F′) and u ∈ V◦,
denote by Eu the restriction of E over u, ordE(ϕ∗G) = ordEu (G). By our as-
sumption of V , all but finitely many bm are contained in V◦, and wm(GK) =

vm(G). �

Next we turn to the valuations which compute δ(X,∆).

Lemma 4.43. If L is a big and nef Q-line bundle on a projective variety X
such that rL is Cartier. Let v,w ∈ Val<+∞

X . Assume v ≤ w and S (v) = S (w),
then v = w.

Proof Suppose v ≤ w but v , w, then we aim to prove S (v) < S (w).
By our assumption there exists some f ∈ Rm0 such that

η = v( f ) < w( f ) = µ .

Denote by µ− η = ε′ and ε ∈ (0, ε′]∩Q. Then for sufficiently divisible integer
k such that kε ∈ r · N, the kernel of the map

Rεm0k
· f k

−→ F
µk

w R(1+ε)m0k/F
µk

v R(1+ε)m0k

is F ε′k
v Rεm0k. It follows that

dim(F µk
w R(1+ε)m0k/F

µk
v R(1+ε)m0k) ≥ dim(Rεm0k/F

ε′k
v Rεm0k)

and thus dividing out by kn

n! and letting k → ∞, by Lemma 4.2(ii), we obtain

vol(Vλ′

• (Fw)) − vol(Vλ′

• (Fv)) > 0 where λ′ =
µ

(1 + ε)m0

and λ′ < T (w). Hence S (v) < S (w). �

Theorem 4.44. Let (X,∆) be a projective klt pair and L is a big and nef line
bundle. If a valuation v ∈ Val<+∞

X computes δ(X,∆), then up to a rescaling,
v is the unique valuation computing the log canonical threshold of a•(v) :=
{ak(v)}k∈N. In particular, v is quasi-monomial.

Proof We assume AX,∆(v) = 1. Let c = lct(X,∆; a•), in particular,

c ≤
AX,∆(v)
v(a•)

= 1 .

Let w be a valuation computing its log canonical threshold with AX,∆(w) = 1.
We claim v ≤ w.
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We pick any f ∈ R and denote by v( f ) = p for some p ∈ R>0. For a fixed m,
choose ` such that

(` − 1)p < m ≤ `p .

Let bm = m
w(am) , so limm→∞ bm = c. Then we have:

v( f ) = p =⇒ v( f `) = p`,

=⇒ f ` ∈ ap`,

=⇒ f ` ∈ am,

=⇒ w( f ) ≥
w(am)
`

=
m

bm`
>

p
bm
−

p
bm`

.

Thus

w( f ) ≥ lim
m→∞

(
p

bm
−

p
bm`

)
≥

p
c
≥ v( f ) .

This implies S (w) ≥ S (v), and thus S (w) = S (v) as

1
S (w)

≤
1

S (v)
= δ(X,∆) .

From Lemma 4.43, v = w. In particular v is quasi-monomial by Theorem
4.40. �

4.3.3 Minimizers as lc places of Q-complements

Next we will show, if (X,∆) is a log Fano pair with δ(X,∆) < n+1
n , then any

valuation v which computes δ(X,∆) is an lc place of a Q-complement. We also
need a more technical statement Theorem 4.49(i), which will be a recipe for
our later proof of the finite generation of the associated graded ring. For this,
we need some basic Diophantine approximation result.

Let v = (α1, . . . , αp) ∈ Rp be a vector, we define its fractional part to be

{v} = ({α1}, . . . , {αp}) .

Definition 4.45. A sequence of vectors {v1, v2, · · · } ⊆ Rp is called equidis-
tributed module 1, if the fractional part {{v1}, {v2}, · · · } satisfies that for any
I[a,b) = [a1, b1) × · · · × [ap, bp) ⊂ [0, 1]p,

lim
N→∞

1
N

(
#
∣∣∣ {{v1}, {v2}, · · · , {vN}

}
∩ I[a,b]

∣∣∣) =

p∏
j=1

(b j − a j) .
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Theorem 4.46 (Weyl’s Criterion). A sequence {vq = (αq,1, . . . , αq,p)}q∈N ⊂ Rp

is equidistributed module 1 if and only if

lim
N→∞

1
N

N∑
q=1

e2π
√
−1(`1αq,1+···+`pαq,p) = 0

for all ` = (`1, . . . , `p) ∈ Zp \ {0}.

Proof See (Kuipers and Niederreiter, 1974, Chapter 1.6). �

Corollary 4.47. Assume α1, . . . , αp and 1 are Q-linearly independent. Let v =

(α1, . . . , αp), then {qv := (qα1, . . . , qαp)}q∈N is equidistributed module 1.
In particular, fix δi ∈ {−1, 1} for i = 1, . . . , p. Then for any ε > 0, we can

find r1, . . . , rp and q ∈ N such that for any i,

0 < δi · (
ri

q
− αi) ≤

ε

q
.

Proof Since α1, . . . , αp and 1 areQ-linearly independent, then for any (`1, . . . , `p) ∈
Zr \ {0}, `1 · α1 + · · · + `p · αp < Z, thus∣∣∣∣∣∣ 1

N

N∑
q=1

e2π
√
−1(`1α1q+···+`pαpq)

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1
N

1 − e2π
√
−1(`1α1(N+1)+···+`pαp(N+1))

1 − e2π
√
−1(`1α1+···+`pαp)

∣∣∣∣∣∣
≤

2
N

∣∣∣∣∣∣ 1

1 − e2π
√
−1(`1α1+···+`pαp)

∣∣∣∣∣∣→ 0, as N → ∞ .

So we can apply Theorem 4.46 to conclude that {qv}q=1 is equidistributed mod-
ule 1. In particular, we can find q such that

{qαi} ∈

(0, ε) δi = −1,

(1 − ε, 1) δi = 1 .

�

We denote the norm ‖ · ‖ on Rp to be ‖x‖ = max1≤i≤p |xi|.

Lemma 4.48. Let v ∈ Rp be a vector. Fix ε > 0. For i = 1, . . . , p, there exist
rational vectors vi ∈ Q

p, positive integers qi, and ai ≥ 0 such that

(i) qi · vi ∈ Z
p,

(ii) v =
∑

ai · vi; and
(iii) ‖vi − v‖ < ε

qi
.

Proof We denote by

v = (α1, . . . , αp) ∈ Rp .

We first assume that (1, α1, . . . , αp) is linearly independent.
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Applying Corollary 4.47 for all 2p choices of δ1, . . . , δp to be −1 or 1, we
find v1, . . . , v2p vectors, it suffices to show that we can choose p vectors out of
them so that condition (ii) is satisfied.

Let wi = vi − v ∈ Rp, then we know that the signs of the components of
w1, . . . ,w2p exhaust all 2p possiblilities. We claim that 0 can be written as a
positive linear combination of w1, . . . ,w2p . We prove this by induction on p.
Let w1, . . . ,w2p−1 be all the vectors with positive first component. Then using
the induction, we know that there exist a1, . . . , a2p−1 > 0 such that

2p−1∑
i=1

aiwi = (a, 0, . . . , 0) with a > 0 .

Similarly, we can find a2p−1+1, . . . , a2p > 0 such that
2p∑

i=2p−1+1

aiwi = (−b, 0, . . . , 0) with b > 0 .

Then we have

(ba1)w1 + · · · + (ba2p−1 )w2p−1 + (aa2p−1+1)w2p−1+1 + · · · + (aa2p )w2p = 0 .

This means that 0 is contained in the cone generated by wi1
, . . . ,wip

for a choice
of p vectors in {w1, . . . ,w2p }, i.e. v is indeed contained in the cone generated
by vi1

, . . . , vip
with coefficients ai ≥ 0 (1 ≤ i ≤ p).

In the general case, after reordering, we can assume for some 0 ≤ j ≤ p,
{1, α1, . . . , α j} is linearly independent and generates the space spanQ(1, α1, . . . , αp).
Thus for any i > j,

αi = c0i · 1 + c1iα1 + · · · + c jiα j

with coefficients chi ∈ Q for 0 ≤ h ≤ j. Let

chi =
rhi

qhi
with rhi, qhi ∈ Z .

Write

Mi =
∣∣∣∣∏

h

qhi

∣∣∣∣ and M =
∏
j<i≤p

Mi .

Denote by C = max{ 1, j ·maxh,i |chi| }.
By the argument above, we can construct vectors v∗1, · · · , v

∗
j ∈ Q

j for v∗ =

(α1, · · · , α j) satisfying all conditions (i)-(iii) where the constant in (iii) is cho-
sen to be ε

MC . We get rational vectors v∗1, · · · , v
∗
j ∈ Q

j, positive integers q1, . . . , q j,
and a1, . . . , a j ≥ 0. For 1 ≤ h ≤ j, denote by v∗h = (αh1, . . . , αh j) ∈ Q j, we have,

|αhi − αi| <
ε

qhMC
for any 1 ≤ i ≤ j . (4.25)
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We define vh ∈ R
p to be the vector

i-th component of vh =

αhi if i ≤ j ,

c0i · 1 + c1iαh1 + · · · + c jiαh j if i > j .

Since v∗ =
∑ j

h=1 ahv∗h implies αi =
∑ j

h=1 ahαhi for all 1 ≤ i ≤ j. Therefore, for
any i > j, since

∑ j
h=1 ah = 1,

αi = c0i · 1 + c1iα1 + · · · + c jiα j

= c0i

j∑
h=1

ah + c1i

j∑
h=1

ahαh1 + · · · + c ji

j∑
h=1

ahαh j

=

j∑
h=1

ah(c0i · 1 + c1iαh1 + · · · + c jiαh j)

=

j∑
h=1

ah ·
(
i-th component of vh

)
,

i.e., v =
∑ j

h=1 ahvh.
For 1 ≤ h ≤ j, qhv∗h ∈ Z

j, thus for any i > j, Miqhαhi ∈ Z. This implies
Mqhvh ∈ Z

p. Moreover, for i > j,∣∣∣αi − (i-th component of vh)
∣∣∣

=

∣∣∣∣∣∣∣
j∑

k=1

cki(αhk − αk)

∣∣∣∣∣∣∣ ≤ C ·
1
qh

ε

MC
=

1
Mqh

ε .

Combining with (4.25), we have ‖v − vh‖ ≤
1

Mqh
ε as C ≥ 1. This confirms (i)

and (iii). �

Theorem 4.49. Let (X,∆) be a log Fano pair of dimension n such that δ(X,∆) =

δ < n+1
n , and let v be a valuation that computes δ(X,∆).

(i) Let σ ∈
(
0,min

{
δ

n+1 , 1 −
nδ

n+1

})
∩ Q. Then for any effective Q-divisor D ∼Q

−(KX + ∆), there exists a Q-complement Γ of (X,∆) such that Γ ≥ σD and v
is an lc place of (X,∆ + Γ).

(ii) v is the lc place of an N-complement for the positive integer N defined as in
Corollary 4.26.

Proof Up to a rescaling, we may assume that AX,∆(v) = 1. By Theorem 4.44,
the valuation v is quasi-monomial. Let p = rankQ(v). Let π : Y → X be a log
resolution such that v ∈ QM(Y, E) for some simple normal crossing divisor
E = E1 + · · · + Ep on Y . By Lemma 4.48, for any ε1 > 0 there exists divisorial
valuations v1, . . . , vp ∈ QM(Y, E) and positive integers q1, . . . , qp such that
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• v is in the convex cone generated by vi,
• for i = 1, . . . , p, the valuation qivi is Z-valued and has the form ci · ordFi for

a prime divisor Fi over X and ci ∈ N>0, and
• |vi − v| < ε1

qi
for all i = 1, . . . , p.

We claim that when ε1 is sufficiently small, there exists a Q-complement Γ ≥

σD of (X,∆) that has all vi as lc places. Since v is contained in their convex
hull, the statement (i) of the lemma then follows.

Let a• = {ak(v)}k∈N be the graded sequence of valuation ideals of v. In par-
ticular, v computes the log canonical threshold of a• by Theorem 4.44. The
function

ϕ : w 7→ AX,∆(w) − w(a•)

is convex on QM(Y, E), in particular, it is locally Lipschitz. Since ϕ(v) =

AX,∆(v) − v(a•) = 0, there exists some constant C > 0 such that

|ϕ(w)| ≤ C|w − v|

for any w in a relatively compact neighborhood of v in QM(Y, E). Applying
this to the divisorial valuations vi above, we find

ϕ(ci · ordFi ) = qi · ϕ(vi) ≤ Cqi|vi − v| ≤ Cε1 .

It follows that we may fix 0 < ε0 � 1 such that for any 1 ≤ i ≤ p,

AX,∆(Fi) − (1 − ε0)ordFi (a•) < 2Cε1 . (4.26)

Let 0 ≤ D′ ∼Q −(KX + ∆) be general, in particular it does not contain the
center of v in its support. For any m ∈ N such that −m(KX + ∆) is very ample,
let G = βD′ + (1 − β)D, where

β =

0 if δ ≤ 1
(n+1)(δ−1)

δ
if 1 < δ < n+1

n

(4.27)

and let Dm be an m-basis type Q-divisor that is compatible with both G and v.
Then we have Dm ≥ S m(G) ·G and v(Dm) = S m(v).

Denote by

D′m := Dm − S m(G) · βD′ ∼Q −(1 − βS m(G))(KX + ∆) .

Note that G ∼Q −(KX + ∆), thus limm S m(G) = S (G) = 1
n+1 (see Lemma 3.39)

and

lim
m→∞

(1 − βS m(G)) =

1 if δ ≤ 1
1
δ

if 1 < δ < n+1
n .

(4.28)



172 K-stability via valuations

It follows that we can choose a sequence of rational numbers ηm > 0 (m ∈ N)
such that ηm < δm(X,∆), limm→∞ ηm = δ and ηm(1 − βS m(G)) < 1 for all m. In
particular, (X,∆ + ηmD′m) is log Fano. Since

lim
m→∞

ηm(1 − β)S m(G) =

 δ
n+1 if δ ≤ 1

1 − nδ
n+1 if 1 < δ < n+1

n ,
(4.29)

by our assumption on σ, for m � 0,

ηmD′m ≥ ηm(1 − β)S m(G) · D ≥ σD . (4.30)

Since v computes δ(X,∆) and D′ is general, we also see that for m � 0,

ηmv(D′m) = ηmv(Dm) = ηmS m(v)

≥ (1 − ε0)δ(X,∆)S (v) = (1 − ε0)AX,∆(v) = 1 − ε0 .

Thus the base ideal of OX(NηmD′m) is contained in aN(1−ε0)(v) for any suffi-
ciently divisible N. It follows for any Fi,

ordFi (ηmD′m) ≥
1
N

ordFi (aN(1−ε0)) ≥ (1 − ε0)ordFi (a•) .

Combined with (4.26), if ε1 <
1

2C we obtain

ai := AX,∆+ηmD′m (Fi) ≤ AX,∆(Fi) − (1 − ε0)ordFi (a•) < 2Cε1 < 1 .

By Corollary 1.68, there exists a Q-factorial birational model µ : X̃ → X that
extracts exactly the divisors Fi. We can write

KX̃ +

p−1
∗ (∆ + ηmD′m) ∨

p∑
i=1

(1 − ai)Fi

 = µ∗(KX + ∆ + ηmD′m) ,

and ai ∈ (0, 2Cε1) by (4.26). By (4.30),

KX̃ +

p−1
∗ (∆ + σD) +

p∑
i=1

(1 − ai)Fi

 ≤ µ∗(KX + ∆ + ηmD′m) .

As (X,∆ + δmD′m) is log Fano, (X̃, p−1
∗ (∆ + σD) ∨

∑p
i=1(1 − ai)Fi) has a Q-

complement.
We choose ε1 to satisfy that 2Cε1 < εwhere ε is given in Lemma 4.50 which

depends on dim(X), the coefficients of ∆ andσ. Then (X̃, p−1
∗ (∆+σD)∨

∑p
i=1 Fi)

also has a Q-complement. Pushing it forward to X, we obtain a Q-complement
Γ ≥ σD of (X,∆) that realizes all Fi as lc places, as claimed in (1).

For (ii), it follows immediately from (i) that v is an lc place of aQ-complement
Γ. There exists a log smooth model µ : (Y, E) → (X,∆ + Γ) where E =

∑q
i=1 Ei
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precisely consists of prime divisors on Y with log discrepancy 0 with respect to
(X,∆ + Γ). In particular, v ∈ QM(Y, E). Denote by F the exceptional divisor of
Y over X. We can run a (KY +µ−1

∗ (∆+Γ)∨F)-MMP over X to get a Q-factorial
birational model µ′ : X̃ → X. As

KY + µ−1
∗ (∆ + Γ) ∨ F ∼X,Q

∑
AX,∆(Fi)Fi ,

Y d X̃ is a birational contraction which is isomorphic at the generic point
of any component of a non-empty intersections of

⋂
i∈J E j for J ⊂ {1, . . . , q}.

Since all prime components of Ex(X′/X) has log discrepancy 0 with respect to
(X,∆ + Γ), X̃ is of Fano type.

As in Lemma 4.25, (X̃, µ′−1
∗ ∆X∨

∑q
i=1 Ei) has an N-complement by Theorem

1.82, whose pushforward on X gives an N-complement D of (X,∆) that has all
Ei (i = 1, . . . , q) as lc places. In particular, it also has v as an lc place. �

Lemma 4.50. Let (X,∆) be a projective pair and let G be an effective Q-
Cartier Q-divisor on X. Assume that X is of Fano type. Then there exists some
ε > 0 depending only on dim(X), the coefficients of ∆ and G such that: if
(X,∆ + (1 − ε)G) has a Q-complement, then the same is true for (X,∆ + G).

Proof Replacing X by a small Q-factorial modification, we may assume that
X itself is Q-factorial. Let n = dim X and let I ⊆ Q be the coefficient set
of ∆ and G. By the ACC of log canonical thresholds and global ACC of log
Calabi-Yau pairs (see Theorem 1.76 and Theorem 1.77), there exists a rational
constant ε > 0 depending only on n, I which satisfies the following property:
for any pair (X,∆) of dimension at most n and any Q-Cartier divisor G on X
with the coefficients of ∆ and G belonging to I, we have (X,∆ + G) is lc as
long as (X,∆ + (1 − ε)G) is lc; if in addition there exists a Q-divisor D with
(1 − ε)G ≤ D ≤ G such that KX + ∆ + D ∼Q 0, then D = G.

Let (X,∆+ (1−ε)G) be a pair with a Q-complement Γ. As X is of Fano type,
we may run the −(KX + ∆ + G)-MMP f : X d X′. Let ∆′,G′,Γ′ be the strict
transforms of ∆,G,Γ. Since

KX + ∆ + (1 − ε)G + Γ ∼Q 0 ,

(X′,∆′ + (1 − ε)G′ + Γ′) is lc, as (X,∆ + (1 − ε)G + Γ) is lc. It follows that
(X′,∆′ + (1 − ε)G′) is lc, thus by our choice of ε, (X′,∆′ + G′) is lc as well.
Suppose that X′ is a Mori fiber space g : X′ → S for −(KX′ + ∆′ + G′). Then
KX′ + ∆′ + G′ is g-ample. Since ρ(X′/S ) = 1 and

KX′ + ∆′ + (1 − ε)G′ ∼Q −Γ′ ≤ 0 ,

there exists some ε′ ∈ (0, ε] such that KX′ + ∆′ + (1 − ε′)G′ ∼g,Q 0. If we
restrict the pair to the general fiber of X′ → S , it yields a contradiction to our
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choice of ε. Thus X′ is a minimal model for −(KX′ + ∆′ + G′). As X′ is also
of Fano type, we see that −(KX′ + ∆′ + G′) is semiample, hence (X′,∆′ + G′)
has a Q-complement. Since f ∗(KX′ + ∆′ + G′) ≥ KX + ∆ + G, this implies that
(X,∆ + G) has a Q-complement. �

4.4 ∗ Equivariant stability

In this section, we will show that the notion of K-semistability of a log Fano
pair (X,∆) does not depends on the base field. Moreover, when there is a group
G acting on (X,∆), then K-semistability of (X,∆) is equivalent to the the equiv-
ariant K-semistability.

For the purpose of doing induction, we need to extend notions in Section
3.1.1 to a setting of multi linear series.

Definition 4.51. On a normal quasi-projective variety X, a weighted multi lin-
ear seriesV is defined in the following way: for any i = 1, . . . , j, we fix

(i) a rational number ai ∈ Q≥0, and
(ii) a finite dimensional subspace Vi ⊆ H0(X, Li), where Li is a Q-Cartier Q-

divisor.

We say Vi is a component ofV, and write a formal sumV = a1V1+· · ·+a jV j.
We define

c1(V) =

j∑
i=1

aic1(Li) ∈ Pic(X)Q . (4.31)

Denote by dim Vi = Ni. A basis type divisor D ofV is of the form
∑ j

i=1 aiDi,
where Di = 1

dim Ni

(∑Ni
p=1 div(sp)

)
and {s1, ..., sNi } yields a basis of Vi. Clearly, a

basis type divisor D satisfies [D] = c1(V).

Definition 4.52. A decreasing filtration F λ(V) (λ ∈ R) of V is defined as
decreasing filtrations F λVi (λ ∈ R) for each Vi.

Definition 4.53. We define

S (F ,V) :=
j∑

i=1

ai

Ni

(∑
λ

λ · dim Grλ
F

Vi

)
.

If (X,∆) is klt, we define

δ(X,∆,V) = inf
E

AX,∆(E)
S (FE ,V)

. (4.32)
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(See Exercise 3.3 for the definition ofFE on Vi). It follows from Lemma 3.13(i)

inf
D

lct(X,∆; D) = inf
E

AX,∆(E)
S (FE ,V)

,

where D runs through all basis type divisors ofV.
We also define the local analogue: for an irreducible variety W, we let

δη(W)(X,∆,V) = inf
E

AX,∆(E)
S (FE ,V)

, (4.33)

where the infimum runs through over all E such that the closure of cX(ordE)
on X contains W. Moreover, if ρ : X → U is a projective morphism and an
irreducible subvariety Z ⊆ U, we define

δη(Z)(X,∆,V) = inf
Z⊆ρ(W)

δη(W)(X,∆,V) = inf
E

AX,∆(E)
S (FE ,V)

, (4.34)

where the infimum runs through over all E whose center cX(E) satisfies η(Z) ∈
ρ(cX(E)). We note that δη(W)(X,∆,V) could be +∞ when all sections of Vi for
all i do not contain W.

Moreover, if there is an algebraic group G-acting on (X,∆), then we say V
is G-invariant if each component Vi ofV is G-invariant. For a G-invariantV,
we define

δG(X,∆,V), δη(W),G(X,∆,V) and δη(Z),G(X,∆,V) , (4.35)

where in the corresponding infima infE
AX,∆(E)

S (FE ,V) , we only consider G-invariant
irreducible divisors E over X.

4.54. Let L be a Q-Cartier Q-divisor. Let V ⊆ H0(X, L) a finite dimensional
linear system. We define the base ideal Bs(V) of the linear system V to be an
ideal with rational exponent as follow: let m be a positive integer such that mL

is Cartier, then Bsm(V) = I
1
m
m , where Im =

∑
D O(−D) for all 1

m D ∈ |F λVi|.
Since Bsm(V)mn = Bsn(V)mn, we can identify Bsm(V) and Bsn(V) as the same
ideal with rational exponent, denoted by Bs(V).

Definition 4.55. Let F be a decreasing filtration on V, we define the base
ideal of F to be

I(F ,V) =

j∏
i=1

I(F|Vi ,Vi)ai =

j∏
i=1

(∏
λ∈R

Bs(F λ(Vi))
ai
Ni

dim Grλ
F

Vi
)
.

Proposition 4.56. Let G be an algebraic group which acts on a klt pair (X,∆)
and V a G-invariant weighted multi linear series on X. Let W ⊂ X be a G-
invariant irreducible subvariety. Then

δη(W),G(X,∆,V) = inf
F

lctη(W)(X,∆;I(F ,V)) ,
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where F runs through over all G-invariant filtrations ofV.

Proof For a given G-invariant divisor E over X, whose center contains η(W),
FE induces a G-invariant filtration onV. Then by definition,

ordE

(
Bs(F λ

E (Vi))
dim Grλ

FE
Vi
)

= λ · dim Grλ
FE

Vi ,

which implies S (FE ,V) = ordE(I(FE ,V)), so

δη(W),G(X,∆,V) ≥ inf
F

lctη(W)
(
X,∆;I(F ,V)

)
for G-invariant filtration F .

Conversely, for any filtration F , by Exercise 1.10, there exists a G-invariant
divisor E whose center contains η(W) such that it computes the log canonical
threshold lctη(W)(X,∆;I(F ,V)). For any basis type divisor D compatible with
F ,

ordE(I(F ,V)) ≤ ordE D ≤ S (FE ,V) ,

where D runs through all basis type divisors ofV. So

δη(W),G(X,∆,V) ≤
AX,∆(E)

S (FE ,V)
≤

AX,∆(E)
ordE(I(F ,V))

= lctη(W)(X,∆;I(F ,V)) .

�

Proposition 4.57. To compute (4.32)–(4.35), we can respectively choose a
geometrically irreducible divisor E such that

(i) the infimum in (4.32) is attained by E, and there is a morphism µ : Y → X
with Ex(µ) = E, and if we write µ∗(KX + ∆) = KY + ∆Y , then (Y,∆Y +

AX,∆(E)E) is plt and −KY − ∆Y − AX,∆(E)E is ample over X.
(ii) the infimum in (4.33) is attained by E, and (i) holds over the a neighborhood

of η(W).
(iii) the infimum in (4.34) is attained by E, and (i) holds over the a neighborhood

of η(Z).
(iv) E is G-invariant, computing the infimum in (4.35), satisfying (i)-(iii) respec-

tively.

Proof The proofs are similar, so we only prove the statement for the infimum
δη(W),G(X,∆,V) in (4.35). As in the proof Lemma 3.13, there is a bounded
family B̃ parametrizing all filtrations of V. Moreover, G acts on B̃, and the
fixed points B := B̃G precisely correspond to G-invariant filtrations. As G is an
algebraic group, B is also of finite type. In particular, there exists a G-invariant
filtration F0, such that

lctη(W)(X,∆;I(F0,V)) = inf
F

lctη(W)(X,∆;I(F ,V)) ,
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for all G-invariant filtrations F , and by Proposition 4.56,

lctη(W)(X,∆;I(F0,V)) = δη(W),G(X,∆,V) .

Then as in the proof of Proposition 4.56, by Exercise 1.10, there exists a
G-invariant geometrically irreducible divisor E as in the statement, such that
η(W) ∈ cX(E) and

AX,∆(E)
S (FE ,V)

≤
AX,∆(E)

ordE(I(F0,V))
= lctη(W)(X,∆;I(F0,V)) .

�

4.58 (Restriction of Q-Cartier divisors). We say two Q-divisors D1 and D2 on
an integral variety are linearly equivalent if D1 − D2 is a principal divisor. We
say Q-divisors which are linearly equivalent yield the same Q-divisor.

Let E ⊂ X be a prime divisors which is smooth in codimension 1 and L a
Q-divisor. If E * Supp(L), L|E is a well defined Q-divisor. In general, L|E can
be well defined as a Q-divisor class.

Definition 4.59. Let V ⊆ H0(X, L) be a finite dimensional space for a Q-
Cartier Q-divisor L on X. Let E be a Q-Cartier prime divisor on X.

Assume ordE(V) ≥ λ. We define Grλ
FE

V(−λE)|E as follows: if ordE(V) > λ,
then Grλ

FE
V(−λE)|E = 0; if there exists D0 ∈ |V | such that ordE(D0) = λ, the Q-

divisor D0(−λE)|E is defined as 1
m (mD0 −mλE)|E where m is a positive integer

such that mD0 and mE is Cartier. Fix D0, then V can be identified as the vector
space spanned by f1, ..., fN where fi ∈ K(X). Since ordE(V) = λ, this implies
ordE( fi) ≥ 0. So fi|E(1 ≤ i ≤ N) is well defined and spans a vector space
denoted by

GrλEV(−λE)|E ⊆ H0(E,D0(−λE)|E) ,

whose dimension is equal to dim Grλ
FE

(V). For a different choice D ∈ |V | with
ordE D = λ, then D0(−λE)|E ∼ D(−λE)|E , and the linear series of Grλ

FE
V(−λE)|E

yield the same set of effective Q-divisors which does not depend on the choice
of D0. So for any s ∈ V with ordE(s) = λ, the restriction s(−λE)|E is well
defined as a member in GrλEV(−λE)|E .

More generally, let L be a Q-Cartier Q-divisor on X and V ⊆ H0(X, L) be
a finite dimensional subspace. Let µ : Y → X be a birational morphism and
E ⊆ Y a Q-Cartier prime divisor on Y . We define

GrλEV(−λE)|E = µ∗(F λ
E V)(−λE)|E . (4.36)

Lemma 4.60. In the above setting, let D be a basis type divisor of V ⊆

H0(X, L) compatible with FE . Write D = aE + Γ where Supp(Γ) does not
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contain E. Then Γ|E yields a basis type divisor of the weighted multi linear
series

W :=
∑
λ

dim
(
GrλEV

)
dim V

GrλEV(−λE)|E .

Proof Let N = dim(V). Let s1, . . . , sN be a basis of V compatible with FE ,
therefore for any λ ∈ R, the set

{
si(−λE)|E | ordE(si) = λ

}
yields a basis of

Grλ
FE

V(−λE)|E . Let λk (k = 1, . . . , j) be all the jumping numbers such that
Nk := dim Grλk

FE
V > 0, then

Γ =
1
N

N∑
i=1

(div(si) − ordE(si)E)

=

j∑
k=1

Nk

N

 1
Nk

∑
ordE (si)=λk

(div(si) − λkE)

 .
Therefore,

Γ|E =

j∑
k=1

Nk

N

 1
Nk

∑
ordE (si)=λk

div
(
si(−λkE)|E

)
yields a basis type divisor ofW. �

Lemma 4.61. Let f : (X,∆) → U be a klt pair projective over U. Let V be
a weighted multi linear series on X. Let Y ⊆ U be an irreducible subvariety.
Denote by δ = δη(Y)(X,∆,V). Assume −(KX + ∆ + δc1(V)) is f -ample. Then
there exists a unique minimal object in

Γ :=
{
lc centers of (X,∆ + δD) which meet f −1(η(Y))

}
for D running through over all basis type divisors ofV.

Proof Let Zi (i = 1, 2) be two elements in Γ, i.e. Y ⊂ f (Zi), and there exists
two divisors Ei over X such that cX(Ei) = Zi containing Z and δ =

AX,∆(Ei)
S (FEi ,V) .

Then by Lemma 3.5, we can choose a basis type divisor D of V compatible
with the filtrations induced by both Ei. Therefore, Zi are lc centers of the pair
(X,∆ + δD) which is log canonical over η(Y).

Since −KX −∆− δD is ample over U, then (X,∆ + δD) has a unique minimal
lc center Z ⊆ Zi over η(Y) (see Exercise 1.9) and Z is also an element in Γ as
D is a basis type divisor ofV. This implies that Γ has a unique element. �

Theorem 4.62. Let G be an algebraic group, and f : (X,∆)→ U a G-equivariant
projective morphism from a geometrically irreducible klt pair (X,∆) to U. Let
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V be a G-invariant weighted multi linear series on X. Let Z be a geometri-
cally irreducible G-invariant subvariety on U. Let k̄ be an algebraic closure of
k. Assume that

δ̄ := δη(Zk̄)(Xk̄,∆k̄,Vk̄) < +∞

and −(KX + ∆ + δ̄ · c1(V)) is f -ample. Then δ̄ =
AX,∆(E)

S (FE ,V) for a G-invariant
geometrically irreducible divisor E over X whose image on U contains Z.

Proof We will apply induction on dim(X) = n.
First we apply Lemma 4.61 to (Xk̄,∆k̄) → Uk̄, then over η(Zk̄), there is a

unique minimal center of (Xk̄,∆k̄+δ̄Dk̄) for any basis type divisor Dk̄ ofVk̄, and
in particular, it is invariant for the actions by Galois(k̄/k) and Gk̄. Therefore,
it arises as a G-invariant base change of a geometrically irreducible subvariety
W ⊂ X whose image on U contains Z.

There exists a G-invariant geometrically irreducible divisor E as in Propo-
sition 4.57 such that AX,∆(E)

S (FE ,V) attains the minimum δ := δη(W),G(X,∆,V). More-
over, there exists a morphism µ : Y → X such that (Y, µ−1

∗ ∆ ∨ E) is plt over a
neighborhood X◦ of η(W) in X and −KY − (µ−1

∗ ∆ ∨ E) is ample restricted over
X◦. Denote by E◦ the restriction of E over X◦ and write

(KY + µ−1
∗ ∆ ∨ E)|E◦ = KE◦ + ∆E◦ .

For each component Vi of V, we define a weighted multi linear seriesWi

on E◦ to be

Wi =
∑
λ

dim
(
GrλEVi

)
dim Vi

GrλEVi(−λE)|E◦ and W := a1W1 + · · · + a jW j .

Claim 4.63. Let F be a G-invariant divisor over E◦ whose image on X contains
η(W), we have

AE◦ ,∆E◦
(F)

S (FF ,W) ≥ δ.

Proof The filtration on W induced by F can be lifted to a refined filtration
F of FE on V|X◦ . Let D be a general basis type Q-divisor of V|X◦ compatible
with F , so by Lemma 3.12

lctη(W)(X◦,∆X◦ ; D) = lctη(W)(X◦,∆X◦ ;I(F ,V)) .

Then

δ =
AX,∆(E)

S (FE ,V)
=

AX,∆(E)
ordE(D)

(since η(W) ∈ cX(E))

≥ lctη(W)(X◦,∆X◦ ; D)

= lctη(W)(X◦,∆X◦ ;I(F ,V)) ≥ δ ,
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where the last inequality follows from Proposition 4.56. Thus

lctη(W)(X◦,∆X◦ ; D) = δ . (4.37)

By abuse of notation, we also denote by µ the restriction of Y → X over X◦.
Write

µ∗δD = AX,∆(E) · E◦ + Γ (4.38)

for some effective Q-divisor Γ on Y◦ = Y ×X X◦, then

µ∗(KX◦ + ∆X◦ + δD) = KY◦ + (µ−1
∗ ∆X◦ ∨ E◦) + Γ .

By (4.37), after possibly shrinking X◦ around η(W), (Y◦, (µ−1
∗ ∆X◦ ∨ E◦) + Γ)

is log canonical. By Lemma 4.60, DE := 1
δ
Γ|E is a basis type Q-divisor ofW

compatible with the filtration FF , and

(KY◦ + (µ−1
∗ ∆X◦ ∨ E◦) + Γ)|E◦ = KE◦ + ∆E◦ + δDE

is log canonical over η(Z), therefore

AE◦,∆E◦ (F)
S (FF ,W)

≥ lctη(W)(E◦,∆E◦ ; DE) ≥ δ .

�

From the induction, if δ0 := δη(Wk̄)(E◦k̄ , (∆E◦ )k̄;Wk̄) < δ, as KE◦ + ∆E◦ +

δDE ∼X,Q 0 and DE = c1(W), we have

−KE◦ − ∆E◦ − δ0c1(W) ∼X,Q (δ − δ0)c1(W)

is ample over X. So we can apply the induction to µ : (E◦,∆E◦ ) → X, the
weighted multi linear seriesW on E◦ and W ⊆ X, and the inductive assump-
tion of Theorem 4.62 implies that δ0 =

AE,∆E (F)
S (FF ,W) for some G-invariant divisor F

whose center on E has its image on X containing η(W), which contradicts to
the above claim. So we conclude that

δη(Wk̄)(E◦k̄ , (∆E◦ )k̄;Wk̄) ≥ δ . (4.39)

Let E# be a divisor which computes δ̄ = δη(Zk̄)(Xk̄,∆k̄,Vk̄). In particular, it is
an lc place of the log canonical pair (Xk̄,∆k̄ + δ̄D#) for any basis type divisor
D# of Vk̄ compatible with FE# . So we can choose D# compatible with both
FEk̄

and FE# . By the choice of W, Wk̄ is the minimal log canonical center of
(Xk̄,∆k̄ + δ̄D#).

If δ > δ̄, (Xk̄,∆k̄ + δD#) is not log canonical over η(Wk̄). On the other hand,
over X◦

k̄
, we can write

µ∗(δD#)|X◦
k̄

= AX,∆(E) · E◦k̄ + Γ# and D#
E :=

1
δ

Γ#
|E
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as in (4.38). By (4.39), µ∗(KXk̄
+∆k̄ +δD#)|E◦

k̄
= KE◦+∆E◦+δD#

E is log canonical
over η(Wk̄), which by inversion of adjunction implies (Xk̄,∆k̄ + δD#) is log
canonical around η(Wk̄). This is a contradiction. Thus

AX,∆(E)
S (FE ,V)

= δ = δ̄ = δη(Zk̄)(Xk̄,∆k̄,Vk̄) .

�

Theorem 4.64. Let (X,∆) be a log Fano pair with an action by an algebraic
group G. Let k̄ be an algebraic closure of k.

(i) If δ(Xk̄,∆k̄) < 1, δ(Xk̄,∆k̄) =
AX,∆(v)
S X,∆(v) for a G-invariant quasi-monomial valu-

ation.
(ii) (Xk̄,∆k̄) is K-semistable if and only if (X,∆) is G-equivariantly K-semistable.

(iii) min{1, δ(Xk̄,∆k̄)} = min{1, δ(X,∆)}.

Proof It is clear (ii) and (iii) follow from (i). So it remains to verify (i).
Since we assume δ(Xk̄,∆k̄) < 1, δm(Xk̄,∆k̄) < 1 for any sufficiently large

m ∈ r · N. By Theorem 4.62, there is a G-invariant geometrically irreducible
divisor Em over X such that δm(Xk̄,∆k̄) =

AX,∆(Em)
S m(Em) . In particular, Em is the lc

place of an N-complement of (X,∆). Let V = H0(−N(KX + ∆)). Then for any
m, the filtration FEm is G-invariant, Em is the lc place of an N-complement, i.e.
there is an element in D ∈ F NAX,∆(Em)

Em
(V), such that (X,∆+ 1

N D) is log canonical.
Therefore, denote the sublinear series by

Mm : F NAX,∆(Em)
Em

(V) ⊆ V,

then (X,∆ + 1
N Bs(Mm)) is log canonical, and has Em as its lc place.

Let MB → B be the family parametrizing G-invariant sublinear series of
V , over a finite type scheme B. Then Mm corresponds to a point bm ∈ B. After
stratifying B into locally closed finite type schemes, and replacing B by the dis-
joint union of all stratum, we may assume there exists a fiberwsie G-equivariant
morphism µ : (Y,E) → (X,∆) × B, such that (Y,E) → (X,∆ + Bs(MB)) is a
fiberwise log resolution over disjoint components of B, where Bs(MB) is the
base ideal

Im
(
MB ⊗ OX → V ⊗ OX = p∗1OX(−N(KX + B))

)
= Bs(MB) ⊗ p∗1OX(−N(KX + B)) .

Moreover, Em corresponds to a toroidal divisor over (Ybm ,Ebm ).
By the same proof as in Theorem 4.36, there is a G-invariant geometrically

irreducible quasi-monomial valuation v of K(X), such that

AX,∆(v)
S (v)

= lim
m

AX,∆(Em)
S (Em)

= δ(Xk̄,∆k̄) .
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�

4.5 ∗ Abban-Zhuang method

In this section, we establish an approach to estimate δ(X, L), called the Abban-
Zhuang method. The technical key is the Abban-Zhuang inequaility, which
reduces the estimate of δ to a lower dimensional problem, but for a more com-
plicated multi-graded linear series. By cutting to a low dimensional variety,
e.g. curves, surfaces etc., it suffices to analyze multi-graded linear seriess on
it. We will use hypersurfaces as a prototype to exemplify how to apply the
method.

4.5.1 Abban-Zhuang inequality

Revisit multi-graded linear series
We extend several settings to multi-graded linear series.

Let L be a Q-Cartier Q-divisor on an n-dimensional projective variety X
such that rL is Cartier. Let L1, . . . , Lp be Cartier divisors. For m ∈ r · N and
~k = (k1, ..., kp) ∈ Np, assume

Wm,~k ⊆ H0(X,OX(mL + k1L1 + · · · + kpLp)) ,

such that W0,~0 = k and W•,~• ((•, ~•) ∈ r·N×Np) form a multi-graded linear series
(see Section 1.1.3). The support Supp(W•,~•) of W•,~• is defined as in (1.12). We
say that W•,~• has bounded support if

Supp(W•,~•) ∩ ({1} × Rp)

is bounded.
Fix an admissible flag H•. We get the lattice

Γ(W•,~•) ⊆ Nn × (r · N) × Np .

For any m ∈ r · N, denote by

Γm = Γ(W•,~•) ∩ (Nn × {m} × Np) .

Let Σ(W•,~•) ⊆ Rn+1+p be the minimal convex cone containing Γ(W•,~•), and

∆(W•,~•) = Σ(W•,~•) ∩ (Rn × {1} × Rp) .

We assume W•,~• contains an ample series (see Definition 1.17).
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4.65. If W•,~• contains an ample series and has bounded support, then Γ(W•,~•)
satisfies the assumption in Lemma 1.3. Let ρ be the Lebesgue measure on
∆(W•,~•). For any m ∈ r · N, let

dρm =
1

mn+p

∑
x∈Γm

δm−1 x ,

where δx is the Dirac measure centered on x. Then by Lemma1.4,

lim
m→∞

dρm = dρ (4.40)

as measures on ∆(W•,~•).
Denote by Nm,~k = dim Wm,~k and Nm =

∑
~k Nm,~k. By the above discussion, the

limit

vol(W•,~•) := lim
m→∞

(n + p)!
mn+p Nm

exists, and

vol(W•,~•) = (n + p)! · volRn+p (∆(W•,~•)) .

Definition-Lemma 4.66. For any ~k = (k1, ..., kp), we denote by c1(Wm,~k) =

mL + ~k~L = mL +
∑p

i=1 kiLi. We set

c1(Wm,~•) =
1

mNm

∑
~k

Nm,~k · c1(Wm,~k) .

Then limm c1(Wm,~•) exists, denoted by c1(W•,~•) .

Proof We can define a linear morphism R × Rp → N1
R(X) by sending

(1, 0)→ [L] and (0, a1, . . . , ap)→
p∑

i=1

ai[Li] .

Denote by f : Rn × {1} × Rp � Rn+p → Rp → N1
R(X) the composite morphism

with the projection. Then

c1(Wm,~•) =
mn+p

Nm

∫
∆(W•,~•)

f dρm ,

which implies

c1(W•,~•) = lim
m→∞

c1(Wm,~•) =
1

vol(∆(W•,~•))

∫
∆(W•,~•)

f dρ . (4.41)

�
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Definition 4.67. A filtration F on Wm,~k indexed by R is given by a decreasing

filtration F λ (λ ∈ R) on each Wm,~k ((m,~k) ∈ r · N × Np) such that

F λ1 Wm1,~k1
· F λ2 Wm2,~k2

⊆ F λ1+λ2 Wm1+m2,~k1+~k2

for all λi ∈ R and all (mi,~ki) ∈ r · N × Np (i = 1, 2).
If W•,~• has bounded support, we say F is linearly bounded if there exist

constants C1 and C2 such that F λWm,~k = Wm,~k for all λ ≤ C1(m + |~k|) and

F λWm,~k = 0 for all λ ≥ C2(m + |~k|).

4.68. Fix a linearly bounded filtration F on a multi-graded linear series W•,~•
with bounded support and containing an ample series. Let

W t
•,~•

(F ) :=
⊕
m,~k

F mtWm,~k .

We can form the Okounkov body ∆(W t
•,~•

(F )). Similar to Definition 3.23, we
define the concave transform

GF : ∆(W•,~•)→ R , z ∈ ∆(W•,~•)→ GF (z) := sup
λ

{
t | z ∈ ∆(W t

•,~•
(F ))

}
,

and the S -invariant as

S (F ,W•,~•) =
1

volRn (∆(W•,~•))

∫
∆(W•,~•)

GF dρ . (4.42)

We set

S m(F ,W•,~•) =
1

mNm

∑
~k, j

am,~k, j ,

where for any ~k, {am,~k, j} are all the jumping numbers for F on Wm,~k. We denote
by S (v,W•,~•) := S (Fv,W•,~•) and S m(v,W•,~•) := S m(Fv,W•,~•) if the filtration
F = Fv is induced by a valuation v. With the same argument as Proposition
3.27, we have

lim
m

S m(F ,W•,~•) = S (F ,W•,~•) . (4.43)

Lemma 4.69. Let ~k ∈ Supp(W•,~•)◦ ∩Qp and (W~k)• =
⊕

m∈r·N Wm,m~k. Let F be
a linear bounded multi-graded filtration on W•,~•. Denote by ∆(W•,~•)~k the slice
of ∆(W•,~•) over ~k. Then ∆(W•,~•)~k = ∆((W~k)•), and under this identification, the
restriction of GF to ∆(W•,~•)~k is the log concave transform for the restriction
F|(W~k)• of F on (W~k)•.

Proof The claim ∆(W•,~•)~k = ∆((W~k)•) follows from Theorem 1.20. Since the
same is true for any t such that ~k ∈ Supp(W t

•,~•
(F ))◦, for any rational vector ~k
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which satisfies that ~k ∈ Supp(W•,~•)◦ and (W~k)t
•(F ) , ∅, then for any t′ < t,

~k ∈ Supp(W t′
•,~•

)◦. In particular, ∆(W t′
•,~•

)~k = ∆((W~k)t′
• ) .

Therefore, if z ∈ ∆(W•,~•)~k,

GF (z) = t ⇐⇒ t = sup
{
t′ | z ∈ ∆(W t′′

•,~•
) for any t′′ < t′

}
⇐⇒ t = sup

{
t′ | z ∈ ∆((W~k)t′′

• ) for any t′′ < t′
}

⇐⇒ t = GF|(W~k )• .

�

4.70 (Q-Cartier divisor). For a class of Cartier divisors L1, · · · , Lp, a multi-
graded linear series W•,~• associated to it contains an ample series, if and only
if for r1, . . . , rp ∈ N

p
>0, the multi-graded sublinear series consisting of

Wm,~k

(
(m,~k) ∈ r · N × r1 · N × · · · × rp · N

)
contains an ample linear series. Similarly, if we have a filtration F , it is linearly
bounded if and only if the restriction to the multi-graded sublinear series is
linearly bounded.

Regarding the latter multi-graded linear series as indexed by r1 · N × · · · ×

rp · N, then the definition of S (F ,W•,~•) also does not depend on the choice
r1, · · · , rp. Therefore, we can extend the definitions for L1, . . . , Lp being Q-
Cartier divisors or even Q-Cartier divisor classes.

Definition 4.71. Fix m ∈ r · N. We say D = 1
mNm

∑
~k Dm,~k is a m-basis type

divisor, if for any ~k ∈ Np,

Dm,~k = div(s1,~k) + · · · + div(s j,~k) ,

where
{
s1,~k, . . . , s j,~k

}
is a basis of Wm,~k. For a filtration F on Wm,~•, we say D

is compatible with F if for any ~k,
{
s1,~k, . . . , s j,~k

}
is compatible with F on Wm,~k

(see Definition 3.4). Then it follows from the definition

S m(F ,W•,~•) =
1

mNm

∑
~k

∑
q

ordF (sq,~k) ,

in particular, S m(v,W•,~•) = v(D) for any m-basis type divisor D of W•,~• com-
patible with Fv.

4.72 (Variants of δ-invariants). If (X,∆) is klt, we define

δm(W•,~•) = inf
E

AX,∆(E)
S m(E,W•,~•)

,
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where E runs through all divisors over X. Then δm(W•,~•) = infD lct(X,∆; D),
where D runs over all m-basis type divisors of W•,~•. Similarly, we define

δ(W•,~•) = inf
E

AX,∆(E)
S (E,W•,~•)

.

Fix a (not necessarily close) point point η ∈ X, we define local analogues

δη,X,∆,m(W•,~•) = inf
η∈cX (E)

AX,∆(E)
S m(E,W•,~•)

.

and

δη,X,∆(W•,~•) = inf
η∈cX (E)

AX,∆(E)
S m(E,W•,~•)

.

Using the same proof as in Theorem 4.9, we have

lim
m→∞

δη,m(W•,~•) = δη(W•,~•) . (4.44)

It is clear

δ(W•,~•) = inf
η∈X

δη(W•,~•) and δm(W•,~•) = inf
η∈X

δη,m(W•,~•) .

For a (possibly reducible) closed subscheme Z ⊆ X, we also define

δZ,X,∆,m(W•,~•) = inf
D

sup {λ | Z * NLc(X,∆ + λD)} ,

where D runs through all m-basis type divisor of W•,~•; and

δZ,X,∆(W•,~•) = lim sup
m

δZ,X,∆,m(W•,~•) . (4.45)

Clearly if Z′ ⊆ Z, then δZ,X,∆(W•,~•) ≥ δZ′,X,∆(W•,~•).
We can refine the definition by only considering basis type divisors compat-

ible with a fixed filtration, i.e. for a graded filtration F on W•,~•, we define

δZ,X,∆,m(W•,~•,F ) = inf
D

sup {λ | Z * NLc(X,∆ + λD)} ,

where D runs through all m-basis type divisor of W•,~• compatible with F ; and

δZ,X,∆(W•,~•,F ) = lim sup
m

δZ,X,∆,m(W•,~•,F ) .

If the pair (X,∆) is clear from the context, we will often omit it from the notion.
If Z is irreducible and reduced, then similar to Lemma 3.13 we have

δZ,X,∆,m(W•,~•) = δη(Z),X,∆,m(W•,~•) ,

which implies δZ,X,∆(W•,~•) = δη(Z),X,∆(W•,~•).
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Definition 4.73. Let V•,~• be a multi-graded linear series with bounded support,
and W•,~• ⊆ V•,~• a multi-graded linear subseries. Denote by Nm =

∑
~k dim Wm,~k

and N′m =
∑
~k dim Vm,~k. We say W•,~• is asymptotically equivalent to V•,~• if

limm→∞
Nm
N′m

= 1.

Lemma 4.74. Let V•,~• be a multi-graded linear series with bounded support,
and F ′ a linearly bounded filtration on it. Assume W•,~• ⊆ V•,~• is an asymp-
totically equivalent multi-graded linear subseries containing an ample series,
then ∆(W•,~•) = ∆(V•,~•). In particular, if a filtration F on W•,~• is the restriction
of F ′, then S (F ,W•,~•) = S (F ′,V•,~•).

Proof We have ∆(W•,~•) ⊆ ∆(V•,~•). Let f be continuous function on ∆(V•,~•),
and we assume | f | ≤ C for a constant C. Then∣∣∣∣∣∫ f dρm(V•,~•) −

∫
f dρm(W•,~•)

∣∣∣∣∣ =
1

mn+p

∣∣∣∣∣∣∣∣
∑

x∈Γ(Vm,~•)\Γ(Wm,~•)

f (
1
m

x)

∣∣∣∣∣∣∣∣
≤

N′m − Nm

mn+p C .

Let m→ ∞, we know
∫

∆(V•,~•)
f dρ =

∫
∆(W•,~•)

f dρ, i.e. ∆(W•,~•) = ∆(V•,~•).

Since F λVm,~k ∩ Wm,~k = F λWm,~k, the above discussion also implies GF
′

=

GF as ∆(W t
•,~•

(F )) = ∆(V t
•,~•

(F )) for any t such that ∆(V t
•,~•

(F )) has nonempty
interior. Thus S (F ′,V•,~•) = S (F ,W•,~•). �

Lemma 4.75. Fix a big line bundle L. Assume W•,~• satisfies that for any ~k ∈
Q

p
≥0∩Supp(W◦

•,~•
), Wm,m~k = H0(X,OX(m f (~k) ·L)) for a positive rational number

f (~k) and sufficiently divisible m. Let E a divisor over X. Then

S (FE ,W•,~•) = c · S (E, L) for c satisfies c1(W•,~•) = c · L .

Proof Let ∆(L) ⊂ Rn be the Okounkov body given by
⊕

m∈r·N H0(mL), and
g the function on ∆(L) given by the log canonical transform of FE . By Lemma
4.69, for any ~k ∈ Qp

≥0 ∩ Supp(W◦
•,~•

), the fiber ∆(W•,~•)~k of ∆(W•,~•) over ~k is the

same as f (~k) · ∆(L). By continuity of the projection map on ∆(W•,~•), we can
extend to a continuous function

Supp(W◦
•,~•

) 7→ R, ~k → f (~k)

such that for any ~k ∈ Supp(W◦
•,~•

), the fiber ∆(W•,~•)~k of ∆(W•,~•) over ~k is the

same as f (~k) · ∆(L). So c =

∫
Supp(W•,~• ) f n+1dρ∫

Supp(W•,~• ) f ndρ
.
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Applying Lemma 4.69 again, we know that GF (t) = f (~k) · g( f (~k)−1 · t), so

S (F ,W•,~•) =

∫
∆(W•,~•)

GF

vol(∆(W•,~•))

=

∫
Supp(W•,~•)

f (~k)n+1dρ
∫

∆(L) gdρ∫
Supp(W•,~•)

f (~k)nvol(∆(L))dρ

=

∫
Supp(W•,~•)

f (~k)n+1dρ∫
Supp(W•,~•)

f (~k)ndρ
·

∫
∆(L) gdρ

vol(∆(L))
= c · S (E, L) .

�

Adjunction
Let E be a Q-Cartier prime divisor on X with a birational morphism µ : Y → X
such that −E is µ-ample (we allow X = Y). Let W•,~• be a multi-graded linear
series on Y .

Definition 4.76. We define the restricted multi-graded linear series (W|E)•,~•
graded by r · N × Np+1 as follows: for any m ∈ r · N, ~k ∈ Np and q ∈ N, we
define

(W|E)m,~k,q = Grq
E(Wm,~k)(−qE)|E see (4.36) .

Lemma 4.77. Let W•,~• on X be a multi-graded linear series containing an
ample series with bounded support. Then the restricted multi-graded linear
series (W|E)•,~• contains an ample series and has bounded support.

Proof Since

F λ
E Wm,~k · F

λ′

E Wm′,~k′ ⊆ F
λ+λ′

E Wm+m′,~k+~k′ ,

(W|E)•,~• is a multi-graded linear series associated to (L1)|E , . . . , (Lp)|E and (−E)|E ,
where the the last term is defined as a Q-divisor class by 4.58.

Since Supp(W•,~•) is bounded, there exists C such that Wm,~k , 0 implies

0 ≤ ki ≤ mC (1 ≤ i ≤ p). Then there exists C′ such that L + ~k~L − C′E is
not pseudoeffective, for any ~k with each component 0 ≤ ki ≤ C. Therefore,
Supp((W|E)•,~•) ⊆ [0,C]p × [0,C′].

Since W•,~• contains an ample series, by Lemma 1.18, there is an ample Q-
divisor A, and an open set U ⊆ {1} × Rp

≥0, such that for any ~k ∈ UQ, and
sufficiently divisible m,

H0(mA) ⊆ Wm,m~k ⊆ H0(m(L + ~k~L)) .

Since −E is ample over X, we may pick t0 > 0, such that µ∗A− tE is ample for
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any t ∈ (0, t0). Therefore, Supp((W|E)•,~•) ⊇ U × (0, t0), and any element in the
latter contains an ample series. �

Let W•,~• on X be a multi-graded linear series, then(
c1(Wm,~•) − S m(E,W•,~•) · E

)
|E = c1((W|E)m,~•) .

So if W•,~• contains an ample series with bounded support, we can take limit
for m→ ∞, and conclude that

c1
(
(W|E)•,~•

)
=

(
c1(W•,~•) − S (E,W•,~•) · E

)
|E . (4.46)

Theorem 4.78 (Abban-Zhuang inequality). Notation as above. Let (X,∆) be
a klt pair. Let η ∈ X and Z = {η} ⊆ X. Assume Z ∩ µ(E) , ∅ Denote by
(KY + E ∨ µ−1

∗ ∆)|E = KE + ∆E . Then

δη,X,∆(W•,~•) ≥ min
{

AX,∆(E)
S (E,W•,~•)

, inf
Z′
δZ′,E,∆E

(
(W|E)•,~•

)}
,

where the infimum runs through all irreducible Z′ ⊂ E with µ(E) ∩ Z ⊆ µ(Z′).

Proof By Lemma 4.77, (W|E)•,~• contains an ample series. If the statement
does not hold, we can fix a positive constant δ and 0 < ε � 1 such that

δη,X,∆(W•,~•) < δ < (1 + ε)δ < min
{

AX,∆(E)
S (E,W•,~•)

, inf
η′
δη′,E,∆E

(
(W|E)•,~•

)}
.

By Lemma 3.5, we can choose an m-basis type divisor Dm of W•,~• compati-
ble with the filtration induced by E such that

δη,X,∆,m(W•,~•) = lctη(X,∆; Dm) . (4.47)

Since δ <
AX,∆(E)

S (E,W•,~•)
, for any sufficiently large m, δ <

AX,∆(E)
S m(E,W•,~•)

by (4.43).
Therefore,

KY + (E ∨ µ−1
∗ (∆ + δDm)) ≥ µ∗(KX + ∆ + δDm) (4.48)

is not plt and has a non-klt center that is not E with image on X containing
Z. By Lemma 4.60, write µ∗Dm = S m(E,W•,~•) · E + D′m, and (D′m)|E yields an
m-basis type divisor of (W|E)•,~•.

Therefore, by inversion of adjunction (E,∆E + δ(D′m)|E) is not klt along a
proper subvariety Z′ ⊂ E such that Z ∩ µ(E) ⊆ µ(Z′), which implies there is
a divisor F over E with cE(F) = Z′, and AE,∆E (F) ≤ δ · S m(FF , (W|E)•,~•). We
may assume for m sufficiently large,

S m(FF , (W|E)•,~•) ≤ (1 + ε) · S (FF , (W|E)•,~•) ,

so δZ′,E,∆E ((W|E)•,~•) ≤ (1 + ε)δ, a contradiction. �
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4.5.2 Applications to hypersurfaces

To apply the Abban-Zhuang inequality Theorem 4.78 to inductively estimate δ,
the key is to understand asymptotic invariants of the restricted (multi-graded)
linear series (W|E)•,~•. This is often challenging. Here we apply the Abban-
Zhuang method to study K-stability of hypersurfaces.

Conjecture 4.79. Any smooth Fano hypersurface of degree d ≥ 3 is K-stable.

The case when d is close to n is confirmed.

Theorem 4.80. Let X ⊂ Pn+1 (n ≥ 4) be a smooth Fano hypersurface of degree
d ≥ 3. Then X is K-stable if

(i) d = n + 1 or n; or
(ii) n ≥ (n + 2 − d)3.

Remark 4.81. See Exercise 4.17 for the case of (3, 3). Conjecture 4.79 is also
known in the case (4, 3) by Liu (2022).

Proposition 4.82. Let X be a Fano manifold of dimension n. Assume that

(i) FL(Ex) > 0 for any closed point x ∈ X, where Ex denotes the exceptional
divisor of the ordinary blow up of x;

(ii) δη(X) ≥ n+1
n , for any point η corresponding to subvariety Z ⊆ X of dimen-

sion ≥ 1.

Then X is K-stable.

Proof It suffices to show FL(E) > 0 for any divisor E over X. By our as-
sumption, we can assume the center of E is a point x on X and E , Ex. As
in the proof of Lemma 4.12, For m ∈ N, we can find a m-basis type divi-
sor Dm = amG + Γm ∼ −KX compatible with FE , for a divisor G satisfying
x < Supp(G), and Γm ∼Q −bmKX with limm→∞ bm = n

n+1 .
By (ii) and Theorem 3.33, we can find {εm}m with limm εm = 1 such that

AX(F) ≥ (n+1)εm
n S m(F) for F with dim cX(F) ≥ 1 and bm · εm < n

n+1 . Therefore,
(X, (n+1)εm

n Dm) is klt in a punctured neighborhood of x.
Since −KX −

(n+1)εm
n Γm is ample, by Exercise 1.7,

AX(E)
ordE(Dm)

≥
n

(n + 1)εm

AX(E)
AX(E) + ordE(mx)

.

As (X, n ·mx) is plt with Ex the only lc place, AX(E) > n · ordE(mx) as E , Ex.
So letting m→ ∞,

AX(E)
S (E)

≥
n

(n + 1)
AX(E)

AX(E) + ordE(mx)
> 1 .
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�

For Fano varieties with Picard number one, we have the following strength-
ening of Lemma 4.12.

Lemma 4.83. Let X be a Q-factorial variety with ρ(X) = 1 and E a divisor
over X. Let L be an ample line bundle. Then

S (E, L) ≤
1

n + 1
T (E, L) +

n − 1
n + 1

η(E, L) .

Proof We may assume that T := T (E, L) > η(E, L) =: η. Since X is Q-
factorial variety and ρ(X) = 1, by Exercise 3.13, there exists a unique irre-
ducible divisor Γ ∼Q λL such that ordE(Γ) > λη. So we have ordE(Γ) = λT .

Then we follow the proof of Lemma 4.12: fix m0 such that |m0L| is very
ample. Let G ∈ |m0L| such that G does not contain cX(E) and Supp(G). By
Lemma 3.5, we can choose an m-basis type divisor Dm which is compatible
with both FE and FG. Then Dm = D′m + amG and we further write D′m =

bmΓ + D′′m such that Γ * Supp(D′′m). Then

bm = ordΓ(D′m) = ordΓ(Dm) ≤ S m(Γ, L) .

Therefore,

S m(E, L) = ordE(Dm) = ordE(D′m)

= bmordE(Γ) + ordE(D′′m)

≤ S m(Γ, L) · λT + (1 − amm0 − λS m(Γ, L))η .

By Lemma 3.39, am →
1

m0(n+1) and S m(Γ, L) → 1
λ(n+1) . So taking a limit, we

have S (E, L) ≤ 1
n+1 T + n−1

n+1η . �

Lemma 4.84. Let X ⊂ Pn+1 be a degree d smooth projective variety of dimen-
sion at least 2. Let L = O(1). For any x ∈ X, let Ex be the exceptional divisor
of the ordinary blow up of x. Then we have

(i) T (Ex, L) · η(Ex, L) ≤ d.
(ii) If X is a smooth Fano hypersurface, and denote by r = n + 2 − d. Assume

that d ≥ 3 and n + 1 ≥ r2. Then FL(Ex) > 0.

Proof (i) Let L be the hyperplane class on X, and let µ : Y → X be the blowup
of x with the exceptional divisor Ex. As µ∗L − Ex is nef,

(µ∗L − Ex)dim X−2 · (µ∗L − η(Ex, L) Ex) · (µ∗L − T (Ex, L)Ex) ≥ 0,

this implies η(Ex, L) · T (Ex, L) ≤ d.
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(ii) By Lemma 4.83, we have

S (Ex, L) ≤
1

n + 1
T +

n − 1
n + 1

η ≤
d

(n + 1)η
+

n − 1
n + 1

η .

which implies

S (Ex,−KX) ≤ (n + 2 − d)
(

d
(n + 1)η

+
n − 1
n + 1

η

)
.

Since 1 ≤ η ≤
√

d, we know

S (Ex,−KX) ≤ max

 (n + 2 − d)(n − 1 + d)
n + 1

,
(n + 2 − d)n

√
d

n + 1

 < n ,

as 3 ≤ d ≤ n + 1 and r2 ≤ n + 1. �

Proof of Theorem 4.80(i): Cut to a curve

Let X be a degree d smooth Fano hypersurface in Pn+1. Let r = n + 2 − d. Let
Z ⊂ X be an irreducible subvariety with dim(Z) ≥ 1. Fix Q1 and Q2 two points
on Z. Let

H• : X = Y0 ⊃ Y1 ⊃ · · · ⊃ Yn−2 ⊃ Yn−1 := C 3 Q

be a flag, where Yi (1 ≤ i ≤ n − 2) is the intersection of Yi−1 with of a general
hyperplane intersection in |O(1)| containing Q1 and Q2. For the choice of C,
we split the argument into two cases: if X contains the secant variety Sect(Z) of
Z, we choose C ⊆ Sect(Z) ⊂ X to be the line connecting Q1 and Q2; otherwise,
we choose C to be the intersection of Yn−2 with a general member in |O(1)|
containing Q1 and Q2. Finally, Q is a general point on C, which is distinct with
Q1 and Q2.

We claim the flag consists of smooth varieties: This is clear for 1 ≤ i ≤
n − 2. Let ` be the line containing Q1 and Q2, then the sublinear series M
of hyperplane sections containing Q1,Q2 only have base points ` ∩ X, and
a general section inM is smooth outside ` ∩ X. If ` * X, then there are only
finitely many tangent hyperplanes, so a general member inMwill be different;
similarly if ` ⊆ X, and dim(Y) ≥ 3, then dim(M) ≥ 2, so a general member in
M will also be different.

Denote by W0
• =

⊕
m H0(−mKX) =

⊕
m H0 (X,OX(rm)), and we induc-

tively define W i
•,~•

to be the restricted linear series on Yi.

Lemma 4.85. For 1 ≤ i ≤ n − 2, W i
•,~•

is asymptotically equivalent to⊕
m,

∑
j k j≤rm

H0 (Yi,O(rm − k1 − · · · − ki)) .
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Proof There exists a di such that H0(Yi−1,O(d))→ H0(Yi,O(d)) is surjective,
for any d ≥ di. Therefore, for any ~k = (k1, ..., ki) ∈ Ni, we have

W i
m,~k

= H0 (Yi,O(rm − k1 − · · · − ki)) ,

if k1 ≤ rm − d1, k1 + k2 ≤ rm − d2,. . . , and k1 + · · · + ki ≤ rm − di. Let
d = max1≤ j≤i d j.

The convex body

∆(W i
•,~•

) ⊆ Rn × {1} × Ri = {(x1, . . . , xn, 1, k1, . . . , ki)}

is contained in the half space k1 + · · · ki ≤ 1. For any ε > 0, we let ∆ε(W i
•,~•

) be
the intersection of ∆(W i

•,~•
) with the half space k1 + · · · ki ≤ 1 − ε. Then

lim
m→∞

Nm∑
k1+···+ki≤rm H0(Yi,O(rm −

∑
k j))
≥ lim

m→∞

∑
k1+···+ki≤rm−d H0(Yi,O(mr −

∑
k j))∑

k1+···+ki≤rm H0(Yi,O(rm −
∑

k j))

≥
vol(∆ε(W i

•,~•
))

vol(∆(W i
•,~•

))
.

Letting ε→ 0, we conclude that

lim
m→∞

Nm∑
k1+···+ki≤rm H0(Yi,O(rm −

∑
k j))

= 1 .

�

We need the following variant of Theorem 4.78.

Proposition 4.86. Let (X,∆) be a projective klt pair. Let H• be a flag on X
which yields a filtration F := FH• . Let E = Y1 ⊂ X and Z ⊆ X. Denote by
(KX + E ∨ ∆)|E = KE + ∆E and ZE = Z ∩ E. Then we have

δZ,X,∆(W•,~•,F ) ≥ min
{

AX,∆(E)
S (E,W•,~•)

, δZE ,E,∆E

(
(W|E)•,~•,F

)}
.

Proof Fix a positive constant

δ < min
{

AX,∆(E)
S (E,W•,~•)

, δZE ,E,∆E

(
(W|E)•,~•,F

)}
.

By Definition of δZ,X,∆(W•,~•,F ) (see (4.45)), it suffices to prove there is a se-
quence m→ ∞, such that δZ,X,∆,m(W•,~•,F ) ≥ δ.

Let Dm be any m-basis type divisor of W•,~• compatible with F . Since δ <
AX,∆(E)

S (E,W•,~•)
, for any sufficiently large m, δ < AX,∆(E)

S m(E,W•,~•)
by (4.43), which implies

AX,∆(E) > δ · S m(E,W•,~•) = δ · ordE(Dm) .
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Therefore,

KX + E ∨ µ−1
∗ (∆ + δDm) ≥ KX + ∆ + δDm . (4.49)

Write µ∗Dm = S m(E,W•,~•) · E + D′m, so and (D′m)|E yields an m-basis type
divisor of W|E,•,~• by Lemma 4.60, as Dm is compatible with FE .

From our assumption, δ < δZE ,E,∆E

(
(W|E)•,~•,F

)
, there exists an infinite se-

quence {m}, such that for any D′m, (E,∆E + δ(D′m)|E) is klt around ZE for any
m. By inversion of adjunction, (X, E ∨ µ−1

∗ (∆ + δDm)) is plt in a neighborhood
of ZE , which implies for any such m,

δ ≤ δZE ,X,∆,m(W•,~•,F ) ≤ δZ,X,∆,m(W•,~•,F ) .

�

Now we assume d = n or n+1. It follows from Proposition 4.82 and Lemma
4.84(ii) that to prove Theorem 4.80(i), it remains to show δZ(X) ≥ n+1

n when
dim Z ≥ 1. This is addressed in Proposition 4.87.

Proposition 4.87. Let Z ⊂ X be a subvariety of dimension at least 1, then
δZ(X) ≥ n+1

n .

Proof Case 1: Assume Sect(Z) * X. In particular, Lemma 4.85 also holds for
i = n − 1.

By (4.46),

c1(W i
•,•) =

(
c1(W i−1

•,• ) − S (Yi,W i−1
•,• )

)
|Yi

=
n − i + 1
n − i + 2

c1(W i−1
•,• ) .

If deg(X) = n, then −KX ∼ O(2), so

c1(Wn−i
•,~•

) =
i + 1
n + 1

c1(−KX) =
2(i + 1)
n + 1

O(1) .

In particular, c1(Wn−1
•,~•

) = 4
n+1O(1). For any m-basis type divisor Dm of O(1)

compatible with FQ, we can write Dm = bmQ + D′m with Q < Supp(D′m). So
limm bm = 1

2 . Therefore, it follows from Lemma 4.74 that

δC,Z∩C(Wn−1
•,~•

,FH• ) = δC,Z∩C

 ⊕
∑n−1

i=1 ki≤2m

H0

C,O(2m −
n−1∑
i=1

ki)

 ,FH•

 .
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By Lemma 4.75, the right hand side is equal to

n + 1
4n

δC,Z∩C(O(1),FQ)

=
n + 1

4n
lim

m
δZ∩C,m(O(1),FQ)

≥
n + 1

4n
lim

m

deg(C ∩ Z)
1 − bm

=
2 deg(C ∩ Z) · (n + 1)

4n
≥

n + 1
n

.

On the other hand, for 1 ≤ i ≤ n,

S Yn−i (Yn−i+1,Wn−i
•,~•

) =
2(i + 1)
n + 1

· S Yn−i (Yn−i+1,O(1)) =
2

n + 1
.

By repeatedly using Proposition 4.86 for H• : Q ∈ C ⊆ Yn−2 ⊆ · · · ⊆ X, we
obtain

δZ(X) = δZ(X,FH• )

≥ min

 min
1≤i≤n−2

 1
S (Wn−i

•,~•
)

 , δC,Z∩C(Wn−1
•,~•

,FQ)


≥

n + 1
n

.

If deg(X) = n + 1, then −KX ∼ O(1), and c1(Wn−i
•,~•

) =
(i+1)
n+1 O(1) . Calculating

as above, we have

S Yn−i (Yn−i+1,Wn−i
•,~•

) =
1

n + 1
and δC,Z∩C(Wn−1

•,~•
,FH• ) ≥

2(n + 1)
n

,

which implies that δZ(X) ≥ 2(n+1)
n .

Case 2: Assume Sect(Z) ⊆ X.
Assume deg(X) = n. Denote by L a general section in |OS (1)|. As C is a line

on Yn−2, C · L = 1. We also have L2 = n. As KYn−2 ∼ (n − 4)L, C2 = 2 − n. So
(L−C)2 = 0. As L−C ∼ D for an effective divisor D ≥ 0, D is nef. Moreover,
L − tC is not pseudo-effective if t > 1.

Since c1(Wn−2
•,~•

) = 6
n+1 L and n ≥ 4, by Lemma 4.75

S Yn−2 (C,Wn−2
•,~•

) =
6

n + 1
S Yn−2 (C, L)

=
6

n + 1
1
L2

∫ 1

0
(L − tC)2dt

=
6

n + 1
(
2
3
−

1
3n

) ≤
n

n + 1
.
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By Kodaira Vanishing Theorem, H1(Yn−2,O(aL − bC)) = 0 for any a − b >
n − 4. Thus

H0(Yn−2,O(aL − bC))→ H0(C,OC(aL − bC))

is surjective, if a−b > n−3. This implies Wn−1
•,~•

is also asymptotically equivalent
to ⊕

∑
k j≤2m

H0

Yn−2,O


2m −

n−2∑
j=1

k j

 L − kn−1C




as the proof of the Claim in Case 1. Since

c1(Wn−1
•,~•

) =
(
c1(Wn−2

•,~•
) − S (C,Wn−2

•,~•
)C

)
|C

=
6

n + 1

(
L − (

2
3
−

1
3n

)C
)
|C

=
4(n − 1 + 1

n )
n + 1

OP1 (1) ,

and Z ∩C ⊇ {Q1,Q2}, as before by Lemma 4.75, we have

δC,Z∩C(Wn−1
•,~•

,FH• ) =
(n + 1)

4
(
n − 1 + 1

n

)δC,Z∩C(OP1 (1),FQ)

≥
n + 1

n − 1 + 1
n

≥
n + 1

n
.

Now we assume deg(X) = n + 1. We only need to change constants in the
above calculation. Now KS ∼ (n − 3)L, C2 = 1 − n. As c1(Wn−2

•,~•
) = 3

n+1 L, this
impliles

S Yn−2 (C,Wn−2
•,~•

) =
3

n + 1
1
L2

∫ 1

0
(L − tC)2dt =

2n + 1
(n + 1)2 ,

and

c1(Wn−1
•,~•

) =
2(n2 + n + 1)

(n + 1)2 OP1 (1) .

This implies

δC,Z∩C(Wn−1
•,~•

,FH• ) ≥
4(n + 1)2

2(n2 + n + 1)
>

n + 1
n

.

�

Proof of Theorem 4.80(ii): Cut to a surface
Similarly as before, it follows from Proposition 4.82 and Lemma 4.84(ii) that
to prove Theorem 4.80(ii), it remains to show for a smooth hypersurface under
the assumption, δZ(X) ≥ n+1

n when dim Z ≥ 1 . This is addressed in Proposition
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4.96. Unlike in the proof of Theorem 4.80(i), we cut to surfaces instead of
curves. We have to cite a few results whose proofs are not included in this
book.

4.88 (Zariski deomposition). Let S be a smooth projective surface. Let L be a
pseudo-effective R-divisor, we can write a Zariski decomposition L = P + N,
such that P is nef, P ·Ni = 0 for any i and if we write N =

∑k
i=1 aiNi with ai > 0

and distinct irreducible components Ni, then the intersection matrix {Ni · N j}i, j

is negative definite.
In fact, {Ni} precisely consists of irreducible curves which intersect L nega-

tively, and the coefficients ai is the solution of the system of linear equations

D · Ni =

k∑
j=1

a jNi · N j for all i = 1, . . . , k .

When L is an effective Q-divisor, this is the classical theorem by Zariski. For
generalizations, see Fujita (1979) and Nakayama (2004).

Lemma 4.89. Let S be a smooth projective surface. Let L be a big line bundle
and L = P + N the Zariski decomposition, with P the nef part and N the
negative part. Let C ⊂ S be a smooth curve such that C * Supp(N). Let Vm be

Im
(
H0(S ,mL)→ H0(C,mL)

)
the image, and s1, ..., sm its basis compatible with a point Q ∈ C. Then

lim
m

1
m

Nm∑
i=1

ordQsi = degC(P) ·multQN|C +
1
2

degC(P)2 .

Proof It is a generalization of Exercise 3.11. For any sufficient divisible m,
and a section s ∈ H0(OS (mL)), we can write div(s) = mN + Ds, where Ds is a
section of mP. Moreover, |mL| = |mP| + mN. By Exercise 3.11,⊕

m

Vm := Im
(
H0(OS (P))→ H0(OE(P|E))

)
is asymptotically linearly equivalent to P|C . Therefore,

lim
m

1
m

Nm∑
i=1

ordQsi = degC(P) ·multQN|C + degC(P) · S (FQ, P)

= degC(P) ·multQN|C +
1
2

degC(P)2 .

�
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Definition-Lemma 4.90. Let T be a smooth projective surface, and L a big
and nef line bundle on S . Let E ⊂ T be a smooth curve. For any t ∈ [0,TL(E)],
write the Zariski decomposition

L − tE = Pt + Nt .

We denote by g(t) = Pt · E, then the R-divisor

N =
2
L2

∫ TL(E)

0
g(t) · Ntdt

exists.
Assume E * Supp(NTL(E)). Let (W|E)•,• be the restriction of

⊕
m∈N H0(mL)

on E as in Definition 4.76. Let P := L − S (E, L) · E − N. Then

S E(FQ, (W|E)•,•) = multQN|E +
1
2

degE P . (4.50)

Proof Since t0 := TL(E) is the pseudo-effective threshold, then L−t0E = Pt0 +

Nt0 and for any t ∈ [0, t0], the components of Nt are contained in components
of Nt0 . Moreover, g(t) is a continuous functions as the coefficients of Nt are
continuous functions of t. Therefore, N exists.

By (4.42)

S E(FQ, (W|E)•,•) =
1

volR2 (∆((W|E)•,•))

∫
∆((W|E )•,•)

GFQ dρ

=
2
L2

∫ TL(E)

0

∫
GFQ dsdt .

For a fixed t ∈ Q∩ [0,TL(E)), by Lemma 4.69, GFQ is given by the log concave
transform of FQ on the graded linear system⊕

m

Im
(
H0(T,O(m(L − tE)))→ H0(E,OE(m(L − tE)))

)
.

So it follows from Lemma 4.89 that∫
GFQ ds = g(t) ·multQ(Nt|E) +

1
2

degE(L − tE − Nt)g(t) .

Since both sides are continuous functions on t, we know it holds for all t ∈
[0,TL(E)). Therefore,

S (FQ, (W|E)•,•) =
2
L2

∫ TL(E)

0

(
g(t) ·multQNt|E +

1
2

degE(L − tE − Nt)g(t)
)

dt

= multQN|E +
1
2

(
2
L2

∫ TL(E)

0
degE(L − tE)g(t)dt − degE N

)
= multQN|E +

1
2

(
deg c1((W|E)•,•) − degE N

)
.
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We conclude as c1((W|E)•,•) = (L − S (E, L)E)|E .
�

Lemma 4.91. Let S be a smooth projective surface, and L an ample line bun-
dle on S . Let x ∈ S be a smooth point. Then δx(L) ≥ 3

L2 · εx(L).

Proof Let µ : T → S be the blowup at x with exceptional divisor E � P1. Let
(W|E)•,• be the restriction of

⊕
m∈N H0(mL) on E as in Definition 4.76. Denote

by λ = 3
L2 · εx(L). By Theorem 4.78, it suffices to show λ ≤ 2

S (E,L) and

λ ≤ δ
(
E, (W|E)•,•

)
. (4.51)

We follow the notation in Definition-Lemma 4.90. By (4.50), (4.51) is equiv-
alent to showing for any Q ∈ E,

multQ(N|E) +
1
2

deg P ≤
1
λ
.

Since Nt · E = t − g(t) and S (E, L) = 2
L2

∫
tg(t)dt, we have

S (E, L) + degE N =
2
L2

(∫
tg(t)dt +

∫
g(t)(t − g(t))dt

)
≤

2
L2

4(
∫

g(t)dt)2

3εx(L)
(by (4.52))

=
2L2

3εx(L)
=

2
λ
.

This immediately implies λ ≤ 2
S (E,L) . Moreover, since

S (E, L) = (µ∗L − S (E, L)E) · E = deg((W|E)•,•) = degE(N + P) ,

we have

λ ·

(
multQ(N) +

1
2

degE P
)
≤ λ

(
1
2

degE P + degE N
)

=
λ

2
(
S (E, L) + degE N

)
≤ 1 .

Claim. Let 0 < a ≤ b and g(t) a continuous concave function on [0, b] such
that g(t) = t for all t ∈ [0, a]. Then

3a
∫ b

0
(2t − g(t))g(t)dt ≤ 4

(∫ b

0
g(t)dt

)2

. (4.52)

Proof If a = b, it follows a direct calculation. So we may assume a < b, and
we set

h(x) =

x x ≤ a,
a(b−x)

b−a a ≤ x ≤ b .
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For x ∈ [0, b − a], we define f (x) = g(x + a) − h(x + a). Then f is a concave
function. By an elementary calculation, (4.52) is equivalent to

a2
∫ c

0

(
6x
c
− 4

)
f (x)dx + a

∫ c

0
(6x − 4c) f (x)dx

−3a
∫ c

0
f (x)2dx − 4

(∫ c

0
f (x)dx

)2

≤ 0 .

It suffices to prove
∫ c

0 (3x − 2c) f (x)dx ≤ 0. To see this, set

F(t) =

∫ t

0
(3x − 2t) f (x)dx ,

then we have F(0) = 0, and

F′(t) = t f (t) − 2
∫ t

0
f (x) ≤ t f (t) − 2

∫
x
t

f (t)dx = 0 .

�

�

Proposition 4.92. Let S be a smooth projective surface of ρ(S ) = 1, and let
L be an ample line bundle on S . Let x ∈ S be a smooth closed point. Then
εx(L) · Tx(L) = L2. In particular, δx(L) ≥ 3

Tx(L) .

Proof Since (µ∗L − εx(L)E)2 = L2 − εx(L)2 ≥ 0, εx(L) ≤
√

L2. On the other
hand, for any rational number t <

√
L2, |µ∗L − tE|Q , ∅, so

√
L2 ≤ Tx(L).

Therefore, we may assume εx(L) < Tx(L).
By Exercise 3.13, there is a precisely one irreducible Q-divisor D with D ∼

L and multxD > εx(L), and in this case multxD = Tx(L). For any irreducible
curve C passing through x, if C = Supp(D), then

C · L
multxC

=
D · L

multxD
=

L2

Tx(L)
;

and if C , Supp(D),

C · L
multxC

=
C · D

multxC
≥ multxD = Tx(L) .

So εx(L) = L2

Tx(L) , as L2

Tx(L) ≤ Tx(L).
The last statement then follows from Lemma 4.91. �

Lemma 4.93. Let X ⊂ PN be a degree d > 1 smooth projective variety of
dimension n with ρ(X) = 1. Let x ∈ X be a closed point, and let L be the
hyperplane class.
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(i) If n ≥ 4, a general hyperplane section Yt ⊂ X containing x satisfies Tx(L|Yt ) >√
d, then Tx(L|Yt ) = Tx(L).

(ii) If n = 3, a general hyperplane section Yt ⊂ X containing x has Tx(L|Yt ) > d
2
3 ,

then Tx(L|Yt ) = Tx(L).

Proof We first prove (i). For a general hyperplane section Yt of X, Yt is
smooth by the Bertini theorem with Picard number one by the Lefschetz The-
orem. By Lemma 4.84, we have

ηx(LYt ) ≤
√

d < Tx(LYt ) =: c ,

so by Exercise 3.13 there exists a unique irreducible Q-divisor Dt ∼Q LYt on
Yt such that multxDt = c. We may assume that when we vary t in an open set,
mDt is integral for some fixed integer m > 0.

We first assume a general Dt is covered by lines passing through x. Let
Z ⊆ X be the union of all lines passing through x. Then Z has codimension
at most one. We also have Z , X since X is not a cone of degree d > 1.
Let Zi (1 ≤ i ≤ k) be the irreducible components of Z with codimension one
in X. As dim Zi ≥ 3, its image under the projection from x has dimension
at least two, thus Zi ∩ Yt is irreducible for general t by the Bertini theorem.
Since Dt is also irreducible and is swept out by lines containing x, we deduce
that Supp(Dt) = Zi ∩ Yt for some i. As X has Picard number one, there exists
some λi > 0 such that D := λiZi ∼Q L. By comparing degrees, we then have
Dt = D|Yt . Since Yt is general, multxD = multxDt = c. Moreover, since D is
irreducible and c >

√
d, we have Tx(L) = multxD.

We may assume that Dt is not covered by lines containing x. Therefore,
the projection from x defines a generically finite rational map on Dt. Since
dim Dt ≥ 2, we see that Dt ∩ Ys is irreducible for general s, t. Since Dt is a
codimension two cycle on X, if for general s, t such that Ds ∩Dt has codimen-
sion four, then we get

d = deg(Ds · Dt) ≥ multxDs ·multxDt > d ,

a contradiction. Thus Ds ∩ Dt contains a divisor on both Ds and Dt. Since
Dt ∩ Ys is irreducible, thus

Supp(Ds ∩ Dt) = Supp(Ys ∩ Dt) .

Now consider a general pencil Y → ` of hyperplane sections of X passing
through x with a universal divisor D which over a general t ∈ ` yields mDt ⊂

Yt. Let G be the image of D under the natural evaluation map ev: Y → X.
Since Dt is irreducible for general t, we see thatD and G are both irreducible.
Since X has Picard number one, we have G ∼Q rL for some r ∈ Q. Let D = 1

r G.
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For general t ∈ ` and s ∈ |OX(1) ⊗ mx|, G ∩ Ys is irreducible and Supp(Ys ∩

Dt) ⊆ Ds by the previous steps. As t varies, the locus Supp(Ys ∩ Dt) sweeps
out a divisor on Ys, which is contained in both Ds and G ∩ Ys. Since Ds and
G∩Ys are both irreducible, we deduce that they are proportional to each other.
By comparing degrees, we see that Ds = D∩Ys. As Ys is a general hyperplane
section, this implies that multxD = multxDs and as before we conclude that
Tx(L) = c.

The proof of (ii) is similar. Denote by Tx(LYt ) = c > d
2
3 for a general Yt. If

there is a one dimensional family of lines passing through x, we may assume
it sweeps out an irreducible divisor D ∼Q rL. Then multxD = deg(D) = dr,
which implies that Tx(L) ≥ d. However, we always have for a smooth point
x ∈ X, Tx(L) ≤ deg(X) = d and similarly Tx(L|Yt ) ≤ d.

So we may assume x is only contained in finitely many lines on X. Note that
Dt is a curve on X. Since L3 = d > ( d

c )3, there exists a Q-divisor D ∼Q L on X
such that multxD > d

c . Since X has Picard number one, we may further assume
D is irreducible. The projection from x defines a generically finite rational
map on D; hence Dt := D ∩ Yt ∼Q L|Yt is irreducible. Write C ∈ |LYt |Q as
C = aDt + (1 − a)C′ on Yt with a ∈ [0, 1] and Dt is not contained in Supp(C′).
So C′ ∼Q L|Yt , and

d = Dt ·C′ ≥ multx(Dt) ·multx(C′) .

As multx(Dt) = multx(D) > d
c , if multx(D) < c, then

multxC ≤ max{multxD,multxC′} ≤ c′ := max
{

multxD,
d

multx(D)

}
< c .

So Tx(L|Yt ) ≤ c′ < c, a contradiction. Thus Tx(L) ≥ multx(D) ≥ c. By
Lemma 4.84 and Exercise 3.13, there exists a unique irreducible Q-divisor
D′ ∼Q L such that multx(D′) = Tx(L). Thus for a general Yt, we have Tx(L) =

multx(D′t) ≤ c. �

4.94 (Multiplicity bound). If X is a smooth hypersurface in Pn+1, then for any
effective Q-divisor D ∼Q OX(1), multxD ≤ 1 except outside finitely many
points. See (Pukhlikov, 2002, Proposition 5).

Lemma 4.95. Let X ⊂ Pn+1 (n ≥ 3) be a degree d smooth hypersurface, and
Z ⊆ X a positive dimensional subvariety. Then for a very general point x ∈ Z,

Tx(L) ≤
√

d + 1 . (4.53)

Proof Assume the statement does not hold. Since ηx(L) ≤
√

d by Lemma
4.84, for any x ∈ Z there exists a unique 0 ≤ Dx ∼ O(1), such that multx(Dx) >
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√

d + 1. By looking at the generic point and spreading out, we may assume
there is an open set U ⊆ Z and a family of irreducible divisors G ⊂ X × U,
such that for x ∈ U, Dx = 1

m (G × {x}). Denote by D = 1
mG.

If G ⊂ X is a divisor, then it satisfies multZ(G) ≥ m(
√

d+1), contradicting to
4.94. Thus G → X is dominant and we can apply (Ein et al., 1995, Proposition
2.3) to find a divisor G′ ∼ G, such that G 1 Supp(G′) with multZ(G′) ≥ m

√
d.

So

m2d = Gx ·G′x · O(1)n−2 ≥ multx(Gx) ·multx(G′x) > m2d

which is a contradiction. �

Proposition 4.96. Let X ⊂ Pn+1 be a degree d smooth hypersurface, such that
(n + 2 − d)3 ≤ n. Let Z ⊂ X be a subvariety of dimension at least 1. Then
δZ(X) ≥ n+1

n .

Proof Let Y = Yn−3 ⊂ X be a three dimensional section of X with a general
linear subspace passing x. Let S be an intersection of Y with a general quadratic
containing x. Combining Lemma 4.93(i) with (4.53), we know Tx(L|Y ) ≤

√
d +

1. By Theorem 4.80(i), we may assume n ≥ 27 and d ≥ 26, in particular
√

d + 1 < d
2
3 .

We can apply Lemma 4.93(ii) and conclude Tx(L|S ) ≤ d
2
3 . So by Lemma

4.92, δx(L|S ) ≥ 3

d
2
3

. Theorem 4.78 implies that δx(L|Y ) ≥ 4

d
2
3

. Repeatedly using
the Abban-Zhuang inequality, we have

δZ(X) ≥ δx(X) ≥ min
{

n + 1
r

, δx,Y (Wn−3
•,~•

)
}
.

As in the proof of Proposition 4.87, we have δx,Y (Wn−3
•,~•

) = n+1
4 δx((−KX)|Y ), so

δx,Y (Wn−3
•,~•

) =
n + 1

4
δx(rL|Y ) ≥

n + 1
4
·

4

r · d
2
3

≥
n + 1

n
,

as d ≤ n and r ≤ n
1
3 . �

Exercises

4.1 Let (X,L) be a normal test configuration of (X, L). Then there exists
finitely many Z-value divisorial valuations wi and ai ∈ Q, bi ∈ N+ (1 ≤
i ≤ p), such that for any m with mL is Cartier, then

F λ
X,LH0(X,mL) =

p⋂
i=1

{
s ∈ H0(X,mL) | wi(s) ≥ biλ − mai

}
.
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4.2 Prove α(Pn) = 1
n+1 .

4.3 If (X,∆) is a log Fano pair with α(X,∆) < 1, then

α(X,∆) = αm(X,∆)
(
:= min

Dm∈|−m(KX+∆)|
lct(X,∆;

1
m

Dm)
)

for some m. In particular, α(X,∆) =
AX,∆(E)

T (E) for a divisor E.
4.4 Prove that for a log Fano pair (X,∆),

(a) α(X,∆) ≤ 1, i.e. it is not exceptional, if and only if there exists a non-
trivial weakly special test configuration of (X,∆) with an irreducible
central fiber.

(b) α(X,∆) < 1, i.e. it is not weakly exceptional, if and only if there exists
a nontrivial special test configuration of (X,∆).

4.5 Let (X,∆) be a log Fano pair and I an ideal sheaf such that lct(X,∆; I) =
1
m and OX(−m(KX + ∆))⊗ I is globally generated. Show any divisorial lc
place v of (X,∆ + 1

m I) is a weakly special valuation.
4.6 Let (X,∆) be a log Fano pair and D a Q-complement. If there exists an

lc place v of (X,∆ + D) such that AX,∆(v) < T (v), there exists a special
divisor which is an lc place of (X,∆ + D).

4.7 Let X be a nontrivial test configuration of (X,∆) with an integral fiber,
and ordE the induced valuation. Then

Fut(X)
‖X‖m

=
AX,∆(E)

S (E)
− 1 .

4.8 Let k = R.

(a) X = (x2 + y2 + z2 = 0) ⊂ P2
R. Then δ(XR) = 2 and δ(XC) = 1.

(b) X = P1
R, ∆ = a({i} + {−i}) (0 ≤ a ≤ 1

2 ). Then δ(X,∆) = 1
1−a and

δ(XC,∆C) = 1.

4.9 Let X = P1. Let E ⊂ X × P1 be the diagonal divisor. Denote by vK the
valuation of ordE on XK(P1). Show the restriction (vK)|K(P1) is trivial.

4.10 Let E be a special divisor over a log Fano pair (X,∆), and X the induced
special test configuration with (X0,∆0) the degeneration. Then for a ra-
tional number α ∈ (0, 1), α(X0,∆0) ≥ α if and only if for any effective Q-
divisor D ∼Q −KX−∆, there exists an effectiveQ-divisor D′ ∼Q −KX−∆

such that (X,∆ + αD + (1 − α)D′) is log canonical with E an lc place.
4.11 If (X,∆) is a toric log Fano pair, then (X,∆) the following are equivalent

(a) The barycenter αbc = 0,
(b) (X,∆) is K-semistable.

(It follows from Exercise 8.7 that (a) is also equivalent to (X,∆) is K-
polystable.)
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4.12 (Boundedness of volume) Let (X,∆) be an n-dimensional K-semistable
log Fano pair.

(a) Prove (−KX − ∆)n ≤ (n + 1)n.

(b) Let I ⊆ OX be an ideal such that the reduction of Cosupp(I) is a closed
point, prove that

lct(X,∆; I)n ·mult(I) ·
(

n + 1
n

)n

≥ (−KX − ∆)n.

4.13 (Tian’s α-invariant criterion) Let (X,∆) be a log Fano pair. Prove

δ(X,∆) ≥
n + 1

n
α(X,∆) .

4.14 Let v be a divisorial lc place of a Q-complement of (X,∆). Let (Xv,∆v)
be the special fiber of (X,∆) induced by v. Then

α(Xv,∆v) ≤ 1 −
AX,∆(v)
TX,∆(v)

.

4.15 Assume X is a smooth Fano manifold, α(X) = n
n+1 . Prove X is K-stable

if dim(X) ≥ 2.

4.16 Prove for any smooth degree n + 1 hypersurface X in Pn, we have α(X) ≥
n

n+1 .

4.17 Prove any smooth cubic threefold X is K-stable.

4.18 A divisor E over X is an lc place of a Q-complement of (X,∆) if and only
if grFE

R :=
⊕

m,i∈N Gri
FE

Rm is finitely generated and µ(FE) = AX,∆(E).

4.19 Let E over X be an lc place of a Q-complement of (X,∆). Prove for any
δ ≥ 1, we have

µ(FE , δ) =
AX,∆(E)

δ
.

4.20 Let F be a filtration induced by a test configuration (X,L) of a log Fano
pair (X,∆). Then there is constant C and a weakly special valuation v,
such that the C-shift FC satisfies µ(FC) = AX,∆(v) and FC ⊆ Fv.

4.21 Use Exercise 4.20 to give a different proof of the inequality in Theorem
2.52.

4.22 If (X,∆) is a klt projective pair such that L = −KX − ∆ is big. If (X,∆, L)
is Ding semistable, then (X,∆) is of log Fano type, i.e. there exists an
effective Q-divisor D such that (X,∆ + D) is a log Fano pair.
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Note on history

For log Fano pairs, the invariant FLX,∆(v) was introduced independently in Fu-
jita (2019b) and Li (2017). In Boucksom et al. (2017), Boucksom-Hisamoto-
Jonsson interpreted it as the value of non-archimedean Mabuchi functional
taking on the Dirac measure supported on the valuation v. For a smooth Fano
manifold X, it is known

min {δ(X), 1} = sup { t |Ric(ω) ≥ t · ω for a Kähler form ω }

by Berman et al. (2021) and Cheltsov et al. (2019). There has been a longer
history of studying the right hand side by complex geometers, see e.g. Tian
(1992); Rubinstein (2008); Székelyhidi (2011) etc.

The original proof of Theorem 4.14 in their works was combining the mini-
mal model program process in Li and Xu (2014) (see Section 2.3) and the ap-
proximation in Fujita (2018) (see Section 3.4). Here we extend the definition
of FLX,∆(v) and prove Theorem 4.14 in a slightly more general setting, and our
proof does not need the minimal model program. It was shown in Fujita and
Odaka (2018) and Blum and Jonsson (2020) that δ(X,∆) can be approximated
by δm(X,∆).

The precise correspondence between divisorial lc places of Q-complements
and weakly test configurations is observed by Blum-Liu-Xu in Blum et al.
(2022a), where it is also shown that valuations calculating δ(X,∆) are quasi-
monomial. The local result Theorem 4.40 that for any graded idea sequence,
the log canonical threshold can be calculated by a quasi-monomial valuation is
proved in Xu (2020), using an approximation process from Li and Xu (2020).

The equivalence between equivariant K-semistability and K-semistability
and the fact that it does not depend on the base field are proved in Zhuang
(2021). Section 4.4 follows the arguments there.

Estimating δ(X,∆), by estimating δm(X,∆) for log Fano pairs, becomes a
powerful approach for verifying the K-stability of Fano varieties. The Abban-
Zhuang method in Section 4.5, which incorporates the inversion of adjunction
to estimate δ(X,∆), i.e. the Abban-Zhuang inequality, was applied to hypersur-
faces in Abban and Zhuang (2022) and Abban and Zhuang (2023) to establish
Theorem 4.80. Built on earlier works, e.g. Arezzo et al. (2006), Fujita (2016),
Dervan (2016a), Liu and Xu (2019), Fujita (2023) etc., the question of deter-
mining K-semistability or K-polystability for a general member in the families
listed in Iskovskikh and Mori-Mukai’s classification of smooth Fano threefolds
has been completely addressed in Araujo et al. (2023). There are many ongoing
activities to get further results for low dimensional Fano varieties.



5
Higher rank finite generation

In this chapter, we aim to show that there always exists a divisorial valuation
ordE which computes δ(X,∆) when δ(X,∆) < n

n+1 for n = dim(X). Theo-
rem 4.49 yields quasi-monomial valuations v which compute δ(X,∆) under
the same assumption. The key remaining recipe is to show that the associated
graded ring of v is finitely generated. In general, the finite generation problem
for a higher rational rank quasi-monomial valuation is delicate. We will prove
that any lc place of a specialQ-complement with respect to a log smooth model
has a finitely generated associated ring.

Technically, our approach is to use a collection of divisors to degenerate
the log Fano pair (X,∆) in multiple steps. We introduce the concept of a qdlt
Fano type model, and show that its components yield a multiple-step degener-
ation with integral fibers. This is discussed in Section 5.1. In Section 5.2, the
geometric result in Section 5.1 is used to obtain the desired finite generation
result.

5.1 Multi-step degenerations

In this section, for a log Fano pair (X,∆), we will construct the multiple-step
degeneration induced by components of a qdlt Fano type model (see Definition
5.8) and describe its geometry. The key property we need is that the central
fiber is still a log Fano pair, in particular it is integral.

5.1.1 Rees construction in families

We study the family version of Example 3.54.

Definition 5.1. Let B be a p-dimensional smooth quasi-projective variety. We

207
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say that π : (X,∆)→ B is a locally stable family over B if π is flat, π∗OX = OB,
and for any closed point b ∈ B, hypersurfaces H1, . . . ,Hp given by a regular
system of parameter around b, (X,∆ + π∗H) is log canonical along π−1(b) for
H =

∑p
i=1 Hi.

This implies that Supp(∆) does not contain any fiber Xb, and we can define
∆|Xb = ∆b.

Remark 5.2. The notion of local stability gives the appropriate definition for
a family of singular pairs (X,∆) over a base B. This is indeed quite subtle over
a general base B. See Section 7.1.

Lemma 5.3. Let (η ∈ Y) be the spectrum of a p-dimensional local ring and
∆Y an effective divisor such that (Y,∆Y ) is lc and η is an lc center of (Y,∆Y ).
The following are equivalent:

(i) There are Q-Cartier divisors E1, . . . , Ep ⊆ ∆=1 such that η ∈ Ei.
(ii) There is a semi-local, snc pair η′ ∈ (Y ′, E′1 + · · ·+ E′p) and an abelian group

G acting on it, such that

(η ∈ Y,∆Y ) = (η ∈ Y, E1 + · · · + Ep) = (η′ ∈ Y ′, E′1 + · · · + E′p)/G .

Proof The implication (ii)⇒ (i) is clear.
For the converse, we construct π : Y ′ → Y as follows. By assumption, for

every i there is an mi > 0 such that miEi ∼ 0. These give degree mi cyclic
covers Y ′i → Y; let π : Y ′ → Y be their composite. Then Y ′ → Y is Galois
with group

∏
i Z/mi and it branches only along the Ei. Set E′i := redπ−1(Ei).

Then (Y ′, E′1 + · · · + E′p) is lc. In general η′ := π−1(η) may consist of several
points. At each of them, the E′i are Cartier. We claim that in fact Y ′ and the E′i
are smooth. This is proved by induction on the dimension. The p = 1 case is
clear.

By adjunction, (E′p, E
′
1 |E′p

+· · ·+E′p−1 |E′p
) is lc, thus E′p is smooth by induction.

Since E′p is a Cartier divisor, this implies that Y ′ is smooth. �

Definition 5.4. A log canonical pair (X,∆) is called quotient-dlt, abbreviated
as qdlt, if for every lc center Z ⊂ X the local scheme (Spec(OZ,X),∆|Spec(OZ,X ))
satisfies Lemma 5.3.

Lemma 5.5. Notation as in Definition 5.1. Let π : (X,∆) → B be a locally
stable family.

(i) If b∆c = 0, then the fiber (Xb,∆b) over b ∈ B is klt if and only if (X,∆ + π∗H)
is dlt in a neighborhood of Xb.
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(ii) If b∆c = E is irreducible, then the fiber (Xb,∆b) over b ∈ B is plt with
all lc centers being the connected components Eb of (Xb,∆b) if and only if
(X,∆ + π∗H) is dlt in a neighborhood of Xb.

Proof Write b∆c =
∑r

i=1 Ei. If (X,∆ + π∗H) dlt around Xb, then since Xb is
a log canonical center of (X,∆ + π∗H), (Xb,∆b) is dlt. So if (Xb,∆b) does not
contain any lc center, then it is klt. If E is irreducible, then the lc centers of
(Xb,∆b) are components Eb, in particular it is plt.

Conversely, if (Xb,∆b) it is klt, by inversion of adjunction, any divisor E over
X whose center is proper subset of Xb satisfies AX,∆+π∗H(E) > 0. So (X,∆+π∗H)
is dlt in a neighborhood of Xb. If (Xb,∆b) is plt with all lc centers being the
connected components Eb of (Xb,∆b), then as H1, . . . ,Hp are Cartier, (X,∆ +

π∗H) is snc around the generic point of a component of Eb. So (X,∆ + π∗H) is
dlt. �

In the above cases, we say that π : (X,∆)→ B is a locally stable family with
a klt, plt or qdlt fiber over b; and we say that π : (X,∆) → B has klt, plt or qdlt
fibers, if it holds for all b ∈ B.

Proposition 5.6. Let π : (X,∆) → B be a locally stable family over a smooth
quasi-projective variety, with fibers being (klt) log Fano pairs. Assume there
exists 0 ≤ Γ ∼ −(KX + ∆), such that the lc pair (X,∆ + Γ) has a unique lc place
E dominating B.

Then there exists a Gm-equivariant locally stable family (X,∆X) → B × A1

with Gm acting on B × A1 by the second factor, such that

(i) There exists an isomorphism

(X,∆X) ×A1 (A1 \ {0}) � (X,∆) ×k (A1 \ {0}),

(ii) −KX − ∆X is ample over B × A1,
(iii) for a general b ∈ B, the fiber over {b} × A1 � A1 is the degeneration of Xb

induced by Eb under the correspondence given by Theorem 4.23.

Proof Then we can mimic the argument as in Theorem 4.23: Denote XA1 =

X×A1, ∆+
A1 = (∆+Γ)×A1, EA1 = E×A1 and BA1 = B×A1. Since (XA1 ,∆+

A1 +X0)
is log canonical and have EA1 and X0 as its lc place, the divisor E1 = (ordE , 1)
(see Lemma 1.33) is also an lc place (XA1 ,∆+

A1 + X0). So we can extract E1 over
X ×A1 such that −E1 is relatively ample to get q : Y → XA1 . Over each b, this
yields the same constructionYb → Xb×A

1 for Eb. Running a relative minimal
model program for

KY + q−1
∗ (∆+

A1 + X0) ∨ E1 − E1 ∼Q,B×A1 −E1 over BA1 ,
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we get a model Y d X′ over BA1 which has to contract q−1
∗ X0. We can further

run a minimal model program X′ d X such that −KX −∆X is ample over BA1 .
Note in this process, (E1)b yields a component on Xb,0 for a general b ∈ B. �

Theorem 5.7. The notation as in Proposition 5.6. Assume Γ = Ψ + Φ where
Ψ and Φ are effective, Ψ ∼ −δ(KX + ∆) for 0 < δ < 1, such that (X,∆ + Ψ)
has a unique lc place E dominating B. Moreover, assume (Xb,∆b + Ψb) is plt.
Then the locally stable family (X,∆X) → B × A1 satisfies that for any b ∈ B,
the fiber over {b} × A1 � A1 is the degeneration of Xb induced by Eb.

Proof It suffices to show that Xb is a special test configuration of (Xb,∆b).
Write the fiber over b × {0} to be Xb,0 =

∑
i Fi, where Fi are given by divisors

of the form {(mi · ordEb , 1)} for mi ∈ N. Let p satisfy mp = maxi{mi}. Let
Fn

p → Fp be the normalization. Then write(
KXb + ∆Xb + Xb,0

)
|Fn

p
= KFn

p + ∆Fn
p ,(

KXb + ∆Xb + Xb,0 + ΨXb

)
|Fn

p
= Fn

p + ∆Fn
p + ΨFn

p ,

and (
KXb + ∆Xb + Xb,0 + ΓXb

)
|Fn

p
= Fn

p + ∆Fn
p + ΓFn

p .

We have (Fn
p,∆Fn

p + ΓFn
p ) is plt with two disjoint lc centers, which implies

(Fn
p,∆Fn

p ) is plt with at most one lc center, since its log canonical center does
not contain the center Z0 of vm = (m·ordEb , 1) for m > mp. Moreover, (Fn

p,∆Fn
p +

ΨFn
p ) is plt and has Z0 as its log canonical center. As −KFn

p−∆Fn
p−ΨFn

p is ample,
the pair contains a unique minimal lc center. We conclude that (Fn

p,∆Fn
p ) is klt,

which implies Xb,0 = Fn
p = Fp.

It follows from Lemma 4.17 and the function b 7→ T (FXb ) is a locally con-
stant, we can conclude mp = 1, �

5.1.2 Qdlt Fano type models

In this section, we introduce the concept of a qdlt Fano type model.

Definition 5.8. Let (X,∆) be a projective normal pair. We say a projective
birational morphism µ : (Y, E) → (X,∆) yields a qdlt Fano type model if there
exists an effective Q-divisor D such that (Y, E + D) is qdlt with bE + Dc = E,
E + D ≥ µ−1

∗ ∆ and −KY − E − D is ample.

The following statements show the flexibility of qdlt Fano type models.

Lemma 5.9. Let µ : (Y, E)→ (X,∆) be a qdlt Fano type model.



5.1 Multi-step degenerations 211

(i) Let F be an effective Weil divisor on Y which does not contain any strata of
E. Then we may assume E + D ≥ µ−1

∗ ∆ + εF for some 0 < ε � 1.
(ii) Any subset E′ of E satisfies that (Y, E′) → (X,∆) yields a qdlt Fano type

model. In particular, any irreducible component Ei of E yields a special
divisorial valuation over (X,∆).

Proof (i) Since O(−F) is Cartier at generic points of all strata of E, for suf-
ficiently divisible `, a general member F1 of |`(−KY − E − D) − F| does not
contain any strata of E. So for any sufficiently small ε, (Y, E + D + ε(F + F1))
is qdlt with the same lc centers as (Y, E + D), and −KY − E − D − ε(F + F1) is
ample.

(ii) Write E = E′ + E′′. Similarly as above we can find a divisor F ∼Q
`(−KY − E − D) − E′′ such that (Y, E′ + (1 − ε)E′′ + D + F) is qdlt, with
bE′+ (1−ε)E′′+ D + Fc = E′. Let D′ = (1−ε)E′′+ D + F, then −KY −E′−D′

is ample. The last claim follows from Theorem 4.28. �

Definition 5.10. We say a quasi-monomial valuation v is special over (X,∆),
if v ∈ QM(Y, E) for some qdlt Fano type model over (X,∆).

Lemma 5.11. Let π : (Y, E) → (X,∆) be a qdlt Fano type model. Assume
ρ : Y d Y ′ is a birational map between projective varieties over X such that
Ex(ρ−1) does not contain any divisor, and ρ is isomorphic at generic points of
all stratum of (Y, E). Then (Y ′, E′ = ρ∗E) is a qdlt Fano type model.

Proof There exists an ample divisor H′ on Y ′ which does not contain any
strata of E′. By Lemma 5.9, for 0 < ε � 1, we can assume D ≥ ρ−1

∗ H′. Let
H ∼Q −KY − E − D be an ample Q-divisor in a general position. Then we can
choose D′ on Y ′ to be ρ∗(D + H) − H′. �

5.1.3 Degenerations from a qdlt Fano type model

5.12. Let (X,∆) be a log Fano pair. Let E1, . . . , Ep be a set of irreducible com-
ponents of E =

∑k
i=1 Ei for a qdlt Fano type model µ : (Y, E) → (X,∆). We fix

D given as in Definition 5.8.
By Lemma 5.9 in which we choose F to be the pullback of a Q-divisor in

general position in | − KX − ∆|Q, there exists a Q-complement Γ ∼Q −KX − ∆

such that

(i) Γ = Ψ + Φ for effective Q-divisors Ψ,Φ such that 0 ≤ Ψ ∼Q −δ(KX + ∆)
with 0 < δ < 1.

(ii) (X,∆ + Ψ) is log canonical with E1, . . . , Ep lc places.
(iii) µ∗(KX + ∆ + Ψ) ≥ KY + D + E.
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In this section, we aim to show

Theorem 5.13. There exists a Gp
m-equivariant family π : X → Ap from a nor-

mal variety X, such that

(i) over the open set (A1 \ {0})p ⊆ Ap

X ×Ap (A1 \ {0})p � X ×Spec(k) (A1 \ {0})p. (5.1)

(ii) Let ∆X and ΓX be the closures of ∆ × (A1 \ {0})p and Γ × (A1 \ {0})p in X.
Then (X,∆X + ΓX) → Ap is a locally stable family, and (X,∆X) → Ap is a
locally stable family with klt fibers.

(iii) For any 1 ≤ i ≤ p, over the the open set

Ui = (x1 · · · xi−1xi+1 · · · xp , 0)(� Gp−1
m × A1) ⊆ Ap ,

the family X ×Ap Ui is Gp
m-equivariant to the Xi × (A1 \ {0})p−1, where Xi−1

is the Gm-equivariant degeneration induced by Ei×G
p−1
m (under the isomor-

phism in (5.1)).

Theorem 5.14. Assume the same notion as in Theorem 5.13. We can extend

µ × id : (Y, E) × (A1 \ {0})p → X × (A1 \ {0})p

to anGp
m-equivariant morphism µY : (Y,E)→ X (by (5.1)) and aGp

m-invariant
effective Q-divisorD on Y, such that

(i) bE +Dc = E, E +D ≥ µ−1
Y∗

∆X,D ≥ D × (A1 \ {0})p and if we denote by ΨX

the closure of Ψ × (A1 \ {0})p, then

KY + E +D ≤ µ∗(KX + ∆X + ΨX) . (5.2)

(ii) g := π ◦ µY : (Y,E +D) → Ap satisfies that (Y,E +D + g∗Ht) is qdlt for
any t = (t1, ..., tp) ∈ Ap and H =

∑p
i=1 Hi where Hi := (xi = ti).

(iii) −KY − E −D is ample over Ap.

We will prove Theorem 5.13 and Theorem 5.14 together by induction on
p = dim(B). When p = 0, Theorem 5.13 is trivial and Theorem 5.14 follows
from our assumption (see Paragraph 5.12). Assume both statements hold for
p − 1.

Proof of Theorem 5.13 for p By induction assumption for Theorem 5.13 and
Theorem 5.14, we have

(Yp−1,Ep−1 +Dp−1)
µp−1
−−−→ Xp−1

πp−1
−−−→ Ap−1

satisfying all statements there.
Denote by Ep the divisor onYp−1 which is the closure of Ep × (A1 \ {0})p−1.
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Since −(KYp−1 + Ep−1 + Dp−1) is ample over Ap−1, by Lemma 5.9, for every
t ∈ Ap−1, there exists an effective Q-divisor Ξt on the restriction (XU ,∆XU ) :=
(Xp−1,∆Xp−1 ) ×Ap−1 U over a neighborhood U ⊆ Ap−1 of t, such that

Ξt ∼Q,B −δp(KXU + ∆XU )

for some 0 < δp < 1, (XU ,∆U + Ξt) is plt with Ep the lc place, and moreover
(XU ,∆U + Ξt) → U has plt fibers. Applying Theorem 5.7 for Ep over XU and
patching all U, we get

πp : (Xp,∆Xp )→ U × A1

with klt fibers, which is Gp
m = G

p−1
m ×Gm eqivariantly, since Ep is Gp−1

m invari-
ant.

Moreover, since

(XU ,∆XU + (1 − a)ΓXU + aΞt)→ U

has plt fibers with Ep−1 the lc place for any 0 < a < 1, it implies that (Xp,∆Xp +

(1−a)ΓXp )→ Ap has klt fibers. Thus (Xp,∆Xp + ΓXp )→ Ap has lc fibers. This
proves (i) and (ii).

To see (iii), it is clear for 1 ≤ i < p; and for i = p, this follows from that Ep

is the extension of E × Gp−1
m . �

Theorem 5.14 for p By induction assumption, there exists aGp−1
m -equivariant

locally stable family

(Yp−1,Ep−1 +Dp−1)
µp−1
−−−→ Xp−1

πp−1
−−−→ Ap−1

with qdlt fibers such that bEp−1 +Dp−1c = Ep−1, Ep−1 +Dp−1 ≥ µ
−1
p−1∗∆Xp−1 and

−KYp−1 − Ep−1 −Dp−1 is ample over Ap−1.
In Lemma 5.9(ii), if we choose E′ = 0, then it implies there exists a divisor

Γ′ ∼Q −KX − ∆ such that (X,∆ + Γ′) is klt, and all irreducible divisor on Y
has log discrepancy ≤ 1 with respect to (X,∆ + Γ′). Let Γ′

Xp
be the closure of

Γ′ × (A1 \ {0})p. By Theorem 5.13, (Xp,∆Xp + ΓXp ) → Ap is a locally stable
family, so for 0 < a � 1, (Xp,∆Xp + (1− a)ΓXp + aΓ′

Xp
) is klt. As the divisorial

part of Ex(µp−1) corresponds to Ex(µ) × Ap−1, we can construct a Q-factorial
model Yp over Xp which precisely extracts the components corresponding to
components of Ex(µ)×Ap as these components all have log discrepancies ≤ 1
with respect to the klt pair (Xp,∆Xp + (1 − a)ΓXp + aΓ′

Xp
). Let Ep and D′p be

the extension of Ep−1 × (A1 \ {0}) andDp−1 × (A1 \ {0}) respectively.
By (5.2), we can replaceYp by the relative ample model of −KYp −Ep−D

′
p



214 Higher rank finite generation

over Xp, as a result we get an extension of

(Yp−1,Ep−1 +Dp−1) × (A1 \ {0})

��

µp−1×id
// Xp−1 × (A1 \ {0})

��

(Yp,Ep +D′p)
µp

// Xp

to a pair µp : (Yp,Ep +D′p)→ Xp such that −KYp −Ep −D
′
p is µp-ample over

X and

µ∗p(KXp + ∆Xp + ΓXp ) ≥ KYp + Ep +D′p .

Since components of E are lc places of (Xp,∆Xp + ΓXp ), for 0 < ε � 1, if we
defineDp by

KYp + Ep +Dp = (1 − ε)µ∗p(KXp + ∆Xp + ΨXp ) + ε(KYp + Ep +D′p) ,

then Lp := −(KYp + Ep + Dp) is ample over Ap. Moreover, by 5.12(iii) and
induction assumptions, we have Ep +Dp ≥ µ

−1
p∗∆Xp ,Dp ≥ D × (A1 \ {0})p and

µ∗p(KXp + ∆Xp + ΨXp ) ≥ KYp + Ep +Dp .

It is clear that (Yp,Ep+Dp) only has the strata of Ep being the the log canonical
centers. So (i) and (iii) hold.

It remains to show that

gp := πp ◦ µp : (Yp,Ep +Dp)→ Ap

satisfies (ii), i.e.,

Claim 5.15.
(
Yp,Ep +Dp + g∗pHt

)
is qdlt for any t ∈ Ap.

Proof Clear it suffices to prove for t = 0 ∈ Ap.
First we show that (Yp,Ep +Dp) is qdlt. This is clear over (A1 \ {0})p. On

the other hand, (5.2) implies that none of the lc centers of (Yp,Ep + Dp) are
contained in g∗pH0 and hence the pair is qdlt.

Let Ei (1 ≤ i ≤ k) be the components of E, and we denote by Ep,i the divisor
over Xp given by the (closure of) Ei × (A1 \ {0})p. Let

Z :=
k⋂

i=1

Ei and Z :=
k⋂

i=1

Ep,i.

By Exercise 1.9(a), Z is non-empty and irreducible. We note that Z is also
irreducible. In fact, asZ � Z × (A1 \ {0})p over (A1 \ {0})p, we see that ifZ is
reducible, then one of its components S lies inside g∗pH0. But S is necessarily
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an lc center of the qdlt pair (Yp,Ep+Dp), a contradiction. ThusZ is irreducible
as well.

We next show that Z0 := Z ∩ g−1
p (0) is the minimal lc center of (Yp,Dp +

Ep + g∗pH0). Indeed, by Exercise 1.9(a), the (unique) minimal lc center W
of (Yp,Dp + Ep + g∗pH0) intersecting g−1

p (0) must be contained in Z0, as
Ei and components of g∗pHi (i = 1, . . . , p) are all lc centers of this pair. By
construction, Yp carries a Gp

m-action lifting the Gp
m-action on X, hence W is

G
p
m-invariant. Suppose that Z0 , W, then since for some sufficiently divisible

integer m > 0,

gp∗ (OYp (mLp) ⊗ IW )→ H0(Y0,OYp (mLp) ⊗ IW ⊗ k0)

is surjective and the latter is globally generated, we may find a Gp
m-invariant

element in the linear system |OYp (mLp) ⊗ IW ⊗ k0| and extend it to a Gp
m-

invariant relative Cartier divisor G ∈ |mLp| such that W ⊆ Supp(G) but Z0 *

Supp(G).
ByGp

m-invariance, we haveG is the closure of G×(A1\{0})p for some divisor
G ∈ |m(−KY − E − D)|. AsZ0 * Supp(G), Z * Supp(G) and therefore G does
not contain any lc center of (Y,D+E). It follows that (Y,D+εG+E) is still qdlt
and −(KY + D + εG + E) is ample when 0 < ε � 1. So it yields a qdlt model
of (X,∆), Since we already prove (i), By (5.2), (Yp,Dp + εG + Ep + g∗pH0)
is lc, contradictory to the assumption that G containing the minimal lc center
of (Yp,Dp + Ep + g∗pH0). This implies that Z0 is the minimal lc center of
(Yp,Dp + Ep + g∗pH0).

Next we aim to show that each Ep,i is Q-Cartier at the generic point of Z0.
Since Lp is Q-Cartier, this is true if we can find a divisor in some |mLp − `Ep,i|

whose support does not containZ0. Let ` be a positive integer such that `Ei is
Cartier at the generic point of Z and let m > 0 be a sufficiently divisible integer
such that a general member G− (resp. G+) of |mL − `Ei| (resp. |mL + `Ei|)
does not contain Z in its support. Thus none of the lc centers of (Y,D + E)
are contained in Supp(G− + G+). As G− + G+ is an effective Cartier divisor, it
follows that the pair

(Y,D + ε(G− + G+) + E)

remains qdlt for 0 < ε � 1. As before, this implies that the corresponding pair(
Yp,Dp + ε(G− + G+) + Ep + g∗pH0

)
overAp is lc whereG−+G+ is the closure of (G−+G+)×(A1\{0})p. In particular,
Supp(G−+G+) does not containZ0 as it is an lc center of (Yp,Dp+Ep+g∗pH0).
Therefore, G− gives the sought divisor in |mL − `Ep,i|. Thus Ep,i is Q-Cartier
at the generic point ofZ0.
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Since every Ep,i (1 ≤ i ≤ k) is Q-Cartier at the generic point of Z0, while
each g∗p(xi = 0) is clearly Cartier, by Lemma 5.3 and codimYp (Z0) = p + k,
(Yp,Dp + Ep + g∗pH0) is qdlt at the generic point of Z0. This together with
the fact that every lc center of (Yp,Dp + Ep + g∗pH0) containsZ0 implies that
(Yp,Dp + Ep + g∗pH0) is qdlt. �

�

Let r(KX +∆) be Cartier and denote by R =
⊕

m∈r·N H0(X,−m(KX +∆)). For
any m ∈ r · N, and ~m = (m1, ...,mp) ∈ Zp, we define

Rm,~m =
{
s ∈ H0(X,−m(KX + ∆))

∣∣∣ ordEi (s) ≥ mi

}
and the N × Zp-graded ring

R = R(R; E1, ..., Ep) :=
⊕

m∈r·N,~m∈Zp

Rm,~mt−m1
1 · · · t−mp

p , (5.3)

which is finite generated (see Corollary 1.70). Denote by A := k[t1, . . . , tp],
thus R is an A-algebra.

Theorem 5.16. The model X constructed in Theorem 5.13 satisfies

X � ProjAR . (5.4)

Proof We prove this by induction on p. Assume the statement holds forXp−1,
i.e.

Xp−1 = ProjAp−1
Rp−1 where Rp−1 := R(R; E1, . . . , Ep−1) ,

and Ap−1 := k[t1, . . . , tp−1].
Denote by Ep−1,p the divisor over Xp−1 which is birational to Ep × (A1 \

{0})p−1. The Rees algebra induced by Ep−1,p is given by⊕
mp∈Z

F
mp

Ep−1,p
Rp−1 t−mp

p ,

and by construction we have

Xp � ProjAp−1[tp]

⊕
mp∈Z

F
mp

Ep−1,p
Rp−1 t−mp

p . (5.5)

Since the restriction of the divisor Ep−1,p over (A1 \ {0})p−1 corresponds to
Ep × (A1 \ {0})p−1, we have

F
mp

Ep−1,p
Rp−1 ⊗Ap−1 Ap−1[T−1] � F mp

Ep
R ⊗k Ap−1[T−1] , (5.6)
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where Ap−1[T−1] := k[t1, t−1
1 , · · · , tp−1, t−1

p−1]. For any fixed mp ∈ Z, an ele-
ment s ∈ Rp−1 is contained in F mp

Ep−1,p
Rp−1 if and only its image in Rp−1 ⊗Ap−1

Ap−1[T−1] is contained in

F
mp

Ep−1,p
Rp−1 ⊗Ap−1 Ap−1[T−1] ⊆ Rp−1 ⊗Ap−1 Ap−1[T−1] .

Therefore we have,

F
mp

Ep−1,p
Rp−1 = Rp−1 ∩

(
F

mp

Ep−1,p
Rp−1 ⊗Ap−1 Ap−1[T−1]

)
(5.6)
=

⊕
m∈r·N,~m′∈Zp−1

(
Rm,~m′ ∩ F

mp

Ep
R
)

t−m1
1 · · · t−mp−1

p−1

=
⊕

m∈r·N,~m′∈Zp−1

F
mp

Ep
Rm,~m′ t−m1

1 · · · t−mp−1

p−1 ,

where ~m′ = (m1,m2, . . . ,mp−1). Therefore,⊕
mp∈Z

F
mp

Ep−1,p
Rp−1 t−mp

p � R ,

and we conclude by (5.5). �

For any set of valuations v1, . . . , vp and 0 , α = (α1, . . . , αp) ∈ Rp
≥0, we in-

troduce a filtration similar to Definition 3.70 for p ≥ 2 asF λ
α R =

⊕
m∈r·N F

λ
α Rm,

where for any λ ∈ R,

F λ
α Rm = Spank

{
f ∈ Rm |α1v1( f ) + · · · + αpvp( f ) ≥ λ

}
. (5.7)

Lemma 5.17. The filtration Fα on R is multiplicative.

Proof Let si ∈ F
λi
α Rmi for i = 1, 2. Then we can write si =

∑
ci j fi j for some

ci j ∈ k, and each fi j ∈ Rmi satisfies α1v1( fi j) + · · ·αpvp( fi j) ≥ λi. So

s1 · s2 =
∑
j, j′

c1 jc2 j′ f1 j f2 j′ .

For each pair ( j, j′),

α1v1( f1 j f2 j′ ) + · · · + αpvp( f1 j f2 j′ )

= α1(v1( f1 j) + v1( f2 j′ )) + · · · + αp(vp( f1 j) + v1( f2 j′ ))

=
(
α1v1( f1 j) + · · ·αpvp( f1 j)

)
+

(
α1v1( f2 j′ ) + · · ·αpvp( f2 j′ )

)
≥ λ1 + λ2 ,

thus s1 · s2 ∈ F
λ1+λ2
α Rm1+m2 . �

Proposition 5.18. Let vi = ordEi (1 ≤ i ≤ p) be the valuations given by compo-
nents Ei of a qdlt Fano type model (Y, E)→ (X,∆). Then for α = (α1, . . . , αp) ∈
N

p
>0, the filtration Fα arises from a valuation.
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Proof Let π : (X,∆X) → Ap be the family constructed as in Theorem 5.13,
which is a locally stable family of log Fano pairs over Ap. Replacing r by a
larger multiple, we may assume r(KX + ∆X) is Cartier.

We define k[t1, . . . , tp]→ k[t] by sending ti → tαi . Then we have

R ⊗k[t1,...,tp] k[t] � ReesFα (R) . (5.8)

Let (X0,∆X0 ) be the fiber (X,∆X) over 0 ∈ Ap. It follows from Kawamata-
Viehweg Vanishing Theorem that for any m divided by r,

π∗(−m(KX + ∆X)) ⊗ k0 � H0(X0,−m(KX0 + ∆X0 )). (5.9)

Therefore,

GrFαR � ReesFα (R) ⊗k[t] k0

� R ⊗k[t1,...,tp] k0 by (5.8)

�
⊕
m∈r·N

H0(X0,−m(KX0 + ∆X0 )) by (5.9) .

In particular, GrFαR is integral, and the statement follows from Lemma 4.4. �

5.2 Finite generation for quasi-monomial valuations

In this section, we will use the geometric construction in the previous section
to obtain finite generation of the graded ring for a quasi-monomial valuation
that is an lc place of a special Q-complement.

5.2.1 Quasi-monomial valuations with a finitely generated
associated graded ring

Let X be a proper variety, L an ample Q-line bundle and fix a positive integer
r such that rL is Cartier. Let R =

⊕
m∈r·N H0(X,mL). For any v ∈ ValX , we

denote by Grv(R) := GrFv (R) (see Definition 3.15).

Theorem 5.19. Notation as above. Let (Y, E) → X be a snc model over X.
Assume v ∈ QMη(Y, E) and Grv(R) is finitely generated by the restrictions
of homogeneous elements f0, . . . , f` ∈ R. Let Σ ⊆ QM(Y, E) be the minimal
rational space of QM(Y, E) containing v.

Then there exists a neighborhood U of v in Σ such that for any w ∈ U, we
have a graded isomorphism Grv(R) � Grw(R), sending restrictions of f0, . . . , f`
in Grv(R) to their respective restrictions in Grw(R).
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Proof Denote by η = cY (v). After replacing (Y, E) by a higher model, we may
assume codimY (η) is equal to the rational rank p of v.

Since f̄0, . . . , f̄` generate Grv(R), we have a surjection

πv : k[x0, . . . , x`]→ Grv(R), xi 7→ f̄i .

Similarly for w ∈ QM(Y, E), we have a homomorphism πw : k[x0, . . . , x`] →
Grw(R) sending xi to the restriction of fi.

We first show that πw factors through Grv(R) when w is sufficiently close to
v. For fi ∈ Rmi , if we set

deg(xi) = (mi, v( fi)) ,

then the map πv is a doubly graded homomorphism. Fix a set of homogeneous
generators Φ1, . . . ,Φq of Ker(πv). Let (y1, . . . , yp) be a regular system of pa-
rameters of OY,η and let α ∈ Rp

+ be such that v = vα. If we set wtα(xi) = vα( fi)
which induces a natural weight on every polynomial in k[x0, ..., x`] by

wtα(Φ) = min

∑̀i=1

diwtα(xi)
∣∣∣∣ where Φ =

∑
kd1 ,...,d`,0

kd1,...,d` x
d1
1 · · · x

d`
`

 .
Then by definition,

v(Φi( f0, . . . , f`)) > wtα(Φi) .

If (Y, E) is log smooth at η, then each fi has a local expansion fi =
∑
β∈Np c(i)

β yβ

at η, where we use the same notation from Example 1.27. Since the rational
rank of v is p, for any homogeneous element f ∈ Rm, we have v( f ) = 〈α, β f 〉 for
a uniquely determined β f ∈ N

p. In particular, we have v( fi) = 〈α, βi〉 for some
βi ∈ N

p; moreover, for any other β ∈ Np with c(i)
β , 0, we have 〈α, β〉 > v( fi)

as α1, . . . , αr are Q-linearly independent. It follows that if α′ ∈ QM(Y, E) is
sufficiently close to α, then w = vα′ satisfies

w( fi) = 〈α′, βi〉 and w( fi) < 〈α′, β〉 for any other β ∈ Np with c(i)
β , 0 .

Similarly, we also see that if α′ is sufficiently close to α then for any 1 ≤ i ≤ q,
w(Φi( f0, . . . , f`)) > wtα′ (Φi). This implies that all Φi are contained in the kernel
of πw; in particular, the map πw factors through Grv(R).

k[x0, . . . , x`]

πw
&&

πv // Grv(R)

ϕ

��

Grw(R)
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Denote by ϕ : Grv(R) → Grw(R) the induced map. We first show ϕ is injec-
tive. If there is a nonzero element g ∈ Grv(R) with ϕ(g) = 0, we can lift g to
an element Φ ∈ k[x0, . . . , x`] such that πw(Φ) = 0. By looking at homogeneous
summand of Φ, whose image under πw are all 0, we can assume Φ is a homo-
geneous element with respect to wtα′ . We may write Φ = Φ′ + Φ′′ where all
monomials in Φ′ have wtα = wtα(Φ) while the ones in Φ′′ have wtα > wtα(Φ).
If πv(Φ′) = 0, then we replace Φ by Φ′′, and after finitely many steps, we may
assume πv(Φ′) , 0. Let

g = Φ( f0, . . . , f`)

and we aim to show w(g) = wtα′ (Φ) which is equivalent to saying πw(Φ) , 0.
Let ui = c(i)

βi
yβi be the monomial in the local expansion of fi that computes

v( fi). As πv(Φ′) , 0, i.e. v(g) = wtα(Φ′),

v
(
Φ( f0, . . . , f`) − Φ′(u0, . . . , u`)

)
≥ min

{
v
(
Φ′′( f0, . . . , f`)

)
, v

(
Φ′( f0, . . . , f`) − Φ′(u0, . . . , u`)

)}
> wtα(Φ′) = v(g) .

Therefore, since v = vα has rational rank p, Φ′(u0, . . . , u`) yields the only
monomial in the local expansion of g at (η ∈ Y), whose value under v is wtα(Φ).
Since the monomial Φ′(u0, . . . , u`) appears in the expansion of Φ(u0, . . . , u`)
around (η ∈ Y), we have

w(Φ(u0, . . . , u`)) ≤ w(Φ′(u0, . . . , u`)) = wtα′ (Φ′) = wtα′ (Φ) ,

since all monomials in Φ′ have the same wtα′ .
Since w( fi − ui) > w( fi) = w(ui) (i = 0, . . . , `) by our choice of w, then as all

monomials in Φ have the same weight with respect to wtα′ , we have

w
(
Φ( f0, . . . , f`) − Φ(u0, . . . , u`)

)
> wtα′ (Φ) .

Therefore,

w(g) = w(Φ(u0, . . . , u`)) ≤ wtα′ (Φ) .

On the other hand, we necessarily have w(g) ≥ wtα′ (Φ). So w(g) = wtα′ (Φ) and
therefore πw(Φ) , 0, which is a contradiction. This proves that ϕ : Grv(R) →
Grw(R) is injective.

As ϕ is a graded homomorphism, and both Grv(Rm) and Grw(Rm) have the
same dimensions (= dim Rm) in degree m, so ϕ is also surjective, i.e. ϕ is an
isomorphism.

Clearly ϕ sends the restrictions of f0, . . . , f` in Grv(R) to their respective
restrictions in Grw(R). �
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5.2.2 Finite generation for special valuations

Let (X,∆) be a log Fano pair and µ : (Y, E) → (X,∆) a dlt Fano type model.
Assume that vi = ordEi (1 ≤ i ≤ p) are given by the irreducible components
of E, and η is the generic point of the (unique) component of

⋂p
i=1 Ei. There

exists a natural linear map Rp
≥0 → QMη(Y, E) sending the i-th basis vector ei to

vi. For 0 , α = (α1, . . . , αp) ∈ Rp
≥0, we let vα ∈ QMη(Y, E) be the image of α.

We denote by Fα the filtration defined by (5.7).
We aim to prove

Theorem 5.20. For all α ∈ R
p
≥0, Fvα coincides with Fα. In particular, the

graded algebra GrvαR is finitely generated,
Moreover, GrvαR � Grvα′R whenever α, α′ ∈ Rp

>0.

Lemma 5.21. There exists a model µ′ : Y ′ → X such that h : Y d Y ′ is iso-
morphic at the generic point of every stratum of E, and Supp(h∗E) contains an
effective relatively anti-ample Q-divisor F over X.

Proof By Lemma 5.11, we may assume Y is Q-factorial. We can run a mini-
mal model program for

−(KY + (µ−1
∗ ∆ ∨ E)) ∼Q,X −

p∑
i=1

AX,∆(Ei)

over X, to obtain a relative minimal model g : Y d Y1. Then we can take Y1 →

Y ′
µ′

−→ X to be the relative canonical model of −
∑p

i=1 AX,∆(Ei). By Lemma 5.11,
there exists a Q-divisor G on Y1, such that (Y1, g∗(µ−1

∗ ∆ ∨ E) + G) is a dlt pair
with −KY1 − g∗(µ−1

∗ ∆ ∨ E) −G is ample. In particular, for any stratum Z of E,
since Z is not contained in G, (−KY1 −g∗(µ−1

∗ ∆∨E))|E is big, i.e. Y1 → Y ′ does
not contract any stratum. So if we denote by E′ the pushforward of E on Y ′,
(Y, E) d (Y ′, E′) is isomorphic on every strata of E, and

F =

p∑
i=1

AX,∆(E′i ) ∼Q,X KY ′ + (µ′−1
∗ ∆ ∨ E′)

is anti-ample. �

Proposition 5.22. Let α ∈ Rp
>0. Assume that there exists a valuation w ∈ ValX

such that Fα coincides with Fw. Then w = vα.

Proof From the definition of quasi-monomial valuations,

F λ
α R ⊆ F λ

vαR for all λ ,

hence vα ≥ w on R. It remains to show that w ≥ vα.
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Let µ′ : (Y ′, E′) → X be the model constructed as in Lemma 5.21, with the
divisor F on Y ′.

Let 0 , s0 ∈ Rm0 and let λ0 = vα(s0). Let

b =
{
f ∈ OY ′ | vα( f ) ≥ λ0

}
be the corresponding valuation ideal sheaf on Y ′. Then we have a surjection⊕

bi∈N,
∑
αibi≥λ0

OY ′
(
−

p∑
i=1

biE′i
)
→ b (5.10)

by the definition of vα.
Since −F is ample over X, we may choose ` > 0 to be a sufficiently divisible

integer such that

µ′∗µ′∗OY ′ (−`F)→ OY ′ (−`F) (5.11)

and the map⊕
bi∈N,

∑
αibi≥λ0

µ′∗OY ′
(
−

p∑
i=1

biEi − `F
)
→ µ∗(b ⊗ OY (−`F)) (5.12)

induced by (5.10) are surjective. By (5.11), we may assume m ∈ r · N suffi-
ciently large such that µ′∗(−m(KX + ∆)) − `F is base point free on Y , and the
map of global sections of (5.12) tensoring with OX(−(m+m0)(KX +∆)) remain
to be surjective.

So there exists a section s ∈ Rm such that

µ∗(div(s)) = `F + D

for some divisor D that is in general position, in particular Supp(D) does not
contain any stratum of E. Thus

α1v1(s) + · · · + αpvp(s) = α1v1(`F) + · · · + αpvp(`F) = vα(`F) = vα(s) ,

where the second equality follows from the definition of the valuation vα and
the fact that the local equation of `F is given by a monomial. In particular,
s ∈ F vα(s)

α Rm, i.e. w(s) ≥ vα(s) which implies w(s) = vα(s).
As

s0s ∈ H0
(
X,OX(−(m + m0)(KX + ∆)) ⊗ µ′∗(b ⊗ OY ′ (−`F))

)
,

we may write

s0s = g1 + · · · + gk , (5.13)
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where each

g j ∈ H0
(
X,OX

(
− (m + m0)(KX + ∆)

)
⊗ µ′∗OY ′

(
−

p∑
i=1

b( j)
i Ei − `F

))
⊆ Rm+m0

for some b( j)
i ∈ N that satisfies

∑
αib

( j)
i ≥ λ0. Hence for any j = 1, . . . , k,

p∑
i=1

αivi(g j) ≥
p∑

i=1

αivi

( p∑
i=1

b( j)
i Ei + `F

)
= vα

( p∑
i=1

b( j)
i Ei + `F

)
=

p∑
i=1

αib
( j)
i + vα(`F)

≥ λ0 + vα(`F) = vα(s0s) ,

where the first equality follows from the definition of the quasi-monomial val-
uation vα as above. It follows from the assumption that each w(g j) ≥ vα(s0s),
which implies w(s0s) ≥ vα(s0s) by (5.13). Therefore, w( f0) ≥ vα(s0). �

The following auxiliary lemma allows us to only consider rational weights.

Lemma 5.23. For any m ∈ r · N,

F λ
vαRm =

⋂
α′≥α,α′∈Qp

F λ
vαRm and F λ

α Rm =
⋂

α′≥α,α′∈Qp

F λ
α Rm .

Proof Both inclusions “⊆” are obvious.
For any s ∈ Rm if s < F λ

vαRm, i.e. vα(s) < λ, then there exists a rational
vector α′ ≥ α sufficiently close to α such that vα′ (s) < λ, i.e. vα′ (s) < λ. Thus
F λ

vαRm ⊇
⋂
α′≥α,α′∈Qp F λ

vαRm.
Similarly, for s ∈ Rm if s < F λ

α Rm, we set ordFα (s) = λ′ < λ. So there exists
sufficiently small ε and a rational vector α′ ≥ α such that α′(λ′ + ε) ≤ αλ. If
there is a decomposition s =

∑
j s j, such that for any j,

∑p
i=1 α

′
ivi(s j) ≥ λ, then

p∑
i=1

αivi(s j) ≥
p∑

i=1

λ′ + ε

λ
α′ivi(s j) ≥ λ′ + ε ,

which implies s ∈ F (λ′+ε)
α Rm, contradictory to ordFα (s) = λ′. Thus s < F λ

α Rm.
�

Proof of Theorem 5.20 By Lemma 5.9(ii), we may assume α ∈ Rp
>0. It suf-

fices to verify when α ∈ Qp
>0, F λ

vαR = F λ
α R, by Lemma 5.23. By rescaling, we

may further assume that α = (α1, . . . , αp) ∈ Np. By Proposition 5.18, Fα arises
from a valuation w which then implies Fα = Fvα by Proposition 5.22.
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Assume that α and α′ ∈ Rp
>0. If α, α′ ∈ Qp

>0, then

GrvαR = GrFαR

� R ⊗k[t1,...,tp] k0 by (5.8)

� GrFα′R � Grvα′R

In general α, α′ may have irrational weights, but by Theorem 5.19, GrvαR �

GrvβR for some β ∈ Qp
>0. Similarly for α′. Thus the isomorphism Grvα′R �

Grvβ′R follows from the rational case treated above. �

5.2.3 Finite generation for monomial lc places

Let (X,∆) be a log Fano pair such that r(KX + ∆) is Cartier. We denote by

R =
⊕
m∈r·N

H0(X,−m(KX + ∆)) .

5.24 (Toroidal). A pair (X,D) is toridal at a point x if étale locally around x,
it is isomorphic to a point on a toric variety with its invariant divisor. A pair
(X,D) is toroidal if it toroidal at every point x ∈ (X,D). A toroidal pair (X,D)
is said strict if any component of D is normal. A morphism µ : (Y, E)→ (X,D)
is toroidal at a point y ∈ Y , if étally locally around y ∈ Y and f (y) ∈ X, the
morphism is isomorphic to a toric morphism between toric varieties.

For a point η ∈ (X,D), we can attach a lattice cone Ση ⊂ N, which corre-
sponds to the affine toric variety with an étale neighborhood isomorphic to one
of η ∈ (X,D). Then a subcone Σ′ ⊆ Σ is smooth if it is simple, and the lattice
N′ generated by the extremal rays of Σ′ satisfies N ∩ (N′ ×Z Q) = N′. This
is equivalent to saying that if we extract the divisors E1, . . . , Ep which corre-
sponds to the extremal rays of Σ′ to get Y → X, then Z = ∩

p
i=1Ei is irreducible,

and (Y, E1 + · · · + Ep) is snc around the generic point of Z.

Definition 5.25. Let µ : Y → (X,∆) be a birational model projective over X
with a divisor E on Y such that (Y, E) is snc and any prime divisor in Ex(µ)
which are not component of E does not contain any stratum of (Y, E). A Q-
complement Γ of (X,∆) is called special with respect to (Y, E) if ΓY = µ−1

∗ Γ ≥

G for some effective ample Q-divisor G whose support does not contain any
stratum of (Y, E). For a special Q-complement Γ with respect to (Y, E), any
valuation

v ∈ LCP(Γ; Y, E) := QM(Y, E) ∩ LCP(X,∆ + Γ)

is called a monomial lc place.
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In the above setting, one can see that LCP(Γ; Y, E) is a polyhedral sub-
cone of QM(Y, E). We aim to show that any monomial lc place of a special
Q-complement is special (see Definition 5.10).

Theorem 5.26. Let (X,∆) be a log Fano pair. Let µ : (Y, E) → (X,∆) be as in
Definition 5.25 admitting a special Q-complement Γ, and prime divisors

E1, . . . , Ep ∈ LCP(Γ; Y, E)

generating a smooth cone in QMη(Y, E), then there exists a qdlt Fano type
model (Y ′, E′)→ (X,∆) such that

(i) E′ is the sum of the birational transforms of E1, . . . , Ep, and
(ii) the toroidal structure of (Y ′, E′) at the generic point of ∩p

i=1E′i coincides with
the one from (Y, E).

Proof It follows Lemma 5.27 and Lemma 5.29. �

Lemma 5.27. Theorem 5.26 holds under the assumption E =
∑p

i=1 Ei.

Proof Since Ei ∈ LCP(Γ; Y, E), QM(Y, E) ⊆ LCP(Γ; Y, E) which implies
QM(Y, E) = LCP(Γ; Y, E). Write KY + ∆Y = µ∗(KX + ∆), then (Y,∆Y + µ∗Γ)
is sub-dlt. Since Γ is a special Q-complement, there exists an effective ample
Q-divisor G ≤ µ−1

∗ Γ that does not contain the generic point η of
⋂p

i=1 Ei.
Similar to Lemma 5.11, we claim that it suffices to find a birational contrac-

tion g : Y d Y ′ with Y ′ being projective over X, such that

(i) g is an isomorphism around η, and
(ii) g contracts all the µ-exceptional divisors that are not contained in F.

To see the claim, let G′0 be an effective ampleQ-divisor on Y ′ that is in a general
position, and let G0 be its birational transform on Y . Then Supp(G0) does not
contain η by (i). It follows that for 0 < ε � 1 (ε ∈ Q) we have G − εG0 is
ample, and (Y,∆Y + µ∗Γ −G + εG0) is sub-dlt with

LCP(Y,∆Y + µ∗Γ −G + εG0) = QM(Y, E) .

Choose a sufficiently divisible integer m and take a general G1 ∈
1
m |m(G−εG0)|.

Then by Bertini’s theorem (Y,∆Y + µ∗Γ −G + εG0 + G1) is also sub-dlt with

LCP(Y,∆Y + µ∗Γ−G + εG0 + G1) = LCP(Y,∆Y + µ∗Γ−G + εG0) = QM(Y, E) .

Moreover, as

µ∗Γ −G + εG0 + G1 ∼Q µ
∗Γ ,
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if we let 0 ≤ Γ′ = µ∗(µ∗Γ −G + εG0 + G1) ∼Q −KX − ∆, then

µ∗Γ −G + εG0 + G1 = µ∗Γ′ . (5.14)

Note that KY + ∆Y +µ∗Γ′ ∼Q 0. By construction, the lc places of (X,∆ + Γ′) are
given by QM(Y, E). Denote the induced map Y ′ → X by µ′.

Y

µ
��

g
// Y ′

µ′
~~

X

By the property (ii) of the birational contraction g : Y d Y ′, the birational
transform g∗(∆Y + µ∗Γ′) is effective. Combined with the property (i), we see
that (Y ′, g∗(∆Y + µ∗Γ′)) is dlt and its lc places are given by QM(Y ′, E′ := g∗E).
By (5.14), µ′∗

−1Γ′ ≥ εG0. Let

D′ = g∗(∆Y + µ∗Γ) − εG0 ≥ µ
′
∗
−1

∆.

Then (Y ′,D′) is dlt, bD′c = E′ and −(KY ′ + D′) ∼Q εG0 is ample. It follows
that the model (Y ′, E′)→ (X,∆) is of dlt Fano type as desired.

Thus it remains to find a birational contraction that satisfies (i) and (ii). We
write

µ∗(KX + ∆ + Γ) = KY + Γ1 − Γ2,

where Γ1 and Γ2 are effective and have no common components. In particular,
Supp(Γ2) ⊆ Ex(µ). As Supp(Γ2) does not contain η, Supp(Γ1 − E) does not
contain η, otherwise, (Y,Γ1 − Γ2) is not sub-lc at η. Thus we can pick a log
resolution ρ : Z → Y of (Y,Supp(Γ1 + Γ2)) which is isomorphic over a neigh-
borhood of η since (Y,Γ1) is snc around η. Let ϕ := µ ◦ ρ : Z → X be the
induced map, and for a fixed 0 < a � 1 write

ϕ∗(KX + ∆ + (1 − a)Γ) = KZ + D1 − D2 ,

where D1 and D2 are effective and have no common components. Let F̃ be the
sum of all ϕ-exceptional divisors that are not contained in ρ−1

∗ F. In particular,
Supp(D2) ⊆ F̃. Clearly bD1c = 0 since (X,∆ + (1 − a)Γ) is klt.

We may run the (KZ + D1 + εF̃)-MMP to get Z d Y ′ over X.

Z

ρ

��

// Y ′

µ′

��

Y
µ

// X
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As we have

KZ + D1 + εF̃ ∼Q,ϕ D2 + εF̃

and the right hand side is fully supported on F̃, the minimal model program
exactly contracts F̃ and thus the induced birational map Y d Y ′ is a birational
contraction that satisfies the property (ii). As F̃ does not contain any stratum
of ρ−1

∗ F and ρ : Z → Y is an isomorphism at η, the map Y d Y ′ also satisfies
the property (i). This finishes the proof. �

Lemma 5.28. Let (Y, E) be a snc pair, and let ∆ be a (possibly non-effective)
Q-divisor supported on E such that b∆c ≤ 0. Let E1, . . . , Ep be toroidal divisors
over (Y, E) given by a set of linearly independent vectors in a simplicial cone of
QM(Y, E). Then there exists a proper birational morphism ρ : Z → Y extracting
exactly the divisors E1, . . . , Ep such that −

∑p
i=1 AY,∆(Ei) · Ei is ample over Y.

Proof We first assume (Y, E) is a toric pair. Let f : W → Y be a toric blowup
that extracts the divisors E1, . . . , Ep. By running a toric minimal model pro-
gram g : W d W ′ over Y we obtain a model such that −

∑p
i=1 AY,∆(Ei) · g∗Ei

is nef over Y and let h : W ′ → Z be the corresponding ample model over Y . It
suffices to show that none of the divisors Fi are contracted in this process. By
assumption, D := E − ∆ is effective and Supp(D) = E. Since AY,E(Ei) = 0, we
have AY,∆(Ei) = ordEi (D), thus

−

p∑
i=1

AY,∆(Ei) · Ei ∼Q, f f ∗D −
p∑

i=1

ordEi (D) · Ei = DW ,

for some effective divisor DW that does not contain any Ei it its support. It
follows that W d W ′ does not contract any of the divisors Ei and hence by
replacing the initial model W with W ′ we may simply assume W = W ′. On the
other hand, we have

KW + ∆W +

p∑
i=1

Ei ∼Q, f

p∑
i=1

AY,∆(Ei) · Ei,

thus the ample model W → Z satisfies

KW + ∆W +

p∑
i=1

Ei = h∗(KZ + ∆Z +

p∑
i=1

h∗Ei).

Here ∆Z ,∆W denote the strict transform of ∆ on Z,W. Note that (W,∆W +∑r
i=1 Ei) and (Z,∆Z +

∑p
i=1 h∗Ei) are toric. Also recall that b∆c ≤ 0. Thus

LCP(W,∆W +
∑p

i=1 Ei) is the p-dimensional simplicial cone spanned by all Ei

while LCP(Z,∆Z +
∑p

i=1 h∗Ei) is the simplicial cone spanned by h∗Ei. But as
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the two pairs are crepant equivalent, their dual complexes have the same di-
mension. In particular, the divisors h∗Ei also span a p-dimensional simplicial
cone. This implies that none of the Ei’s are contracted on the ample model.

In the general case when (Y, E) is only toroidal, we have a toroidal mor-
phism ρ : Z → Y corresponding to the subdivision given in the toric case.
Then over any point η ∈ (Y, E), there is an étale neighborhood of η over which
ρ is isomorphic to a neighborhood of the toricl model constructed as above.
In particular, ρ : Z → Y extracting exactly the divisors E1, . . . , Ep such that
−

∑p
i=1 AY,∆(Ei) · Ei is ample over Y . �

Lemma 5.29. Let µ : (Y, E) → (X,∆) be as in Definition 5.25 admitting a
special Q-complement ΓY . Let E1, . . . , Ep be divisors over Y in LCP(ΓY ; Y, E)
spanning a smooth cone in a simplicial cone QMη(Y, E). Then there exists a
toroidal morphism ρ : (Z, F)→ (Y, E) and a special Q-complement Γ of (X,∆)
for (Z, F) where F =

∑p
i=1 Ei such that all Ei are lc places of (X,∆ + Γ).

Proof Let KY +∆Y = π∗(KX +∆) be the crepant pullback. Then (Y,∆Y ) is sub-
klt and in particular b∆Yc ≤ 0. By applying Lemma 5.28 to the toroidal pair
(Y,Supp(E +π−1

∗ ∆+Ex(π))) and the sub-boundary ∆Y , we deduce that there ex-
ists a toroidal birational morphism ρ : Z → Y extracting the divisors E1, . . . , Ep

such that −
∑p

i=1 AY,∆Y (Ei)·Ei is ρ-ample over Y . Note that AY,∆Y (Ei) = AX,∆(Ei),
so this Q-divisor is the same as −

∑p
i=1 AX,∆(Ei) · Ei. Since QM(Z, F) is a sim-

plicial cone, to prove the lemma, we need to find a special Q-complement Γ

with respect to (Z, F) such that QM(Z, F) = LCP(X,∆ + Γ).
Let ρ∗(KY + ∆Y ) = KZ + ∆Z , and F̃ =

∑r
i=1 AX,∆(Ei) ·Ei. Since ΓY is a special

Q-complement with respect to (Y, E), we have µ−1
∗ ΓY ≥ G for some effective

ample Q-divisor G that does not contain any stratum of (Y, E). Let

D = µ∗ΓY −G ≥ 0 .

Since G is ample on Y and −F̃ is ample over Y by Lemma 5.28, we can choose
a rational number 0 < ε � 1 such that both 1

2G +εD and 1
2ρ
∗G−εF̃ are ample.

This guarantees that ρ∗(G + εD) − εF̃ is ample.
Therefore,

ρ∗µ∗ΓY = ρ∗(G + D) = (1 − ε)ρ∗D + εF̃ + (ρ∗(G + εD) − εF̃) .

We claim that

Claim.
LCP(Z,∆Z + (1 − ε)ρ∗D + εF̃) = QM(Z, F) . (5.15)

Proof The pair (Z,∆Z + (1 − ε)ρ∗D + εF̃) is a convex linear combination of
(Z,∆Z + ρ∗D) and (Z,∆Z + F̃), thus it suffices to show that:
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(i) both (Z,∆Z + ρ∗D) and (Z,∆Z + F̃) are sub-lc,
(ii) LCP(Z,∆Z + F̃) = QM(Z, F) ⊆ LCP(Z,∆Z + ρ∗D).

First, (Z,∆Z + ρ∗D) is sub-lc since it is the crepant pullback of (Y,∆Y + D),
which is sub-lc as

KY + ∆Y + D ≤ π∗(KX + ∆ + ΓY ) .

Moreover, all the Ei’s are lc places of (Y,∆Y + D) by assumption, thus

QM(Z, F) ⊆ LCP(Z,∆Z + ρ∗D) .

On the other hand, since ρ is toroidal,

KZ + ∆Z + F̃ = ρ∗(KY + ∆Y ) +

p∑
i=1

AY,∆Y (Ei) · Ei = KZ +
(
ρ−1
∗ ∆Y ∨

p∑
i=1

Ei

)
,

and b∆Yc ≤ 0, we hence see that the toroidal pair (Z,∆Z + F̃) is also lc and its lc
places are exactly given by QM(Z, F). Thus we have proved all the properties
(i) and (ii) above and this finishes the proof.

�

Since ρ∗(G + εD) − εF̃ is ample, by Bertini’s theorem we can choose an
effective Q-divisor G′ ∼Q ρ∗(G + εD) − εF̃ in a general position such that

LCP(Z,∆Z + (1 − ε)ρ∗D + εF̃ + G′) = QM(Z, F)

holds. In particular, Supp(G′) does not contain any stratum of (Z, F). Since

(1 − ε)ρ∗D + εF̃ + G′ ∼Q ρ∗π∗ΓY ∼Q 0 ,

we have

(1 − ε)ρ∗D + εF̃ + G′ = ρ∗π∗Γ

for the effective Q-divisor

Γ := π∗ρ∗
(
(1 − ε)ρ∗D + εF̃ + G′

)
∼Q ΓY

on X. By construction Γ is a special Q-complement with respect to (Z, F) and

ρ∗π∗(KX + ∆ + Γ) = KZ + ∆Z + (1 − ε)ρ∗D + εF̃ + G′.

Thus

LCP(X,∆ + Γ) = LCP(Z,∆Z + (1 − ε)ρ∗D + εF̃ + G′) = QM(Z, F)

as desired. �
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Corollary 5.30. Let (X,∆) be a log Fano pair. If v is an lc place of a special
Q-complement Γ for a snc model µ : (Y, E)→ (X,∆) as in Definition 5.25. Then
v is special (see Definition 5.10) and Grv(R) is finitely generated.

Proof There exist E1, . . . , Ep ∈ LCP(Γ; Y, E) spanning a smooth cone, which
contains v. Thus by Theorem 5.26, v ∈ QM(Y ′, E′) is a valuation for a dlt
Fano type model (Y ′, E′) → (X,∆). Then by Theorem 5.20, Grv(R) is finitely
generated. �

5.31. Let (X,∆) be a log Fano pair. If v is an lc place of a specialQ-complement
Γ for a snc model µ : (Y, E) → (X,∆) as in Definition 5.25. Let ∆ =

∑
ai∆i

where ∆i is given by an ideal Ii. Denote by X0 = Proj Grv(R). Let IX0,i be the
ideal on X0 given by

IX0,i = the ideal generated by
{
f̄ ∈ Grv(R)

∣∣∣∣ where f ∈ Ii

}
.

Theorem 5.32. Notation as in 5.31. X0 is integral. Let ∆X0,i be the divisorial
part of the vanishing locus of IX0,i and write ∆X0 =

∑
ai∆X0,i. Then (X0,∆X0 )

is a log Fano pair.

Proof Since GrvR is finitely generated, by Theorem 5.19, there exists a divi-
sorial valuation E and w = c · ordE which is sufficiently close to v such that
Grv(R) � Grw(R). So we may replace v by ordE .

By Lemma 5.29, E is a special divisor. Therefore, the induced degeneration
(X0,∆X0 ) is a log Fano pair.

�

So we have established the following theorem.

Theorem 5.33. Let (X,∆) be a log Fano pair such that δ(X,∆) < n+1
n . As-

sume v computes δ(X,∆). Then there exists a log resolution µ : (Y, E = Ex(µ) +

Supp(µ−1
∗ ∆)) → (X,∆) and a special Q-complement Γ with respect to (Y, E)

such that v ∈ LCP(Γ; Y, E).
In particular, Grv(R) is finitely generated.

Proof By Theorem 4.44, v is quasi-monomial, thus we may find a log smooth
model µ : (Y, E = Ex(µ) + Supp(µ−1

∗ ∆)) → (X,∆) whose exceptional locus
supports a µ-ample divisor F such that v ∈ QM(Y, E). Choose some 0 < ε � 1
such that

L := −µ∗(KX + ∆) + εF

is ample and let G be a general divisor in the Q-linear system |L|Q whose sup-
port does not contain any stratum of (Y, E). Let D = µ∗G ∼Q −(KX + ∆) and
σ < min{ δ

n+1 , 1−
nδ

n+1 } a fixed rational positive number. By Theorem 4.49, there
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exists some complement Γ of (X,∆) such that Γ ≥ σD and v is an lc place of
(X,∆+Γ). Replace G by σG. By construction, the strict transform of Γ is larger
or equal to G, so Γ is a special Q-complement with respect to (Y, E).

Then the finite generation of Grv(R) follows from Corollary 5.30. �

Theorem 5.34. Let (X,∆) be a log Fano pair. Let v be a valuation which com-
putes δ(X,∆) < n+1

n , then there exists a prime divisor E such that

δ(X,∆) =
AX,∆(E)
S X,∆(E)

.

Moreover, any such E induces a special test configuration.

Proof Let (Y, E) → X be a log resolution such that v ∈ QM(Y, E). Moreover,
we can assume cX(v) is the generic point η of a component of the intersection
of p prime components of E, where p is equal to the rational rank of v. Since
Grv(R) is finitely generated by Theorem 5.33, it follows from Theorem 5.19
that there exists an open neighborhood U of v in QM(Y, E) such that Grw(R) =

Grv(R) for any w ∈ U. Let f0, . . . , f` be a set of homogeneous generators of R.
After possibly replacing U by a smaller neighborhood U, we may assume

for any v ∈ U, v( fi) is computed by the same monomial for any 0 ≤ i ≤ l. This
implies that

S m : U → R, v→ S m(v).

is a linear function on U. We may also assume AX,∆(v) is linear on U. So this
implies that for any valuation w ∈ U,

AX,∆(w)
S X,∆(w)

=
AX,∆(v)
S X,∆(v)

= δ(X,∆).

Therefore, for any c · ordE contained in U, δ(X,∆) =
AX,∆(E)
S X,∆(E) .

The last claim follows from the fact E is the lc place of a specialQ-complement
by Theorem 4.49, and therefore it induces a special test configuration by The-
orem 5.32. �

Corollary 5.35. A log Fano pair (X,∆) is uniformly K-stable if and only if it
is K-stable.

Proof Assume δ(X,∆) = 1. By Theorem 5.34, there exists a divisor E which
computes δ(X,∆). Then by Theorem 5.32, E induces special test configuration
(X,∆X), such that

Fut(X,∆X) = FL(E) ≤ 0.

So (X,∆) is not K-stable. �
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5.2.4 Optimal destabilization

Definition 5.36. If δ(X,∆) ≤ 1, we call a special degeneration X of (X,∆) to
be an optimal destabilization if satisfies that δ(X,∆)−1 =

Fut(X)
‖X‖m

(see Definition
2.8).

By Exercise 4.7, a nontrivial optimal destabilization precisely corresponds
to special divisorial valuation v which computes δ(X,∆).

Proposition 5.37. Let (X,∆) be a log Fano pair with with δ(X,∆) ≤ 1. LetX be
an optimal destabilization. Denote by (Y,∆Y ) the central fiber. Then δ(X,∆) =

δ(Y,∆Y ).

Proof Assume δ(Y,∆Y ) < δ(X,∆X). By Theorem, there is a Gm-equivariant
valuation v such that δ(Y,∆Y ) =

AY,∆Y (v)
S Y,∆Y (v) . By Theorem 5.34, there is a special

divisor E with

δ(Y,∆Y ) =
AY,∆Y (E)
S Y,∆Y (E)

< δ(X,∆) ,

Moreover, from the proof, we can choose E to be Gm-equivariant. Thus it in-
duces an special test configuration X′ of Y equivariantly with respect to the
Gm-action on (Y,∆Y ).

Denote by (Z,∆Z) the central fiber of X′. By Lemma 5.38, there is a test
configuration Y which degenerates X to Z, with the weight N(ξ + εξ′), where
ξ corresponds to Gm action on (Y,∆Y ) induced by X and ξ′ corresponds to the
Gm-action on (Z,∆Z) induced by X′.

We have

Fut(Y) = Fut(Z,∆Z ; N(ξ + εξ′)) = N(Fut(Z,∆Z ; ξ) + εFut(Z,∆Z ; ξ′)) ,

and similarly by (3.56),

‖Y‖m = ‖N(ξ + εξ′)‖m ≤ N(‖ξ‖m + ε‖ξ′‖m) .

By Exercise 4.7,

Fut(Z,∆Z ; ξ)
‖ξ‖m

= δ(X,∆) − 1 and
Fut(Z,∆Z ; ξ′)
‖ξ′‖m

=
AY,∆Y (E)
S Y,∆(E)

− 1 .

Then if we let v the valuation induced by Y,

AX,∆(v)
S X,∆(v)

=
Fut(Y)
‖Y‖m

+ 1

=
Fut(Z,∆Z ; ξ) + εFut(Z,∆Z ; ξ′)

‖ξ‖m + ε‖ξ′‖m
+ 1

< (δ(X,∆) − 1) + 1 = δ(X,∆) ,

which is a contradiction. �
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Lemma 5.38. Let X be a special test configuration of a log Fano pair (X,∆)
with a central fiber (Y,∆Y ). Let X′ be a test configuration of (Y,∆Y ) equivari-
antly with the Gm-action on with an integral central fiber (Z,∆Z). Then there
exists a test configuration Y degenerating (X,∆) to (Z,∆Z) such that the in-
duced action on Z is given by N(ξ + εξ′), where ξ is the Gm-action induced by
X, and ξ′ is the Gm-action induced by X′.

Proof Let v be the valuation over X induced by X, and v0 be the Gm-invariant
valuation over (Y,∆Y ) induced by X′.

Let Rm,a = F a
v Rm/F

>a
v Rm, then

GrvR =
⊕

m∈r·N,a∈N

Rm,a

We have X0 = Proj (GrvR). We define a N × N-valued function w on R =⊕
m∈r·N H0(−m(KX + ∆)) by

w : Rm −→ N × N

s 7→
(
v(s), v0(in(s))

)
.

We give Γ := N × N the lexicographic order (a1, b1) < (a2, b2) if and only if
a1 < a2, or a1 = a2 and b1 < b2. So for any (a, b) ∈ N × N, if we denote by

Rm,a,u = (Rm,a)≥b/(Rm,a)>b = (Rm)≥(a,b)/(Rm)>(a,b) ,

then

GrwR =
⊕

m∈r·N,(a,b)∈N×N

Rm,a,b = Grv0 (GrvR) ,

and Y0 = Proj (GrwR).
Pick up a set of homogeneous generators f̄1, . . . , f̄p for GrwR with f̄i ∈

Rmi,ai,bi . Lift them to generators f1, . . . , fp for GrvR such that fi ∈ Rmi,ai . Set
P = k[x1, . . . , xp] and give P the grading by

deg(xi) = mi, degv(xi) = (mi, ai) and degw(xi) = (mi, ai, bi) .

The surjective map

πw : P→ GrwR by xi 7→ f̄i

is a map of graded rings for degw on P. Let ḡ1, . . . , ḡq ∈ P be a set of homoge-
neous generators of the kernel and we assume the monomial xα1

1 · · · x
αp
p of ḡ j

has degw equal to (p j, q j, r j).
Since ḡ j( f̄1, . . . , f̄p) = 0 ∈ GrwR, it follows

ḡ j( f1, . . . , fp) ∈ (Rp j,q j )>r j .
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So there exists g j = ḡ j + h j such that g j( f1, . . . , fp) = 0 ∈ Rp j,q j for 1 ≤
j ≤ q, with monomials xα1

1 · · · x
αp
p of h j have degv(xα1

1 · · · x
αp
p ) = (p j, q j) and

degw(xα1
1 · · · x

αp
p ) = (p j, q j, r′j) with r′j > r j.

We lift f1, . . . , fp to generators F1, . . . , Fp of R such that Fi ∈ Rmi . Then we
have

g j(F1, . . . , Fp) ∈ F >q j
v Rp j .

As before, there exist G j = g j + h′j such that G j(F1, . . . , Fp) = 0, with mono-
mials xα1

1 · · · x
αp
p of h′j satisfies deg(xα1

1 · · · x
αp
p ) = p j and degv(xα1

1 · · · x
αp
p ) =

(p j, q′j) with q′j > q j.
We set degε(xi) = ai + εbi, where we choose 0 < ε � 1, such that

degε(h
′
j) > degε(g j) . (5.16)

Moreover, we have

q j + εr′j = degε(h j) > degε(ḡ j) = q j + εr j . (5.17)

Let

π : P→ R, xi 7→ Fi ,

which sends a polynomial F with homogeneous deg(F) = m to Rm. It induces
a filtration F by

F λRm =
{
Im(F) | F is homogeneous with deg(F) = m, degε(F) ≥ λ

}
,

and a morphism πF : P→ GrFR. Combining (5.16) and (5.17), we know

degε(G j − ḡ j) > q j + εr j , and degε(ḡ j) = q j + εr j .

So for any 1 ≤ j ≤ q,

π(ḡ j) = degε(ḡ j −G j) ∈ F >q j+εr j Rp j , i.e. ḡ j ∈ Ker(πF ) .

Thus the surjection πF factors through πw. For any fixed m, GrwRm and GrFRm

have the same dimension, so GrF (R) = Grw(R). We may multiply degε by an
integer N such that Nε ∈ N, so it makes the filtration a test configuration Y
degenerating X to Z.

If we let ξ be the Gm-action induced by the action X and ξ′ induced by X′,
then the coweight of the action on Z induced by Y is N(ξ + εξ′). �

Exercises

5.1 Let πp : (X,L) → Ap be a Gp
m-equivariant family of flat schemes and

L an ample line bundle. Let r be sufficiently large, such that for any m
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divided by r, πp∗OX(mL) is flat on Ap and commutes with base change.
Let (X, L) be the restriction of (X,L) → Ap over a point on the torus
G

p
m ⊆ A

p and Rm = H0(X,mL). Then

H0(X,mL) '
⊕

(m1,...,mp)∈Zp

(F m1
1 Rm ∩ · · · ∩ F

mp
p Rm)t−m1

1 · · · t−mp
p ,

where Fi is given by the filtration induced by A1 = (1, . . . , 1︸  ︷︷  ︸
i−1

, t, 1, . . . , 1︸  ︷︷  ︸
p−i

).

In particular, H0(X0,mL0) '
⊕

m1,...,mp
Grm1,...,mp Rm, where

Grm1,...,mp Rm := (F m1
1 Rm ∩ · · · ∩ F

mp
p Rm)/Im1,...,mp

and

Im1,...,mp =

p∑
i=1

(F m1
1 Rm ∩ · · · ∩ F

mi+1
i Rm ∩ · · · ∩ F

mp
p Rm) .

5.2 Let (Y, E) → X be a log smooth model over a variety, and V a finitely
dimensional linear series on X. Let v ∈ QM(Y, E) and P the minimal
rational subspace of QM(Y, E) containing v. Then the filtration on V in-
duced by Fv is the same as Fv′ for v′ ∈ P sufficiently close to v.

5.3 Let X = P2
x0,x1,x2

and ∆ = a(L1 + L2) (a ∈ (0, 1)), where L1 = (x1 = 0)
and L2 = (x2 = 0). For any coprime pair (p, q), let Ep,q be the weighted
blow up along L1 and L2 with weight (p, q). Show

AX,∆(Ep,q)
S (Ep,q)

= δ(X,∆) =
1 − a

1 − 2
3 a

.

In particular, δ(X,∆) could be computed by more than one divisor.
5.4 Let (Y, E) → (X,∆) be a qdlt Fano type model. Prove (X,∆) is of Fano

type.
5.5 In 5.12, if we assume (Y, E) is dlt, then show in Theorem 5.14(ii), we can

conclude (Y,E +D + g∗Ht) is dlt.
5.6 Let (X,∆) be a log Fano pair with δ(X,∆) < n+1

n . Then δ(X,∆) ∈ Q.
5.7 Let (X,∆) be a log Fano pair, v a quasi-monomial valuation such that

GrvR is finitely generated. Assume X0 = Proj(GrvR) is integral and ∆X0

is induced as in 5.31 with (X0,∆X0 ) being klt. Then v is an lc place of a
special Q-complement for a log resolution (Y, E)→ (X,∆).

5.8 Let C = ((x2
0 + x2

1)x2 + x3
1 = 0) ⊂ P2. Show there exists an lc place v of

(P2,C), such that grvk[x0, x1, x2] is not finitely generated.
5.9 (Minimal destabilizing center) Let (X,∆) be a log Fano pair. We call

Z ⊆ X to be a δ-minimizing center if Z = cX(v) for a valuation v which
computes δ. If δ(X,∆) < 1, then there exists a minimial δ-minimizing
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center Z, i.e. Z is a δ-minimizing center and it is contained in any other
δ-minimizing center.

Note on history

Theorem 5.33 and its consequences were first proved by Liu-Xu-Zhuang in
Liu et al. (2022). The original proof relies on boundedness results for Fano
varieties (see Theorem 7.25).

The proof presented in this chapter follows Xu and Zhuang (2023), using
the multi-step degeneration first proposed in Xu (2021). This approach can
be also used to settle the higher rank finite generation in the local case, and
completes the Stable Degeneration Conjecture proposed in Li (2018) and Li
and Xu (2018).



6
Reduced stability

It follows from Corollary 5.35 that K-stability of a log Fano pair (X,∆) is
equivalent to uniform K-stability. In this chapter, we want to establish a similar
version for K-polystability. The corresponding notion is the reduced uniform
K-stability with respect to the T-action, where T ⊆ Aut(X,∆) is a maximal
torus. Then we should define invariants after identifying all elements on a ‘T-
orbit’.

In Section 6.1, we study the notions of twisting filtrations as well as valua-
tions. They correspond to the T-orbits of a filtration or valuation. We compute
how invariants change after a twisting. In Section 6.2, we define the notion of
reduced uniform stability. In Section 6.3, we define the T-reduced δ-invariant,
and use it show reduced uniform K-stability is equivalent to K-polystability.

6.1 Twisting filtrations and valuations

Let (X,∆) be a log Fano pair with a torus T-action such that T → Aut(X,∆)
has a finite kernel. Let r(KX + ∆) be Cartier and

R =
⊕
m∈r·N

Rm =
⊕
m∈r·N

H0(X,−m(KX + ∆)) .

As in (2.23), we have a weight decomposition

R =
⊕
m∈r·N

Rm =
⊕

m∈r·N,α∈M(T)

Rm,α .

See Section 2.2 for the construction of the moment polytope P.

237
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6.1.1 Twisting filtrations

Let F be a T-equivariant linearly bounded multiplicative filtration on R, i.e.,

s ∈ F λR if and only if g · s ∈ F λR for any g ∈ T .

Since for any m ∈ r · N and λ ∈ R, the vector space F λRm admits an action by
T. Therefore, we have a weight decomposition

F λRm =
⊕
α∈M(T)

(F λRm)α ,

where (F λRm)α := F λRm ∩ Rm,α.

Definition 6.1. We denote by νDH,F ,T on P × R the measure

νDH,F ,T = (pW ,
1

vol(∆)
GF )∗(ρ) ,

where pW is given by (2.24) and GF is the concave transformation as in Defi-
nition 3.23.

Definition 6.2. For ξ ∈ NR(T), we define the ξ-twist Fξ of a T-equivariant
filtration F in the following way: for any s ∈ Rm,α, we have

s ∈ F λ
ξ Rm,α if and only if s ∈ F λ0 Rm,α where λ0 = λ − 〈α, ξ〉 ,

in other words,

F λ
ξ Rm =

⊕
α∈M(T)

F λ−〈α,ξ〉R ∩ Rm,α .

Lemma 6.3. The filtration Fξ is linearly bounded and multiplicative.

Proof Write Rm =
⊕

α∈M(T) Rm,α. Since

Rm,α · Rm′,α′ ⊆ Rm+m′,α+α′ ,

Fξ is multiplicative.
Assume F me−Rm,α = Rm,α for any α. Thus for a fixed α,

F
me−+〈α,ξ〉
ξ Rm,α = F me−Rm,α = Rm,α .

As P is a bounded polytope, there exists c, such that 〈α, ξ〉 ≥ c for any α ∈ P.
This implies that F me′−

ξ Rm = Rm for any m, where e′− = e−+c. We can similarly

prove there exists e′+ such that F me′+
ξ Rm = 0 for any m. �

Lemma 6.4. We have S (Fξ) = S (F ) + 〈αbc, ξ〉, where αbc is the weighted
barycenter of the moment polytope P.



6.1 Twisting filtrations and valuations 239

Proof Denote by Nm = dim(Rm). Since F λ+〈α,ξ〉
ξ Rm,α = F λRm,α for any m and

α, we have

S m(Fξ) = S m(F ) +
1

mNm

∑
α

〈α, ξ〉 · dim Rm,α .

Let m → ∞, we have S (Fξ) = S (F ) − Fut(X,∆, ξ) by Definition 2.39 and by
Lemma 2.40, Fut(X,∆, ξ) = −〈αbc, ξ〉. �

Lemma 6.5. We have

νDH,Fξ ,T =
(
pW ,

1
vol(∆)

GF + pξ ◦ pW

)
∗
(ρ) ,

where pξ is the projection MR(T)→ R, pξ(α) = 〈α, ξ〉.

Proof This immediately follows from the definition. �

Proposition 6.6. Let F be a T-equivariant linearly bounded multiplicative
filtration on R.

(i) The function ξ 7→ λmax(Fξ) is convex on NR(T), in particular, it is locally
Lipschtiz.

(ii) If Fut(X,∆, ξ) = 0 for any ξ ∈ NR(T), let C = dist(0, ∂P), then

λmax(Fξ) ≥ C|ξ| + e−

for any e− satisfying F e−mRm = 0.

In particular, if Fut(X,∆, ξ) = 0, ξ → λmax(Fξ) has a minimizer on NR(T).

Proof (i) Let Rm =
⊕

α Rm,α, and Tm,α = sup{ λ | F λ
ξ (Rm,α) = 0 }. Then

Tm(Fξ) = max
α∈Γm

1
m

(Tm,α + 〈ξ, α〉)

is convex on ξ. Thus by Lemma 3.22, λmax(Fξ) = limm Tm(Fξ) is convex.
(ii) Since Fut(X,∆, ξ) = 〈αbc, ξ〉 = 0 for any ξ, this implies αbc = 0, so

0 ∈ Int(P) by Lemma 2.33. By our assumption, Tm,α ≥ e− for any α ∈ Γm. So
Tm(Fξ) ≥ maxα∈Γm〈α, ξ〉 + e−, which implies

λmax(Fξ) ≥ max
α∈P
〈α, ξ〉 + e− ≥ C‖ξ‖ + e− .

�

6.7. Fix a linearly bounded multiplicative T-equivariant filtration F on R. Let
Im,λ(F ) be the base ideals of F and let Im,λ,α(F ) (α ∈ M(T)) be their weight-α
part, i.e.,

Im,λ,α(F ) = Im
(
(F λRm)α ⊗ OX(m(KX + ∆))→ OX

)
.
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Then Im,λ(F ) =
∑
α Im,λ,α(F ) ⊆ OX and since F λ−〈α,ξ〉Rm,α = F λ

ξ Rm,α,

Im,λ,α(Fξ) = Im,λ−〈ξ,α〉,α(F ) . (6.1)

Lemma 6.8. Fixed a linearly bounded multiplicative T-equivariant filtration
F on X. Then

NR(T)→ R, ξ 7→ µ(Fξ, δ)

is continous.

Proof Let ` = maxα∈P ‖α‖, which exists because P is a bounded compact
polytope. Then for any α ∈ M(T), by (6.1)

Im,λ+`‖ξ‖,α(F ) ⊆ Im,λ,α(Fξ) ⊆ Im,λ−`‖ξ‖,α(F ) .

Taking all α together, we have

Im,λ+`‖ξ‖(F ) ⊆ Im,λ(Fξ) ⊆ Im,λ−`‖ξ‖(F ) .

This implies for any δ, |µ(F , δ) − µ(Fξ, δ)| ≤ `‖ξ‖. �

When ξ ∈ N(T), we have the following construction generalizing product
test configurations.

Example 6.9. Let (X,L) be a T-equivariant test configuration of (X,∆). Then
(X,L) admits an action by Ta = T × Gm. Denote the coweight lattice by
N(Ta) := N(T) ⊕ Z. We denote by ξ0 the coweight (0, 1) ∈ Na(T), which
corresponds to the Gm-action of (X,L) from the test configuration structure.
For any ξ ∈ N(T), we define a ξ-twisted test configuration (Xξ,Lξ) which is
isomorphic with (X,L), but with the test configuration structural Gm-action on
(Xξ,Lξ) by (ξ, 1) ∈ N(Ta).

Lemma 6.10. For a T-equivariant test configuration (X,L) and any ξ ∈ N(T),
we have (FX,L)ξ = FXξ ,Lξ .

Proof Let s ∈ Rm,α ⊆ Rm, then by (3.18) s ∈ F λ
X,L

Rm,α if s−λ f̄ ∈ H0(X,L⊗m),

which implies s−λ−〈α,ξ〉 f̄ ∈ H0(Xξ,L⊗m
ξ ), i.e s ∈ F λ+〈α,ξ〉

Xξ ,Lξ
. So by Definition 6.2,

F λ
Xξ ,Lξ

Rm,α = F
λ−〈α,ξ〉
X,L

Rm,α = (FX,L)λξRm,α ,

i.e., (FX,L)ξ = FXξ ,Lξ . �

Lemma 6.11. For ξ ∈ N(T) and (X,L) a test configuration, we have

Fut(Xξ,Lξ) = Fut(X,L) + Fut(X,∆, ξ) .



6.1 Twisting filtrations and valuations 241

Proof By Lemma 6.10, the total weight

wm(Xξ,Lξ) − wm(X,L) =
∑
α

〈α, ξ〉 dim Rm,α .

So the coefficients of the weight expansion satisfy

bi(Xξ,Lξ) = bi(X,L) + bi(Xξ,∆ξ) for i = 0, 1 .

Similar statements hold for the expansion of the total weight b0,i for compo-
nents ∆i of ∆. Therefore,

Fut(Xξ,Lξ) = Fut(X,L) + Fut(X,∆, ξ) .

�

For a similar statement of Ding invariants, see Corollary 6.25.

6.1.2 Twisting valuations

Let T be a torus which admits a faithful action on a polarized normal proper
variety (X, L).

Definition 6.12. The torus T acts on K(X), so it acts the space of valuations
ValX via

t∗(v)( f ) = v((t−1)∗( f )) .

Denote by ValTX the set of T-invariant valuations. Let QMT
X ⊆ ValTX be the set

of all T-invariant quasi-monomial valuations.

Example 6.13 (Coweight valuations). Any ξ ∈ M(T)∗⊗R � NR(T) determines
a valuation wtξ given as follows:

wtξ : f =
∑

α∈M(T), fα,0

fα · 1α 7→ min〈α, ξ〉 .

To see the value of wtξ on R, we set

λP : NR(T)→ R, ξ 7→ λP(ξ) := inf
α∈P
〈ξ, α〉 .

Since P is a rational polytope, the function λP is a rational piecewise linear
function. Let {F} be faces of P, then for each F we can define the normal cone

σF :=
{
v ∈ NR(T) | 〈u, v〉 ≤ 〈u′, v〉 for all u ∈ F and u′ ∈ P

}
,

and {σF} yields a rational cone decomposition of NR(T). Then λP is linear on
σF , moreover, σF1 ⊇ σF2 if F1 ⊆ F2.
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Assume P = 1
m Pm (see Lemma 2.33), the valuation wtξ is given by

wtξ(s) = 〈ξ, α〉 − m · λP(ξ) for all 0 , s ∈ Rm,α .

In fact, let s∗ ∈ Rm,α such that wtξ(s∗) = m · λP(ξ). Then the trivialization of
−m(KX + ∆) around cX(wtξ) is given by s→ s

s∗ , thus

wtξ(s) = wtξ(
s
s∗
· s∗) = wtξ(

s
s∗

) = 〈ξ, α〉 − m · λP(ξ) .

Denote by Λ = { (m, α) ∈ r · N × M | Rm,α , 0 } (see Definition 2.32) and

Λξ := { (m, α) ∈ Λ | 〈ξ, α〉 > m · λP(ξ) } .

Let Iξ ⊂ OX be the ideal sheaf of cX(wtξ) with reduced scheme structure. Since
−(KX + ∆) is an ample line bundle, for any m ∈ r · N,

H0(X,Iξ ⊗ OX(−m(KX + ∆))) = {s ∈ Rm | wtξ(s) > 0} =
⊕

(m,α)∈Λξ

Rm,α .

This holds for any m. For sufficiently large m ∈ r ·N, Iξ ⊗ OX(−m(KX + ∆)) is
globally generated. Therefore,

cX(wtξ) =
⋂

(m,α)∈Λξ

Bs(Rm,α) . (6.2)

For each non-zero cone σ of the fan, we choose ξσ ∈ NR(T) in Int(σ) and
let Zσ := cX(wtξσ ). For (m, α) ∈ Λ, the function ξ 7→ 〈ξ, α〉 −m · λP(ξ) is linear
and nonnegative on σ, it vanishes at an interior point ξσ of σ implies that it
vanishes on σ. Therefore, if ξ′ ∈ σ,

〈ξ′, α〉 = m · λP(ξ′) for all (m, α) ∈ Λ \ Λξσ ,

i.e. Λξσ ⊇ Λξ′ , and the equality holds if and only if ξ′ ∈ Int(σ). By (6.2), Zσ
does not depend on the choice of ξσ, and Zσ ⊆ Zτ if σ ⊇ τ.

Definition 6.14. We denote by QM∗,TX ⊆ QMT
X the T-invariant quasi-monomial

valuations which is not of the form wtξ .

Definition-Lemma 6.15. For any valuation µ over Z and ξ ∈ NR(T), one can
associate a T-invariant valuation vµ,ξ on K(X) such that for any

f =
∑

α∈M(T)

fα · 1α ∈ K(Z)[M(T)] ,

(see Exercise 2.5), we have

vµ,ξ( f ) = min
α

(µ( fα) + 〈ξ, α〉) . (6.3)

To see vµ,ξ is a valuation, first we have vµ,ξ( f + g) ≥ min{vµ,ξ( f ), vµ,ξ(g)}. We
also have
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Claim 6.16. For f , g ∈ K(Z)[M(T)], vµ,ξ( f · g) = vµ,ξ( f ) + vµ,ξ(g).

Proof Write f = f1 + f2 such that f1 is precisely the sum of all summands
fα · 1α of f with vµ,ξ( fα · 1α) = vµ,ξ( f ). Similarly, we write g = g1 + g2 with g1

the sum of all summands gα · 1α of g with vµ,ξ(gα · 1α) = vµ,ξ(g). It suffices to
show

vµ,ξ( f1 · g1) = vµ,ξ( f1) + vµ,ξ(g1) .

Let Λ1 = {α | α is a summand of f1} and Λ2 = {α | α is a summand of g1}.
Let ∆i be the convex closure of Λi (i = 1, 2). Let ξ ∈ NR(T) be sufficiently
general such that for i = 1 or 2, the function

`i : α ∈ ∆i → 〈α, ξ〉

achieves the minimum at precisely one point αi ∈ ∆i. Then αi has to be in
Λi ⊂ M(T). Then α1 + α2 can not be written as any other sum in Λ1 + Λ2.
This implies that the summand of f · g corresponding to 1α1+α2 is equal to
fα1 · gα2 , 0. �

The following statement is a higher rank version of Lemma 1.33, and the
proof is similar.

Lemma 6.17. Every valuation v ∈ ValTX is of the form v = vµ,ξ for some
µ ∈ ValZ and ξ ∈ NR(T). In particular, we get a (non-canonical) isomorphism
ValTX � ValZ × NR(T). Similarly, we have QMT

X � QMZ × NR(T).

Proof Let the restriction of v on K(Z) to be µ, and the restriction of f over
1α (α ∈ Γ) yields an element ξ in NR(T). To show v = (µ, ξ), it suffices to
show if we write f =

∑
α, fα,0 fα · 1α, then v( f ) = minα v( fα · 1α). It is clear

v( f ) ≥ minα v( fα · 1α).
Since t∗v = v, then for any t ∈ T,

v( f ) = v(t∗( f )) = v(
∑
α

tα fα · 1α) .

Assume in the expression
∑
α fα · 1α, there are precisely p summands α j (1 ≤

j ≤ p) with fα j , 0. If we choose general p elements t1, ..., tp ∈ T and
ξ ∈ N(T) such that 〈α j, ξ〉 are distinct. Then the (p × p)-matrix

(
t〈α j,ξ〉

i
)
i j is

non-degenerate. So for any 1 ≤ j ≤ p, we can write fα j · 1α j as a k-linear
combination of

∑
j t〈α j,ξ〉

i · fα j · 1
α j (1 ≤ i ≤ p), which implies for any j,

v( fα j · 1
α j ) ≥ min

i

{
v
(∑

j

t〈α j,ξ〉

i · fα j · 1
α j
)}

= v( f ) .

If v ∈ QMT
X , then v = vµ,ξ where µ = v|K(Z) is quasi-monoial by Abhyankar
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inequality 1.24. If µ is quasi-monomial, then it is a monomial on a log resolu-
tion Z′ → Z with respect to a coordinate E =

∑
i Ei ⊆ Z′. So vµ,ξ is monomial

with respect to

(
Z′ × PdimT, E × PdimT + Z′ ×

dimT∑
i=1

(xi = 0)
)
,

where (xi = 0) are the toric divisors on PdimT. �

Definition 6.18. For any v ∈ ValT(X) and ξ ∈ NR(T), we define its ξ-twist vξ
as follows: if v = vµ,ξ0 , then vξ := vµ,ξ0+ξ .

Proposition 6.19. We have the following properties:

(i) The definition does not depend on the choice of the birational map ρ : X d

Z × T.
(ii) Fix a quasi-monomial valuation v, then ξ 7→ AX,∆(vξ) is a piecewise linear

function on NR(T).

Proof (i) Since f ∈ K(Z) · 1α if and only if t∗( f ) = tα · f for any t ∈ T,
the subspace of K(Z) · 1α ⊂ K(X) does not depend on ρ. For any such f ,
vµ,ξ0+ξ( f ) = vµ,ξ0 ( f ) + 〈α, ξ〉. As K(X) is generated by K(Z) ·1α (α ∈ M(T)), for
any f ∈ K(X), vµ,ξ0+ξ( f ) is independent of ρ.

(ii) Let (Z′, F′) → Z be a log resolution such that µ ∈ QM(Z′, F′) for v =

vµ,ξ. Let (Y, E) be a T-equivariant log resolution of (X,∆), which dominates
Z′ × PdimT, such that E on Y contains the sum of the birational transform of ∆,
the birational transform of F′ × PdimT + Z′ ×

∑dimT
i=0 (xi = 0) and Ex(Y/X).

Then v → AX,∆(v) is a piecewise linear function on QM(Y, E) since (Y, E) is
a log resolution of (X,∆). Moreover, since (Y, E) is also a log resolution of

(
Z′ × PdimT, F′ × PdimT + Z′ ×

dimT∑
i=0

(xi = 0)
)
,

thus QM(Y, E) contains {v}×NR(T). In particular, AX,∆(vξ) is a piecewise linear
function. �

Definition 6.20. For any v ∈ QMT
X and ξ ∈ NR(T), we denote by

θξ(v) = AX,∆(vξ) − AX,∆(v) .

Lemma 6.21. For any ξ ∈ N(T), we let φξ : Gm → Aut(X,∆) be the one
parameter group generated by ξ, and

σξ : X × Gm → X × Gm, (x, t) 7→ (φξ(t) · x, t) .



6.1 Twisting filtrations and valuations 245

Denote by (XA1 ,∆A1 ) := (X,∆) × A1. LetW be a birational model resolving
σξ, i.e.

W

XA1 XA1 .

µ2µ1

σξ

Let v ∈ QMT
X . Denote by va = (v, ordt) ∈ QM(XA1 ). Then

θξ(v) = va
(
µ∗1(KXA1 + ∆A1 ) − µ∗2(KXA1 + ∆A1 )

)
.

Proof For f ∈ k(Z) · 1α and f̄ the pull back on XA1 , then

σ∗ξ( f̄ )(x, t) = f̄ (σ−ξ · (x, t))

= f (φ−ξ(t) · x) = (φξ(t)∗ f )(x)

= t〈α,ξ〉 f (x) = t〈α,ξ〉 f̄ (x, t) .

This implies

σξ∗(v
a)( f̄ ) = va(σ∗ξ f̄ ) = va(t〈α,ξ〉 f̄ ) = 〈α, ξ〉 + v( f̄ ) ,

i.e. σξ∗(v
a) = (vξ)a. Therefore,

va(µ∗1(KXA1 + ∆A1 ) − µ∗2(KXA1 + ∆A1 ))

= − AXA1 ,∆A1 (va) + AXA1 ,∆A1 (σξ∗(v
a))

= − AX,∆(v) + AX,∆(vξ) = θξ(v) .

�

Lemma 6.22. Fix α ∈ M(T), m divided by r and s ∈ Rm,α, then for any
ξ ∈ NR(T) and v ∈ QMT

X ,

vξ(s) = v(s) + 〈α, ξ〉 + mθξ(v) . (6.4)

In particular, F λ
vξRm,α = F

λ−〈α,ξ〉−mθξ(v)
v Rm,α, i.e. Fvξ is the θξ(v)-shift of (Fv)ξ.

Proof We first assume ξ ∈ N(T). Let e (resp. e′) be a generator of −m(KX +∆)
at cX(v) (resp. cX(vξ)). Then we can write s = f · e = f ′ · e′. So v

( e′
e
)

= −v( f ′

f ),
and using the notation in Lemma 6.21,

va
(µ∗2e′

µ∗1e′
)

= va
(µ∗2(s)
µ∗1(s)

)
− va

(µ∗2( f ′)
µ∗1( f ′)

)
= va(t〈α,ξ〉) − vξ( f ′) + v( f ′)

= 〈α, ξ〉 − vξ( f ′) + v( f ′) .
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Then

mθξ(v) = −va(µ∗2e′

µ∗1e
)

(by Lemma 6.21)

= −va
(µ∗2e′

µ∗1e′
)
− va

(
µ∗1

(e′

e
))

=
(
− 〈α, ξ〉 + vξ( f ′) − v( f ′)

)
+ v(

f ′

f
)

= vξ( f ′) − v( f ) − 〈α, ξ〉 = vξ(s) − v(s) − 〈α, ξ〉 .

For ξ ∈ NQ(T) and a valuation v, d(vξ) = (dv)dξ for any d ∈ R>0. Thus we
may choose d such that dξ ∈ N(T). Then for dv, (6.4) yields

d · vξ(s) = (dvξ)(s) = (dv)dξ(s)

= dv(s) + 〈α, dξ〉 + mθdξ(dv)

= d(v(s) + 〈α, ξ〉 + mθξ(v)) .

The left hand of (6.4) is continuous on ξ, and so is the right hand as AX,∆(vξ)
is piecewise linear by Proposition 6.19. Therefore, the general case of ξ ∈
NR(T) follows from the continuity. �

Lemma 6.23. For v ∈ QMT
X , we have

FL(vξ) = FL(v) + Fut(X,∆, ξ) .

Proof By Lemma 6.22, S (vξ) = S (v) + 〈αbc, ξ〉 + θξ(v), so

FL(vξ) = FL(v) − 〈αbc, ξ〉 = FL(v) + Fut(X,∆, ξ) .

�

Lemma 6.24. Let F be a linear bounded multiplicative T-equivariant filtra-
tion on R, then µ(F ) = µ(Fξ).

Proof Denote µ(F ) by µ. If µ < λmax, then lct(X,∆;I(µ)(F )) = 1 (see Lemma
3.46) and there is a nontrivial quasi-monomial valuation v such that

AX,∆(v) = v(I(µ)
• (F )) (see Theorem 4.40) .

As in (4.14), after rescaling v, and shift by AX,∆(v) − µ to get F ′, we have

µ(F ′) = AX,∆(v) and F ′ ⊆ F ′v .

Therefore F ′ξ ⊆ (F ′v )ξ, which is a (−θξ(v))-shift of Fvξ by Lemma 6.22. Since
µ(Fvξ ) ≤ AX,∆(vξ),

µ(F ′ξ ) ≤ µ((F ′v )ξ) ≤ AX,∆(vξ) − θξ(v) = AX,∆(v) ,



6.2 Reduced uniform stability 247

which then implies µ(Fξ) ≤ µ.
If µ = λmax, then the (−µ)-shift F ′ of F satisfies F ′ ⊆ Ftriv (see Example

3.21). Since Ftriv is induced by the trivial valuation, Lemma 6.22 implies that

F ′ξ ⊆ (Ftriv)ξ = (−AX,∆(wtξ))-shift of Fwtξ .

This implies that µ(Fξ) ≤ µ.
Since we can take a (−ξ)-twist of Fξ to get F , we also have

µ(Fξ) ≤ µ(F ) ≤ µ(Fξ) .

�

Corollary 6.25. D(Fξ) = D(F ) + Fut(X,∆, ξ).

Proof This follows from Lemma 6.4 and Lemma 6.24. �

Lemma 6.26. Let E be a T-invariant divisor over X with v = ordE ∈ QM∗,TX
and ξ ∈ NQ(T).

(i) Then vξ is a divisorial valuation over X.
(ii) If E is weakly special, then for any ξ ∈ NQ(T), vξ is also weakly special.

Proof (i) vξ is quasi-monomial and it takes value in Q, i.e. it has rational rank
one. So it is divisorial.

(ii) Since grFv
R is finitely generated by assumption and grFv

R � grFvξ
R, we

know the latter is also finitely generated. By Exercise 4.18, it suffices to prove
µ(Fvξ ) = AX,∆(vξ). Since µ(Fv) = AX,∆(v) by Exercise 4.18, it follows from
Lemma 6.24 that

µ((Fv)ξ) = µ(Fv) = AX,∆(v) .

By Lemma 6.22, Fvξ differs from (Fv)ξ by a θξ(v)-shift. Thus

µ(Fvξ ) = µ((Fv)ξ) + θξ(v) = AX,∆(v) + θξ(v) = AX,∆(vξ) .

�

6.2 Reduced uniform stability

Let (X,∆) be a log Fano pair and let T ⊆ Aut(X,∆) be a torus. Let r be a
positive integer, such that r(KX + ∆) is Cartier, and

R =
⊕
m∈r·N

H0(X,−m(KX + ∆)) .
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Definition 6.27. Let T be a torus acting on a log Fano pair (X,∆). For any
T-equivariant filtration F of R, its reduced J-norm is defined as:

JT(F ) := inf
ξ∈NR(T)

J(Fξ) .

By Proposition 6.6, if Fut(X,∆, ξ) = 0, there exist constants C > 0 which
does not depend on F and e− such that

J(Fξ) ≥ C|ξ| + e− for any ξ ∈ NR(T) ,

Thus in this case, the infimum is indeed a minimum.

6.28. Let (X,L) be a T-equivariant test configuration of (X,∆). Let ξ ∈ NQ(T)
and assume dξ ∈ N(T). Denote by πd : A1 → A1, z→ zd. Let

J(Xξ,Lξ) :=
1
d

J((X ×A1,πd A
1)dξ, (π∗dL)dξ) ,

where X ×A1,πd A
1 → X is also denoted by πd. By Proposition 3.41, we have

JT(FX,L) = inf
ξ∈NQ(T)

J(Xξ,Lξ) ,

which we denote by JT(X,L).

Proposition 6.29. Assume Fut(X,∆, ξ) = 0 for all ξ ∈ NR(T). Then for any
T-equivariant filtration F of R, and an approximating sequence {Fm} of FZ
(see Definition 3.55), we have

lim
m→∞

JT(Fm) = JT(F ) . (6.5)

Proof By Theorem 3.60, limm→∞ J(Fm,ξ) = J(Fξ) for any fixed ξ ∈ NR(T).
For any m,

|λmax(Fm,ξ) − λmax(Fm,ξ0 )| ≤ sup
α∈Γm

1
m
‖α‖ · ‖ξ − ξ0‖

≤ C1‖ξ − ξ0‖ ,

where the constant C1 > 0 only depends on the bounded region P ⊆ MR(T).
Together with Lemma 6.4, it implies the functions J(Fm,ξ) (m ∈ N) are equicon-
tinuous on NR(T).

By Proposition 6.6, there exist constants C > 0 and e− such that

J(Fξ) ≥ C|ξ| + e− and J(Fm,ξ) ≥ C|ξ| + e− for all m � 0 and ξ ∈ NR(T) .

So the infima infξ∈NR
J(Fm,ξ) and infξ∈NR

J(Fξ) are achieved on a fixed compact
subset Ξ ⊆ NR(T). By the Arzelà-Ascoli theorem, the convergence

lim
m→∞

J(Fm,ξ) = J(Fξ)
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is uniform over Ξ and hence we also get the convergence of infima

lim
m→∞

JT(Fm) = lim
m→∞

(
inf

ξ∈NR(T)
J(Fm,ξ)

)
= inf

ξ∈NR(T)
J(Fξ) = JT(F ) .

�

Definition 6.30 (Reduced uniform stability). Let η > 0. A log Fano pair (X,∆)
with a faithful torus T-action is called T-reduced uniformly Ding-stable (resp.
K-stable) with slope at least η, if for any T-equivariant test configuration (X,L)
of (X,∆),

Ding(X,L) (resp. Fut(X,L)) ≥ η · JT(X,L). (6.6)

If this holds, T has to be a maximal torus in Aut(X,∆). Since any two maximal
tori are conjugate, we often omit T and just say (X,∆) is reduced uniformly
Ding-stable or K-stable with slope at least η.

A log Fano pair (X,∆) is said to be T-reduced uniformly Ding-stable (resp.
K-stable) if it is T-reduced uniformly Ding-stable (resp. K-stable) with some
slope η > 0.

If (X,∆) is reduced uniformly K-stable, it is K-semistable, so Fut(X,∆, ξ) =

0 for any ξ ∈ NR(T).

Proposition 6.31. Let (X,∆) be a log Fano pair and let T ⊆ Aut(X,∆) be
a maximal torus. Assume that (X,∆) is reduced uniformly Ding-stable with
slope at least η ∈ (0, 1). Then for any T-equivariant filtration F of R, D(F ) ≥
η · JT(F ).

Proof After replacing F by FZ, we can assume F is a Z-valued filtration. For
an approximating sequence {Fm} of F , we take the test configuration (Xm,Lm)
as the normal test configuration constructed as the normalized blow-up of
Im(Fm) (see Theorem 3.64). For any ξ ∈ NQ(T), let d be a positive integer
such that dξ ∈ N(T). We denote by

(Ym,LYm ) = ((Xm ×A1,πd A
1)dξ, (π∗dLm)dξ) .

It follows from (3.46) that

D(Fm) − η · J((Fm)ξ) ≥
1
d

(
Ding(Ym,LYm ) − η · J(Ym,LYm )

)
= Ding(Xm,Lm) − η · J((Xm)ξ, (Lm)ξ) .

Therefore,

D(Fm) ≥ inf
ξ
η · J((Fm)ξ) = η · JT(Fm) .

Combining Theorem 3.60 and Proposition 6.29, we obtain D(F ) ≥ η · JT(F ).
�
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Lemma 6.32. For any normal test configuration (X,L) of a log Fano pair
(X,∆). There exists πd : A1 → A1, z → zd and a special test configuration Xs

which is birational to X ×A1,πd A
1, such that for any ξ ∈ NQ(T) and η ∈ [0, 1],

Ding(Xs
dξ) − δ · J(Xs

dξ) ≤ d · (Ding(Xξ,Lξ) − δ · J(Xξ,Lξ)) .

Proof By Exercise 4.20, we can find a T-invariant weakly special valuation v
and a shift of FX,L denoted by F , such that

µ(F ) = AX,∆(v) and F ⊆ Fv .

Since v is weakly special, its multiple dv yields a weakly special test configu-
ration Xws. For any ξ ∈ NQ(T), Fξ ⊆ (Fv)ξ which is the same as (−θξ(v))-shift
of Fvξ by Lemma 6.22. So

S (Fξ) ≤ S (Fvξ ) − θξ(v), λmax(Fξ) ≤ λmax(Fvξ ) − θξ(v)

and µ(Fξ) = µ(F ) = AX,∆(v) = AX,∆(vξ) − θξ(v).
Since FXws

dξ ,L
ws
dξ

is a shift of the filtation induced by dvdξ, it follows from the
above discussion and Lemma 6.10 that

1
d

(
Ding(Xws

dξ ) − δ · J(Xws
dξ )

)
= AX,∆(vξ) − (1 − δ)S (vξ) − δ · λmax(vξ)

≤ µ(Fξ) − (1 − δ)S (Fξ) − δ · λmax(Fξ)

= Ding(Xξ,Lξ) − δ · J(Xξ,Lξ) .

To get the special test configuration, if AX,∆(v) = T (v), then AX,∆(vξ) =

T (vξ), we can choose Xs to be the trivial test configuration. So we may assume
AX,∆(v) < T (v). Then by Exercise 4.6, for a sufficiently divisible m, (X,∆ +
1
m Im,mAX,∆(v)(Fv)) admits an lc place which is a T-invariant special valuation vs.
The above argument shows that for the special test configuration Xs induced
by vs, we have

1
d

(
Ding(Xws

dξ ) − δ · J(Xws
dξ )

)
≥ Ding(Xs

ξ) − δ · J(Xs
ξ)

for some positive integer d and any ξ ∈ NQ(T). �

Theorem 6.33. Let (X,∆) be a log Fano pair and T ⊆ Aut(X,∆) a maximal
torus. The following are equivalent:

(i)a (X,∆) is reduced uniformly Ding-stable,
(i)b there exists η > 0, such that for any T-equivariant filtration F of R, D(F ) ≥

η · JT(F ),
(ii) (X,∆) is reduced uniformly K-stable,
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(iii)a Fut(X,∆, ξ) = 0 for any ξ ∈ NR(T), and there exists some δ > 1 such that for
any T-invariant quasi-monomial valuation v, we can find ξ ∈ NR(T) which
satisfies that

AX,∆(vξ) ≥ δ · S (vξ),

(iii)b Fut(X,∆, ξ) = 0 for any ξ ∈ NR(T), and there exists some δ > 1 such that for
any T-invariant special valuation v, we can find ξ ∈ NR(T) which satisfies
that

AX,∆(vξ) ≥ δ · S (vξ),

(iv) (X,∆) is reduced uniformly Ding-stable when testing on all special test con-
figurations.

Proof (i)a ⇔ (i)b It follows from Proposition 6.31.
(i)a ⇒ (ii) This follows from Lemma 2.53.
(ii)⇒ (iv) This is trivial.
(iv)⇒ (i)a It follows from Lemma 6.32.
(i)b ⇒ (iii)a: By Proposition 6.31, there exists ξ ∈ NR(T),

FL(vξ) = FL(v) ≥ D(Fv) ≥ η · J((Fv)ξ) ,

where the second inequality follows from Lemma 4.21. By Lemma 6.22, Fvξ

and (Fv)ξ differ by a θξ(v)-twist, thus J((Fv)ξ) = J(Fvξ ). By Lemma 4.12,

J(Fvξ ) = T (vξ) − S (vξ) ≥
1
n

S (vξ) .

(iii)a ⇒ (iii)b This is trivial.
(iii)b ⇒ (iv) For any special test configuration X, let v be the induced valua-

tion. For any ξ ∈ NQ(T), by Lemma 3.31 and Lemma 4.12,

S (vξ) ≥
1

n + 1
T (vξ) ≥

1
n

J(Fvξ ) =
1
n

J((Fv)ξ) =
1
n

J(Xξ) ≥
1
n

JT(X) .

Then by the assumption of (iii)b, there exists ξ ∈ NR(T), such that

Ding(X) = FL(v) = FL(vξ) = AX,∆(vξ) − S (vξ) ≥ (δ − 1)S (vξ) ,

thus Ding(X) ≥ δ−1
n JT(X). �

Theorem 6.34. Let (X,∆) be a log Fano pair and let T ⊆ Aut(X,∆) be a
maximal torus. Assume that (X,∆) is reduced uniformly Ding stable with slope
at least η > 0. Then there exists δ > 1 which only depends on a positive lower
bound α of α(X,∆), dim(X), η such that for any T-equivariant filtration F ,

D(Fξ, δ) ≥ 0 for some ξ ∈ NR(T) .
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Conversely, if there exists δ > 1 such that for any F , we can find ξ ∈ NR(T)
which satisfies that D(Fξ, δ) ≥ 0, then (X,∆) is reduced uniformly K-stable.

Proof If (X,∆) is reduced uniformly K-stable with slope at least η > 0, then
for any filtration F , there exists a ξ ∈ NR(T), such that D(F ) ≥ η · J(Fξ).
Therefore, by Theorem 3.50, we know there exists δ > 1 which only depends
on a positive constant α ≤ α(X,∆), dim(X), η such that D(Fξ, δ) ≥ 0.

For the converse direction, for any filtration F , there exists ξ0 ∈ NR(T) such
that D(Fξ0 , δ) ≥ 0. In particular, this is true for the filtration F induced by
a special test configuration which corresponds to a valuation v. Thus for any
ξ ∈ NQ(T), vξ induces a weakly special test configuration. By Exercise 4.19,
for such ξ,

D((Fv)ξ, δ) = D(Fvξ , δ) =
AX,∆(vξ)

δ
− S (vξ) , (6.7)

where the first equality follows from the fact that (Fv)ξ and Fvξ differ by a shift.
Since AX,∆(vξ) is continuous with respect to ξ by Proposition 6.19, S (Fvξ ) is
continuous with respect to ξ as

S ((Fv)ξ) = S (Fv) + 〈αbc, ξ〉 + θξ(v)

by Lemma 6.22. Thus the right hand side of (6.7) is continuous with respect
to ξ. Similarly, by Lemma 6.8, the left hand side of (6.7) is continuous with
respect to ξ. Therefore, as (6.7) holds for all ξ ∈ NQ(T), it holds for all ξ ∈
NR(T). In particular, AX,∆(vξ0 ) ≥ δ · S (vξ0 ). Hence (X,∆) is reduced uniformly
K-stable by Theorem 6.33(iii)b. �

6.3 Stability threshold δT
In this section, we develop a reduced version of δ-invariant for K-semistable
log Fano pairs (X,∆) with a torus group T action.

Definition 6.35. Let (X,∆) be a log Fano pair with a torus group T-action
such that Fut(X,∆, ξ) = 0 for any ξ ∈ NR(T). For v ∈ QM∗,TX , we define the
T-reduced δ-invariant to be

δred
X,∆,T(v) = sup

ξ∈NR(T)

AX,∆(vξ)(v)
S X,∆(vξ)

= 1 + sup
ξ∈NR(T)

FL(v)
S X,∆(vξ)

. (6.8)

We note the second equality follows from FL(v) = FL(vξ) by Lemma 6.23.
We define the T-reduced δ-invariant as

δred
T (X,∆) = inf

v
δred

X,∆,T(v)
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where v runs through all valuations in QM∗,TX .
In case (X,∆) is a toric log Fano pair with the maximal dimensional torus T

acting on it. If Fut(X,∆, ξ) = 0 for any ξ ∈ NR(T), then (X,∆) is K-semistable
(see Exercise 4.11), and we set δT(X,∆) = +∞.

Remark 6.36. The supremum in (6.8) is a maximum. Indeed,

S (vξ) ≥
1

n + 1
T (vξ) ≥

1
n

J(Fvξ ) , (6.9)

where n = dim X. Hence by Proposition 6.6, it suffices to take the supremum
in (6.8) over a compact subset of NR(T) and therefore it is achieved for some ξ
by the continuity of ξ 7→ S (vξ).

Lemma 6.37. Let (X,∆) be a K-semistable log Fano pair with a torus T action.
If δT(X,∆) = 1, then there exists a sequence of T-invariant divisors Ei over X,
each of which is an lc place of a Q-complement, such that ordEi ∈ QM∗,TX and
limi→∞ δ

red
X,∆,T(Ei) = 1.

Proof Since (X,∆) is K-semistable, then δred
X,∆,T(E) ≥ 1 for any E. So if the

statement fails, then there exists some constant a > 0 such that for any diviso-
rial valuation v = ordE that is induced by a T-equivariant special test configu-
ration Xs, we have δred

X,∆,T(v) ≥ 1 + a for some a > 0. It follows from Theorem
6.33 (iii)a ⇔ (iii)b that there exists a δ > 1 such that δred

X,∆,T(v) ≥ δ for any
v ∈ QM∗,TX . Therefore, δT(X,∆) ≥ δ, which is a contradiction. �

Consider now the following setup: let B be a smooth variety and let (X,∆X)→
B be a Q-Gorenstein family of log Fano pairs with a fiberwise T-action. Let
M ∼Q −(KX/B +∆X) be a T-invariantQ-linear system such that (Xb,∆Xb +Mb)
is lc for all b ∈ B and let

g : (Y,G)→ (X,∆X +M)

be a fiberwise T-equivariant log resolution (i.e. g is T-equivariant and is a
fiberwise log resolution in the sense of Definition 4.32 for (X,∆X+Bs(M/X))).

Lemma 6.38. In the above setup, let E be a toroidal divisor over Y with
respect to G such that Eb ∈ QM∗,T

Xb
for any b ∈ B and AX,∆X+M(E) < 1. Then

δXb,∆Xb ,T
(Eb) is locally constant on b ∈ B.

Proof We may assume B is affine irreducible and E is a prime divisor on
Y (by repeatedly blowup centers of E on Y). We aim to show the natural
restrictions

H0(Y,−mg∗(KX + ∆X) − `E)→ H0(Yb,−mg∗(KXb + ∆Xb ) − `Eb) (6.10)
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are surjective for all sufficiently divisible integers m, ` ∈ N. The proof is similar
to the one for Proposition 4.33, but we replace Theorem 1.72(ii) by Theorem
1.72(i).

By Bertini’s theorem, there are effective Q-divisors H ∼Q −(KX/B + ∆X) and
M ∈ M such that g is also a fiberwise log resolution of (X,Γ = ∆X + εH + (1−
ε)M), (Xb,Γb) is klt for all b ∈ B and AX,Γ(E) < 1 (note that (X,Γ) no longer
has a T-action but this does not affect the proof). We may write

KY + aE + Γ1 − Γ2 = g∗(KX + Γ) ∼Q 0 ,

where a = 1 − AX,Γ(E), Γ1 and Γ2 are effective without common component
and Γ2 is g-exceptional. Since (Xb,Γb) is klt, so does (Yb, (Γ1)b) for all b ∈ B.
We then have

−mg∗(KX + ∆X)− `E+
`

a
Γ2 ∼

`

a
(KY + Γ1)−mg∗(KX + ∆X) ∼

`

a
(KY + Γ1 + H′)

for some effective H′ ∼Q − am
`

g∗(KX + ∆X) such that (Yb, (Γ1)b + H′b) is klt for
all b ∈ B. For all sufficiently divisible m, ` ∈ N,

H0(Y,−mg∗(KX + ∆X) − `E)

= H0
(
Y,−mg∗(KX + ∆X) − `E +

`

a
Γ2

)
� H0

(
Yb,−mg∗(KXb + ∆Xb ) − `Eb +

`

a
(Γ2)b

)
= H0(Yb,−mg∗(KXb + ∆Xb ) − `Eb) ,

where the surjection follows from Theorem 1.72(i), and two equalities holds
because (Γ2) is g-exceptional and (Γ2)b is gb-exceptional. Thus (6.10) follows.

SinceY → B admits a fiberwise T-action, the maps in (6.10) are T-equivariant
and hence are also surjective on each component of the weight decomposition.
It follows that for each sufficiently divisible m, ` ∈ N and each α ∈ M(T),
dim(F `

Eb
Rb,m)α is independent of b ∈ B, where Rb,m = H0(Xb,−m(KXb + ∆Xb )).

By Lemma 6.22, Fvξ differs from (Fv)ξ by a θξ(v)-shift and λmin(Fv) = 0 for
any valuation v, thus for each ξ ∈ NR(T),

θξ(vb) = −λmin((Fvb )ξ)

is independent of b ∈ B (where vb = ordEb ). Therefore,

δXb,∆Xb
((Eb)ξ) =

AXb,∆Xb
((vb)ξ)

SXb,∆Xb
((vb)ξ)

=
AXb,∆Xb

(vb) + θξ(vb)

SXb,∆Xb
(vb) + θξ(vb)

is independent of b ∈ B. It follows from Definition 6.35 that δred
Xb,∆Xb ,T

(Eb) is
independent of b ∈ B. �
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Lemma 6.39. Let q : W → B be equidimensional proper morphism between
integral varieties and T an integral proper variety. Assume a morphism p : W →
T × B over B satisfies for a point b0 ∈ B, pb0 : Wb0 → T is dominant. Then for
any b, pb : Wb → T is dominant.

Proof By our assumption, the image Y of W in T × B is a closed subset. It
suffices to show that Y = T × B. If this were not true, then the dimension of a
general fiber of p is

dim(W) − dim(Y) > dim(W) − dim(B) − dim(T )

= dim(Wb0 ) − dim(T ) ,

which is the dimension of a general fiber over T × b0. This contradicts to the
upper semi-continuous of the dimension of fibers. �

Theorem 6.40. Let (X,∆) be a K-semistable log Fano pair and T a torus acting
on (X,∆). If δred

T (X,∆) = 1, then there exists a divisorial valuation v ∈ QM∗,TX
such that

AX,∆(v)
S X,∆(v)

= δred
X,∆,T(v) = δred

T (X,∆) = 1.

Proof Let N be the integer from Lemma 4.25. By Lemma 6.37, there is a
sequence of Ei ∈ QM∗,TX which are lc places of Q-complements and satisfy
limi→∞ δ

red
X,∆,T(Ei) = 1.

Fix a T-equivariant birational map X d PdimT × Z where Z is proper and
PdimT is a toric variety that compactifies T. Denote by Γ =

∑dimT
i=0 (xi = 0) the

sum of torus invariant divisors. Let

π : ValT(X)→ NR(T)

be the projection via the (non-canonical) isomorphism Val(Z)×NR(T) � ValT(X)
by (6.3) sending π(vµ,ξ) = ξ. By Lemma 6.26, we may replace each Ei by a ra-
tional twist and assume that π(ordEi ) = 0. It follows from Lemma 4.25 that any
such E is an lc place of an N-complement.

Similar to the proof of Theorem 4.64, we may consider the parameter space
B of T-invariant linear seriesMb ⊆ |−N(KX +∆)| such that lct(X,∆;Mb) = 1

N .
After stratifying B = t jB j, replacing B by a strata Bi and base-changing the
data over B j, we may assume

(i) B is connected and smooth, which contains infinitely many bi;
(ii) the universal family (XB,∆B;M) together with (PdimT,Γ) × ZB admits a si-

multaneous fiberwise T-equivariant log resolutionW.
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Y

g

yy

g′

%%

(XB,∆B +M) (PdimT,Γ) × ZB

For any Ei, the linear system

Mi := F N·AX,∆(Ei)
Ei

H0(OX(−N(KX + ∆))
)
⊆ H0(OX(−N(KX + ∆))

)
is a T-invariant linear system which satisfies that lct(X,∆; Mi) = 1

N and Ei is
an lc place of (X,∆ + 1

N Mi). In particular, Mi yields a k-point on B.
Let F be the sum of all geometrically irreducible prime divisors onW with

log discrepancy 0 over (XB,∆B + 1
NM). After passing through a subsequence

again, we may assume the centers of Ei are in the same strata under the iden-
tification as in 4.31. Let Zi be the center of Ei, which is a geometrically irre-
ducible smooth variety over k. Therefore, Zi is an intersection of F1,i, . . . , Fp,i

which are components of Fbi , in particular, any F j,i (1 ≤ j ≤ p) geometri-
cally irreducible. For a fixed i0 and an arbitrary i, under the identification in
4.31, after reordering, we may assume F j,i and F j,i0 corresponding to the same
point. So if Ei corresponding to a vector ~αi = (α1,i, . . . , αp,i) ∈ Zp. Therefore,
we can define a divisor E∗i over Xbi0

(� X), whose center is Zi0 , as the divisor
corresponding to ~αi with respect to the coordinates given by the equations of
{F1,i0 , . . . , Fp,i0 }. Let v∗ be the quasi-monomial valuation corresponding to the
limit vector

~α∞ = lim
i→∞

1∑p
j=1 α j,i

~αi.

Fix b0 ∈ B. Since π((Ei)b) = 0 if and only if the center of (Ei)b dominates
T. The latter statement is independent of b ∈ B by Lemma 6.39, we see that
π((Ei)b0 ) = 0 as the same holds over bi. By Lemma 6.38, we also have

δred
X,∆,T(Ei) = δred

X,∆,T((Ei)b0 ) .

Therefore, we may replace the sequence Ei by (Ei)b0 and assume that the Ei’s
are lc places of a fix lc pair (X,∆ + 1

NMb0 ).
So vi := 1

AX,∆(Ei)
(ordEi ) converges to a T-invariant quasi-monomial valuation

v over X. Since π(vi) = 0 and AX,∆(vi) = 1, we see that π(v) = 0 and AX,∆(v) = 1
as well; in particular, v , wtξ for any ξ ∈ NR(T). We will show for such v,
δred

X,∆,T(v) = 1.
After twisting by ξ, we also have (vi)ξ → vξ and AX,∆((vi)ξ) → AX,∆(vξ) as
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i→ ∞. By Proposition 4.6, we have S (vi)→ S (v) and therefore as

S (vξ) = AX,∆(vξ) − AX,∆(v) + S (v) (by Lemma 6.23) ,

it follows that S ((vi)ξ) → S (vξ) for all ξ ∈ NR(T). Therefore, for any fixed
ξ ∈ NR(T),

AX,∆(vξ)
S (vξ)

= lim
i→∞

AX,∆((vi)ξ)
S ((vi)ξ)

≤ lim
i→∞

δred
X,∆,T(vi) = 1 .

Hence for any ξ,

AX,∆(v)
S (v)

=
AX,∆(vξ)

S (vξ)
= 1 = δred

T (X,∆) ,

as (X,∆) is K-semistable.
By Theorem 5.33, as AX,∆(v)

S (v) = δ(X,∆), the associated graded ring grvR is
finitely generated. Let (Y, E) → X be a T-equivariant log resolution, such that
v ∈ QM(Y, E). Then there exists a T-invariant divisorial valuation w which is
sufficiently close to v, satisfying AX,∆(w)

S (w) = 1 and w is not of the form wtξ. Thus
we can replace v by w.

�

Theorem 6.41. Let (X,∆) be a K-semistable log Fano pair, and T ⊆ Aut(X,∆)
a maximal torus group. Then (X,∆) is T-equivariantly K-polystable if and only
if δT(X,∆) > 1, i.e. (X,∆) is reduced uniformly K-stable.

Proof If δT(X,∆) > 1, then any non-product T-equivariant special test con-
figuration X satisfies

Fut(X) = FL(v) > 0 as AX,∆(v) > S (v)

for the valuation v induced by X.
Assume (X,∆) is K-polystable. If δred

T (X,∆) = 1, then Theorem 6.40 yields
a divisorial valuation v, which comes from a special test configuration X, such
that Fut(X) = 0. If X is a product test configuration since v is a T-invariant
valuation, up to an (T × Gm)-equivariant isomorphism X arises from a Gm ⊆

Aut(X,∆) and Gm commutes with T. However, T is a maximal torus, which
implies Gm ⊆ T, i.e. v is of the form wtξ, but this contradicts with v ∈ QM∗,TX .

�

Remark 6.42. We will see from Corollary 8.23 that a log Fano pair (X,∆) is
K-polystable if and only if it is T-equivariantly K-polystable. So a log Fano
pair is K-polystable if and only if it is reduced uniformly K-stable with respect
to a maximal torus T ⊆ Aut(X,∆).
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Exercises

6.1 Let T be a torus of n − 1 which faithfully acts on an n-dimensional
log Fano pair (X,∆), i.e. X is birational to T × C. Prove (X,∆) is T-
equivariantly K-polystable if and only if Fut(X,∆, ξ) = 0 for any ξ ∈

N(T) and FL(D) > 0 for any vertical divisor D of X/C.
6.2 Let V ⊆ NR(T) be a convex subset such that the restriction of ξ 7→ λξ on

V is linear (see Example 6.13). Then the functions

ξ 7→ AX,∆(wtξ) and ξ 7→ S X,∆(wtξ)

are both linear on V .
6.3 If F = FX,L for a T-equivariant test configuration (X,L) of (X,∆), then

the minimizer of ξ → J(Fξ) can be attained by ξ ∈ NQ(T).
6.4 Fix a linearly bounded T-equivariant filtration F , ξ → λmin(Fξ) is con-

tinuous.
6.5 If µ(F ) < λmax(F ) and v ∈ QM∗,TX computes lct(X,∆;I(µ(F ))

• (F )), then
vξ computes lct(X,∆;I(µ(F ))

• (Fξ)).
6.6 Let T be a torus group which acts on a log Fano pair (X,∆). Let ξ ∈ NR(T)

which generates T. Then there exists a T-invariantQ-complement Γ such
that wtξ is an lc place of (X,∆ + Γ).

Note on history

For a log Fano pair admitting a torus action, the reduced JT norm was in-
troduced in Hisamoto (2016). Then Li (2022) and Xu and Zhuang (2020)
extended several fundamental aspects of K-stability theory, e.g. the valuative
criterion, chracterizations using invariants on filtrations etc., to the setting of
(X,∆) admitting a torus action. In particular, the reduced δred

T -invariant is in-
vented in Xu and Zhuang (2020), which combining with Liu et al. (2022)’s
higher rank finite generation theorem (see Section 5) yields the equivalence
between T-equivariant K-polystability and reduced uniform K-stability for any
log Fano pair.

In the analytic side, using the variational approach initiated on Berman et al.
(2021), Li (2022) proved reduced uniform K-stability of a log Fano pair im-
plies the existence of weak Kähler-Einstein metric on it.



7
K-moduli stack

In this section, we will establish the construction of an Artin stack, called the
K-moduli stack, which parametrizes families of K-semistable log Fano pairs
with fixed numerical invariants.

7.1 Family of K-stable log Fano pairs

We have defined a family of locally stable pairs (X,∆) → B over a smooth
base B in Definition 5.1. The definition over a general base is a lot more sub-
tle. Fortunately, the theory of locally stable families has been systematically
developed in Kollár (2023). Since we only consider klt varieties, our setting is
slightly simpler.

7.1.1 Divisorial sheaves

In this section, we follow (Kollár, 2023, Section 3).

Definition 7.1. Let f : X → S be a morphism and F a coherent sheaf on X.
We say that F is generically flat (resp. mostly flat ) over S , if there is a dense,
open subset j : X◦ → X such that

(i) F|X◦ is flat over S , and
(ii) Supp(Fs) \ X◦ has codimension ≥ 1 (resp. ≥ 2) in Supp(Fs) for s ∈ S .

Definition 7.2. Let f : X → S be a morphism of finite type and F a coherent
sheaf on X. Let n be the relative dimension of Supp(F)→ S . A hull of F over
S is a coherent sheaf FH together with a morphism q : F → FH , such that

(i) Supp(ker(q))→ S has fiber dimension ≤ n − 1,

259
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(ii) there is a closed subset Z ⊂ X with complement X◦ := X\Z such that Z → S
has fiber dimension ≤ n − 2, F/ker(q) → FH is an isomorphism over X◦,
FH
|X◦ is flat over S with pure, S 2 fibers, and depthZ FH ≥ 2.

Definition 7.3. A coherent sheaf L on a scheme X is called a divisorial sheaf
if L is S 2 and there is a closed subset Z ⊂ X of codimension ≥ 2 such that L|X\Z
is locally free of rank 1. We say L is a flat family of divisorial sheaves if L is
flat over S and its fibers are divisorial sheaves.

7.4. Let X → S be a flat morphism with normal fibers. Let j : X◦ → X be the
open locus such that f|X◦ is smooth, then for any point t ∈ S , codimXt (Xt \X◦t ) ≥
2. For any relative Cartier divisor D◦ on X◦ and an integer m, we define

ω[m]
X/S (D) := j∗(ω

[m]
X◦/S (D◦)) .

Definition 7.5. Let f : X → S be a flat morphism with normal fibers. Let
j : X◦ → X be the open locus such that f|X◦ is smooth. We say L is a mostly flat
family of divisorial sheaves if L is invertible on X◦ and L is equal to its hull,
i.e. L = j∗(L|X◦ ).

Definition 7.6 (Hull pull-back). Let f : X → S be a flat morphism with normal
fibers. Let j : X◦ → X as in Definition 7.5, let L be a mostly flat family of
divisorial sheaves on X. Let q : T → S be a morphism and qX : XT := X ×S

T → X the fiber product. We define the hull pull-back LH
T of L to be hull of

LT := q∗XL, i.e. the push forward of the restriction of LT over X◦T = q−1
X (X◦) to

XT .

Proposition 7.7. Let f : X → S be a flat morphism with normal fibers. Let
L be a mostly flat family of divisorial sheaves on X. Then the following are
equivalent:

(i) L is a flat family of divisorial sheaves on X, and
(ii) L is a universal hull, i.e. let q : T → S be a morphism, then LT := q∗XL is

equal to its own hull.

Proof (i)⇒(ii) Since LT is flat over T with S 2 fibers, then depthZT
(LT ) ≥ 2

where ZT = XT \ X◦T . Therefore, LT = jT∗(LT |X◦T
) = LH

T .

(i)⇐(ii) For any s ∈ S , (ii) implies that Ls := L|Xs is S 2. To show L is flat
over S , we may assume S = Spec(OS ,s), and moreover we can assume OS ,s is
complete. Let m := mS ,s, Xn := X ×S Spec(OS ,s/m

n+1) and Ln = L|Xn . Denote
by Z the locus where f is not smooth. So there is a natural complex

0→ (mn/mn+1) · L0 → Ln+1
rn
−→ Ln → 0 ,
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which is exact on X \ Z. We also know that rn is surjective, and the morphism

(mn/mn+1) · L0 → ker(rn) (7.1)

is surjective and isomorphic outside Zs. Since (mn/mn+1) ·L0 is S 2, this implies
that (7.1) is an isomorphism. Then by the local flatness criterion (Matsumura,
1989, Theorem 22.3), L is flat over OS ,s. �

For more discussion, see (Kollár, 2023, Section 9).

Proposition 7.8. Let f : X → S be a projective morphism and L a mostly flat
family of divisorial sheaves on X. Then

(i) there is a locally closed decomposition j : S H−flat → S such that, for every
morphism q : T → S , the hull pull-back LH

T is a flat family of divisorial
sheaves on XT , if and only if q factors as q : T → S H−flat → S .

(ii) there is a locally closed partial decomposition j : S inv → S such that, for
every morphism q : T → S , the hull pull-back LH

T is invertible on XT , if and
only if q factors as q : T → S inv → S .

Proof See (Kollár, 2023, Theorem 3.29 and Corollary 3.30). �

Definition 7.9 (Local stability I). For a flat morphism X → S with normal
fibers, we say f : X → S is a locally (KSB) stable family of klt varieties

(i) the fiber Xt is klt for any t ∈ S ,
(ii) ω[m]

X/S is a flat family of divisorial sheaves for every m ∈ Z.

In Kollár (2023), in a family of locally KSB stable varieties, fibers could
have more general singularities, but we will only need the case of klt fibers in
this book.

7.1.2 Stable pairs

The definition of a family of locally stable log pairs (X,∆)→ S is considerably
harder, since the divisor usually is not flat over S . It is addressed in Kollár
(2023) to define a families of divisors. When S is non-reduced, the question is
especially subtle, where the key notion of K-flatness1 is introduced. We give a
brief discussion to the case that we need.

Definition 7.10. Let f : X → S be a flat morphism with S 2 fibers, x ∈ X a
point and s := f (x). A subscheme D ⊂ X is a relative Cartier divisor at x ∈ X
if D is flat over S at x and Ds := D|Xs is a Cartier divisor on Xs at x.
1 The use of letter K here is not related to K-stability.
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7.11 (Mumford divisor). Let X → S be a flat morphism with normal fibers.
Let j : X◦ → X be the open set j : X◦ ⊆ X such that X◦ → S is smooth. Let
L ⊂ OX be a mostly flat family of divisorial sheaves, such that the Supp(OX/L)
does not contain any fiber Xt (t ∈ S ). So over X◦, L◦ = OX(−D◦) for a relative
effective Cartier divisor D◦. We call L yields a relative Mumford Z-divisor
D := closure of (D◦) over S , and L = OX(−D).

If q : T → S is a morphism, and qX : X×S T → X the base-change. We define
the reflexive pull back DT := q[∗]

X D to be the relative Weil divisor corresponding
to the hull pull-back LH

T on XT .

7.12 (Fitting ideal). Let R be a noetherian ring, M a finite R-module and

Rs A
−→ Rr −→ M −→ 0

a presentation of M, where A is given by an s× r-matrix with entries in R. The
Fitting ideal of M, denoted by FittR(M), is the ideal generated by the determi-
nants of (r × r)-minors of A. For the following basic properties see (Eisenbud,
1995, Section 20.2):

(i) FittR(M) is independent of the presentation chosen.
(ii) The Fitting ideal commutes with base change. That is, if S is an R-algebra

then FittS (M ⊗R S ) = FittR(M) ⊗R S .
(iii) Let X be a smooth variety of dimension n and F a coherent sheaf of generic

rank 0 on X. Then FittX(F) is a principal ideal iff F is Cohen-Macaulay of
pure dimension n − 1.

7.13 (Divisorial support). If X → S is a smooth morphism of pure relative
dimension n, and F is a coherent sheaf on X that is flat over S with Cohen-
Macaulay fibers of pure dimension n − 1. We define its divisorial support as

DSuppS (F) := OX/FittX(F) ,

which yields an effective relatively Cartier divisor by 7.12(iii).
More generally, let f : X → S be a flat morphism of pure relative dimension

n and f ◦ : X◦ → S the smooth locus of f . Let F be a coherent sheaf on X that
is generically flat and pure over S of dimension n − 1. Assume that for every
s ∈ S , every generic point of Fs is contained in X◦. Set U to be the largest open
locus contained in X◦ such that F|U is flat with Cohen-Maucaulay fibers over
S . We define the divisorial support of F over S as

DSuppS (F) = DSuppS (F|U) ,

the scheme-theoretic closure of DSuppS (F|U).
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Definition 7.14 (K-flatness). Let f : X → S be a projective flat morphism with
normal pure n-dimensional fibers. A relative Mumford divisor D ⊂ X is K-flat
over S if for every localization T → S and every finite morphism π : XT → Pn

T ,
π∗(D) := DSupp(π∗(OD)) ⊂ Pn

S is a relative Cartier divisor.

Warning. For now K-flatness is only defined in the projective setting. A formal-
local definition is in demand.

7.15. To see the geometric origin of the definition of K-flatness, especially it
is relation to the Cayley-Chow theory, we refer to (Kollár, 2023, Section 7) for
a comprehensive investigation.

While K-flatness condition is delicate over a general base, when S is re-
duced, any relative Mumford divisor is K-flat.

Lemma 7.16. Let f : X → S be a projective flat morphism with normal pure
n-dimensional fibers over a reduced scheme S . Any relative Mumford divisor
D ⊂ X over S is K-flat.

Proof See (Kollár, 2023, Lemma 7.29). �

From the definition it is not clear one can pull back a K-flat divisor, but this
functorial property is established in (Kollár, 2023, Chapter 7), by showing it
is equivalent to flatness of the family of Chow-Caylay hypersurfaces Ch(D/S )
for all Veronese embeddings.

Theorem 7.17. Let X → S be a flat morphism with normal fibers. Let q : T →
S be a morphism, and qX : X ×S T → X the base-change. If D ⊂ X is relative
Mumford divisor, which is K-flat. Then the pull back q[∗]

X D is also K-flat.

Proof See (Kollár, 2023, Theorem 7.40 and Corollary 7.50). �

Theorem 7.18. Let f : X → S be a projective flat morphism with normal
pure n-dimensional fibers. Then there is a separated S -scheme of finite type
KDivd(X/S ) with a universal family of K-flat divisor

UKDivd(X/S ) ⊂ X ×S KDivd(X/S ) ,

such that the following are equivalent

(i) a S -scheme T → S with a K-flat divisor D ⊂ XT := X×S T over T of degree
d, and

(ii) a morphism T → KDivd(X/S ).

Proof See (Kollár, 2023, Theorem 7.3). �
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Definition 7.19 (locally stability II). We fix a positive integer N. Let f : X → S
be projective flat with normal fibers and D a relative Weil divisor. Let ∆ = 1

N D.
We say (X,∆) → S is a locally (KSBA) stable family of projective klt pairs
marked by N if

(i) (Xt,∆t := 1
N Dt) is klt for any t ∈ S .

(ii) D is a K-flat family of relative Mumford effective Z-divisors.
(iii) ω[m]

X/S (m∆) is a flat family of divisorial sheaves, provided m is divided by N.

In the setting of Definition 5.1, the condition (iii) always holds by (Kollár,
2023, Proposition 2.79) and the flattening stratification.

Remark 7.20 (Marking). Here we choose the simplest marking by consid-
ering ∆ as ‘one divisor’. We can consider a more complicated marking a =

(a1, ..., ap) and ∆ =
∑p

i=1 aiDi, where Di is a K-flat family of relative Mumford
effective Z-divisors. All results can be proved in a similar way.

7.21 (Pullback a family). Let q : T → S be a morphism. Let (X,∆) → S be
a locally stable family of projective klt pairs marked by N, then (XT ,∆T =
1
N q[∗]

X (N∆)) is a locally stable family of klt pairs marked by N.

Definition 7.22. We say (X,∆)→ S yields a family of log Fano pairs marked
by N if

(i) (X,∆)→ S is a projective locally stable family of klt pairs marked by N,
(ii) there exists a negative integer m divided by N, such that ω[m]

X/S (m∆) is ample
Cartier over S .

Definition 7.23. For two positive integers n, N, a nonnegative number δ, a
positive number V , we denote by X≥δn,N,V the functor {k-scheme} → {groupid}:

{
k-scheme S

}
−→


Families of log Fano pairs (X,∆)→ S

marked by N with fibers satisfying dim(Xt) = n,
(−KXt − ∆t)n = V and δ(Xt,∆t) ≥ δ

 .
For δ = 0, i.e. we denote X≥0

n,V by XFano
n,N,V . For δ = 1, i.e. (Xt,∆t) is K-

semistable, we denote X≥1
n,N,V by XK

n,N,V , and call it the K-moduli stack.

We are going to show for any δ ∈ (0, n+1
n ], X≥δn,N,V is an Artin stack of finite

type over k, and X≥δn,N,V ⊆ X
Fano
n,N,V is an open substack. It is clear

X
Fano
n,N,V =

⋃
δ>0

X
≥δ
n,N,V .



7.2 Boundedness of log Fano pairs 265

7.2 Boundedness of log Fano pairs

We prove a boundedness result of Fano varieties, which is a consequence of
Theorem 1.80.

Lemma 7.24. Let X be a projective normal variety and x ∈ X a smooth point.
Let L be a big divisor. Let E be the exceptional divisor of the weighted blow up
over x with the weight (a1, ..., an) with respect to a local coordinate. Then for
any ε > 0, there exists an effective Q-divisor D ∼Q L such that

ordE(D) > (vol(L) ·
n∏

i=1

ai)
1
n − ε .

Proof Let x1, . . . , xn be functions in OX,x giving the local coordinate. Let

ak := { f ∈ OX,x | ordE( f ) ≥ k } .

Then O/ak is generated by the monomials xm1
1 · · · x

mn
n which satisfy

∑n
i=1 miai ≤

k. Therefore,

dimO/ak =
1

n!
∏n

i=1 ai
· kn + O(kn−1) .

On the other hand,

dim H0(X,OX(kL)) =
vol(L)

n!
kn + O(kn−1) .

Let t ∈ Q, such that

1∏n
i=1 ai

(t + ε)n ≥ vol(L) >
1∏n

i=1 ai
tn .

Then for a sufficiently large k,

dim H0(X,OX(kL)) > dim H0(X,OX(kL) ⊗ OX,x/akt) ,

i.e. there is a member M in |kL|, whose vanishing order along E is at least kt.
Thus we could choose D = 1

k M. �

Let (X,∆) be a log Fano pair. We want to show the following boundedness
theorem.

Theorem 7.25. Fix positive numbers V, α and two positive integers n, N. Then
the class of log Fano pairs{

(X,∆)
∣∣∣∣ (X,∆) is a log Fano pair, dim(X) = n,

(−KX − ∆)n ≥ V, α(X,∆) ≥ α and N · ∆ is integral

}
(7.2)

is bounded (see Definition 1.79). In particular, there exists a positive integer
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M = M(V, α, n,N), such that for any log Fano pair (X,∆) as in (7.2), −M(KX +

∆) is very ample.
Let δ be a positive number, then we get the same statement if we replace

α(X,∆) ≥ α by δ(X,∆) ≥ δ.

Proof We show that for all such log Fano pairs (X,∆) and any E over X,

AX,∆(E) ≥ min
{V · αn

nn , 1
}
.

Denote by a = AX,∆(E) which we assume to be at most 1. Let µ : Y → (X,∆) be
a log resolution such that E is on Y , and we write µ∗(KX + ∆) = KY + ∆Y . Con-
sider a general point x on E so x is not on any component of Supp(∆Y ) other
than E. Let {x1, . . . , xn} be a local coordinate at x, and E given by the vanish-
ing of x1. Consider the divisorial valuation F which comes from the weighted
blow up of k( 1

a , 1, 1, . . . , 1) for some appropriate k ∈ N. Then AY,∆Y (F) = kn.
For any positive t which satisfies that tn > nn·a

V , then

tn >
nn · a

(−KX − ∆)n .

By Lemma 7.24, there exists an effective Q-divisor D ∼ t · (−KX −∆) such that
ordFµ

∗(D) > kn. Therefore,

AX,∆+D(F) = AX,∆(F) − ordF(D) < kn − kn = 0 ,

i.e. (X,∆ + D) is not log canonical, which implies that t > α(X,∆) ≥ α. Thus
nn·a
V ≥ αn, and (X,∆) is ε-lc for ε = min

{V ·αn

nn , 1
}
. Then we can conclude by

Theorem 1.80.

The last statement follows from α(X,∆) ≥ 1
n+1δ(X,∆) by Lemma 3.31. �

7.3 Openness of K-semistability

We will prove in a family of log Fano pairs, the locus parametrizing K-semistable
ones is open.

Lemma 7.26. Let R be a DVR with K the fractional field and κ the residue
field. Let (X,∆) → Spec (R) be a family of klt pairs. Let V be a free R-module
of H0(X, L) for a line bundle L on X.

δ(XK ,∆K ,VK) ≥ δ(Xκ,∆κ,Vκ) . (7.3)



7.3 Openness of K-semistability 267

Proof Let F be a filtration FK of VK , by the properness of flag varieties, we
know there is a filtration F of V , i.e., a sequence of free R-module,

0 ⊆ V1 ⊆ · · · ⊆ Vp = V ,

such that after tensoring over K, we get FK on VK . Then

lct(XK ,∆K ,I(FK ,VK)) ≥ lct(Xκ,∆κ,I(Fκ,Vκ)) .

By Lemma 3.13, this implies δ(XK ,∆K ,VK) ≥ δ(Xκ,∆κ,Vκ). �

Theorem 7.27. Let R be a DVR with K the fractional field and κ the residue
field. For a family of log Fano pairs (X,∆)→ Spec (R),

δ(XK ,∆K) ≥ δ(Xκ,∆κ) . (7.4)

Proof Let Vm = H0(−m(KX + ∆)) for m ∈ r · N. Then

δ(XK ,∆K) = lim
m→∞

m · δ(XK ,∆K , (Vm)K)

≥ lim sup
m→∞

m · δ(Xκ,∆κ, (Vm)κ) = δ(Xκ,∆κ) .

�

Lemma 7.28. Let f : (X,∆)→ S be a family of log Fano pairs over a reduced
base. For any fixed N such that N∆ is integral, there is a reduced scheme
g : B→ S of finite type, and a relative Mumford divisor Γ ⊂ X×S B flat over B,
such that if we denote byD = 1

N Γ, then for any point b ∈ B, (Xg(b),∆g(b) +Db)
is strictly log canonical and N(KXg(b) + ∆g(b) + Db) ∼ 0. Moreover, any N-
complement D such that (Xt,∆t + D) is strictly log canonical for some t ∈ S
satisfiesDb = D for some b ∈ B with g(b) = t.

Proof By Lemma 1.4, for any b ∈ S and any i > 0, Hi(Xb, ω
[−N]
Xb

(−N∆b)) = 0.
So W := f∗(ωX/S [−N](−N∆)) is locally free on S . Let h : PS := P(W∗) → S
and ΓPS ⊂ X×S PS → PS be the universal family of divisors. Then the function

b ∈ PS 7→ lct(Xh(b),∆h(b); Γb)

is lower semi-continuous and constructible, since we can apply the same proof
of Lemma 1.42 for (X,∆) ×S PS and ΓPS . Therefore there is a reduced lo-
cally closed subset B of PS with g = h|S , such that b ∈ B if and only if
lct(Xg(b),∆g(b); Γb) = 1

N , and we can choose Γ = ΓPS ×PS B andD = 1
N Γ. �

Theorem 7.29. For a family of log Fano pairs (X,∆) → S over a reduced
base, the function

t ∈ S 7→ min
{

n + 1
n

, δ(Xt̄,∆t̄)
}
, (7.5)
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where t̄ corresponds to a geometric point over t, is constructible.

Proof We may assume the ground field is algebraically closed. By Noetherian
induction, it suffices to show that for irreducible S , there is an open set U of S ,
such that for any closed point t = t̄ ∈ U,

min
{

n + 1
n

, δ(Xη̄,∆η̄)
}

= min
{

n + 1
n

, δ(Xt,∆t)
}
,

where η ∈ U is the generic point.
LetD be the relative Mumford Q-divisor on X ×S B as in Lemma 7.28. We

can stratify B into the disjoint union of reduced locally subschemes {Bk}, and
base change the data over Bk, we may assume

(i) Bk is connected and smooth with a morphism gk : Bk → S , and
(ii) there exists a fiberwise resolutionWk → (XBk ,∆Bk +DBk )→ Bk over Bk.

After a reordering of k, we may assume there exists k0, such that gk is dom-
inant for k ≤ k0, and not so for k > k0.

Claim 7.30. Let U be the open subset which does not meet any gk(Bk) for any
k > k0. Then for any t ∈ U,

min
{

n + 1
n

, δ(Xη̄,∆η̄)
}

= min
{

n + 1
n

, δ(Xt,∆t)
}
,

where η is the generic point of U.

Proof By Theorem 7.27, it suffices to show

min
{

n + 1
n

, δ(Xη̄,∆η̄)
}
≤ min

{
n + 1

n
, δ(Xt,∆t)

}
.

We may assume δ(Xt,∆t) < n+1
n . By Theorem 4.36, there exists a valuation v

which is an place of (Xt,∆t + D) for some N-complement D such that AX,∆(v)
S (v) =

δ(Xt,∆t). By Lemma 7.28, there exists k and b ∈ Bk such that D � (DBk )b and
t = gk(b). In particular, k ≤ k0. Denote by Wb the fiber of Wk over b, then
cWb (v) is a component of the intersection of Wb and F j (1 ≤ j ≤ p) on Wk

with AXBk ,∆Bk +DBk
(F j) = 0. Thus there exists a component Z of ∩p

j=1F j such
that cWb (v) is a component of Wb ∩ Z.

Then applying Paragraph 4.31, over a lifting η̄ → (Bk)η → η, we obtain a
valuation vη̄ over (Xη̄,∆η̄), which satisfies

AXη̄,∆η̄
(vη̄)

S (vη̄)
=

AXt ,∆t (v)
S (v)

= δ(Xt,∆t)

by Proposition 4.33. Therefore, δ(Xη̄,∆η̄) ≤
AXη̄ ,∆η̄ (vη̄)

S (vη̄) = δ(Xt,∆t). �
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�

Theorem 7.31. Let (X,∆) → S be a family of log Fano pairs. Then for any
δ ≤ n+1

n , there is an open locus S ◦ ⊂ S such that for any t ∈ S and δ(Xt̄,∆t̄) ≥ δ
if and only if t ∈ S ◦.

Proof Theorem 7.31 is a direct consequence of Theorem 7.29 and Theorem
7.27. �

We also prove a weaker version that we need later for the reduced δ-invariant
(see Section 6.3).

Theorem 7.32. Let (X,∆) → S be a family of log Fano pairs over a re-
duced base, such that (X,∆) admits a fiberwise torus T-action over S . Assume
all fibers (Xt,∆t) are T-reduced uniformly K-stable. Then there exists η > 1,
δred
T (Xt,∆t) ≥ η for any t ∈ S .

Proof We prove by contradiction. There exists a sequence of points ti ∈ S ,
such that

lim
i→∞

δred
T (Xti ,∆ti ) = 1 .

By Theorem 6.33, we may assume there exists a sequence δi → 1, and a
sequence special valuations vi over (Xi,∆i) which are not of the form wtξ such
that

δred
Xti ,∆ti ,T

(vi) ≤ δi .

Applying Exercise 2.5 to Xη(S ) for the generic point η(S ) ∈ S , there is a
T-equivariant birational map ϕ : X d Z × PdimT.

X
ϕ

//

��

Z × PdimT

��

S Zoo

So after replacing S by an open set of S ◦ ⊆ S , we may assume for any point
ti ∈ S , ϕ yields a T-equivariant birational map ϕti : Xti d Zti × P

dimT.
Let N be the integer from Lemma 4.25. Let W = f∗(OX(−N(KX/S + ∆))),

which is locally free on S . We may consider the relative Grassmannian G → S
which parametrizes all sublinear series of W = f∗(OX(−N(KX/S + ∆))), and
GT the locus parametrizing T-invariant ones. Let B ⊆ GT be the locally closed
subset g : B→ S , which parametrizes T-invariant linear series

Mb ⊆ | − N(KXg(b) + ∆g(b))|
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such that lct(Xg(b),∆g(b);Mb) = 1
N . Let Γ =

∑dimT
i=0 (xi = 0) be the sum of all

torus invariant divisors on PdimT.
The valuation vi corresponds to a sequence of divisors Ei over Xti . After

twisting, we may assume πi(ordEi ) = 0 where πi : ValT(Xti ) → NR(T) is given
via the (non-canonical) isomorphism Val(Zti ) × NR(T) � ValT(Xti ) by (6.3)
sending π(vµ,ξ) = ξ, induced by the T-equivariant birational map Xti d Zti ×

PdimT.
Moreover, Ei yields a point bi ∈ B. After stratifying B = t jB j, replacing B

by a strata B j and base-changing the data over B j, we may assume

(i) B is connected and smooth, which contains infinitely many bi;
(ii) the universal family (XB,∆B;M) and (PdimT,Γ) × ZB admits a simultaneous

fiberwise T-equivariant log resolutionW→ B.

As before, for any fixed b0 ∈ B, we can construct a sequence of valuation E∗i ,
which are lc places of (Xg(b0),∆g(b0) + 1

NMb0 ), such that after passing to a sub-
sequence, the sequence

{
1

AXg(b0) ,∆g(b0) (ordE∗i
) ordE∗i

}
converges to a quasi-monomial

valuation v with πb0 (v) = 0, i.e. v , wtξ for any ξ and

δred
Xg(b0),∆g(b0),T

(v) ≤ lim inf δred
Xg(b0),∆g(b0),T

(E∗i ) = 1 ,

which is a contradiction with the assumption that (Xg(b0),∆g(b0)) is T-reduced
uniformly K-stable. �

7.4 The K-moduli stack

Proposition 7.33. Let (X,∆)→ T be a family of log Fano pairs marked by N.
Then the Hilbert function

ht : N · N 7→ Z, m 7→ ht(m) = h0(ω[−mM]
Xt

(−mM∆t)
)

is locally constant for t ∈ T.

Proof By Theorem 7.19(iii), ω[−m]
X/T (−m∆) is flat. The Kawamata-Viehweg

Vanishing Theorem implies for any m ∈ N · N,

Hi(Xt, ω
[−mM]
Xt

(−mM∆t)) = 0 for any i > 0 .

Thus

ht(m) : t 7→ h0(ω[−mM]
Xt

(−mM∆t)
)

= χ(ω[−mM]
Xt

(−mM∆t))

is locally constant. �
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7.34. If we fix δ > 0, then by Theorem 7.25, there exists a positive integer
M divided by N, such that −M(KX + ∆) is a very ample Cartier divisor for
any log Fano pair (X,∆) marked by N, with δ(X,∆) ≥ δ. If we set the Hilbert
polynomial

h : M · N 7→ Z, m 7→ h0(ω[−mM]
X (−mM∆)

)
,

then we can write

X
≥δ
n,N,V =

∐
h

X
≥δ
h , (7.6)

as a disjoint union, where X≥δh ⊆ X
≥δ
n,N,V is the substack parametrizing families

with the fixed Hilbert polynomial h. By Paragraph 7.35, for fixed n,N and V ,
all possible Hilbert polynomials h such that X≥δh , ∅ in (7.8) belong to a finite
set.

7.35. Fix two constants n and d0. Let X be an n-dimensional normal projective
variety. Assume L is a very ample divisor on X, and d = Ln ≤ d0. By a general
projection, we can assume X can be embedded into PN for N = 2n + 1 with
degree d. Then [X] is parametrized by a point of the Chow variety Chown,d(PN)
which parametrizes n-dimensional subvarieties of PN of degree d.

Let Hilb◦n(PN) parametrize n-dimensional subschemes that occur as limits of
varieties, and Hilb◦n(PN)sn its semi-normalization. The Hilbert-to-Chow mor-
phism

RH
C : Hilb◦n(PN)sn → Chown(PN)

is a local isomorphism over all possible [X] ∈ Chown,d(PN) (see e.g. (Kollár,
2023, Theorem 3.9)). Since for d ≤ d0, there are only finitely many component
of Chown,d(PN), we conclude that all such X belong to finitely many compo-
nents of Hilb◦n(PN). In particular, the Hilbert polynomial of X with respect to L
belongs to a finite set.

Theorem 7.36. Fix any δ ∈ (0, 1], the stack X≥δh is of the form [M/G] where
M is a quasi-projective scheme and G is a reductive group.

Proof By Theorem 7.25, there exists a positive integer M divided by N, so
that L := −M(KX + ∆) is a very ample divisor for all

[(X,∆)] ∈ X≥δh ⊆ X
≥δ
n,N,V .

By the above discussion, the set of Hilbert functions of X with respect to L is
finite.

For every such Hilbert function h, set N0 := h(1) − 1, and let Hilbh(PN0 )
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be the Hilbert scheme parametrizing closed subschemes of PN0 with Hilbert
polynomial h.

Next, let U ⊂ Hilbh(PN0 ) denote the open subscheme parameterizing nor-
mal, Cohen-Macaulay varieties. Let XU be the pull back of universal family
over the Hilbert scheme to U. Since KX · Ln−1 is locally constant, there are
only finite many such intersection numbers. Thus the intersection D · Ln−1 is
bounded from above for any D = N · ∆ and (X,∆) ∈ X≥δh .

By Theorem 7.18, there is a separated U-scheme M1 of finite type which
parametrizes K-flat divisors D with degree d for all possible d as above. Write

(X1,D1)→M1

for the corresponding universal family.
By (Kollár, 2023, Corollary 3.22), there is a locally closed subscheme M2 ⊂

M1 such that a map T → M1 factors through M2 if and only if there is an
isomorphism

ω[−M]
XT /T

(−
M
N
· DT ) ' LT ⊗ OXT (1) ,

where LT is the pullback of a line bundle from T and DT is the divisorial pull
back of D. In particular, (XM2 ,DM2 ) → M2 satisfies ω[−M]

XM2 /M2
(−M

N · DM2 ) is an
ample line bundle.

Then there exists an open subscheme M3 ⊆ M2 parametrizing log Fano
pairs, i.e. the fibers have klt singularities. By Theorem 7.31, we see that

M := {t ∈M3 | δ(Xt,
1
N

Dt) ≥ δ}

is open in M3, and there is a universal family

(XM,DM)→M . (7.7)

As a consequence of the above discussion,

X
≥δ
h ' [M/PGL(N0 + 1)]

is an Artin stack of finite type. �

By Proposition 7.33, we have a more refined canonical decomposition

X
≥δ
n,N,V =

∐
h

X
≥δ
n,N,h , (7.8)

as a disjoint union, where X≥δn,N,h ⊆ X
≥δ
n,N,V is the substack parametrizing families

with the fixed Hilbert function

h : N · N 7→ Z, m 7→ h(m) = h0(ω[−m]
Xt

(−m∆t)) .
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Proposition 7.33 implies for each h, X≥δn,N,h ⊆ X
≥δ
n,N,V is a union of connected

components.

7.37. By the above discussion, let h : W → M be a morphism from a normal
variety, and let DW the hull pull-back over W of DM. There exists a dense open
set W◦, such that the restricting red(DW◦ ) → W◦ has reduced fibers. We can
apply the flattening stratification to red(DW◦ ) → W◦, to decompose W◦ into
finitely many locally closed strata tW j, such that over each strata, the pull
back

D j := red(DW◦ ) ×W◦ W j → W j

is flat. For each t ∈ W j, let (X,∆) be the pair corresponding to the point h(t) ∈
Xδn,N,V . Then Supp(∆) � D j ×W j {t}.

By Noetherian induction on W, we conclude that there is a finite set I of
pairs of polynomials

{ (hi, gi) | i ∈ I } ,

such that if [(X,∆)] ∈ X≥δn,N,V , then the Hilbert polynomials of X and red(D) =

Supp(∆) with respect to −M(KX + ∆) are respectively given by hi and gi for
some i ∈ I.

7.5 ∗ Twisted K-stability

The following theorem, whose proof will occupy the rest of this section, gives
a useful tool to understand K-unstable Fano varieties. Let (X,∆) be a log Fano
pair such that r(KX + ∆) is Cartier.

Theorem 7.38. Assume δ(X,∆) ≤ 1. Then

δ(X,∆) = sup
{
t ≤ 1

∣∣∣∣ 0 ≤ D ∼Q −(KX + ∆), (X,∆ + (1 − t)D) is K-semistable
}
.

Moreover, the above supremum is attained by a Q-divisor D which is a general
member of 1

m | − m(KX + ∆)| for a sufficiently divisible m.

7.5.1 Izumi’s Theorem

In this section, we aim to prove a version of Izumi’s Theorem that we will
need.

Theorem 7.39 (Skoda Theorem). Let (X,∆) be an n-dimensional normal pair
such that KX + ∆ is Q-Cartier. If m ≥ n then

J(X,∆; am) = am+1−n · J(X,∆; an−1) .
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Proof See (Lazarsfeld, 2004b, 9.6.39). �

Definition 7.40. For any closed point x ∈ Z of a normal variety Z and any
effective Cartier divisor G on Z which is given by div(g) in OZ,x, we define the
order of vanishing of G at x as

ordx(G) = max
{
j ∈ N | g ∈ m j

x

}
,

and the asymptotic order of vanishing of G at x as

ôrdx(G) = lim sup
1
m

ordx(mG) .

7.41. Let a ⊆ OZ be an ideal sheaf on a normal variety. Let ρ+ : Z+ → Z be
the normalized blow up of a. So (ρ+)−1(a) = OZ+ (−

∑r
i=1 aiEi). An element f

is contained in the integral closure a if and only if ordEi ( f ) ≥ ai for 1 ≤ i ≤ r
(see (Lazarsfeld, 2004b, 9.6.3)).

Moreover, if there is another birational morphism ρ : Y → Z from a normal

variety such that ρ−1(a) is Cartier, then ρ factors through ρ : Y
φ
−→ Z+

ρ+

−−→ Z,
and if we write ρ−1a = OY (−

∑
1≤i≤r′ a′i E

′
i ),

φ∗OY (−
r′∑
1

a′i E
′
i ) = OZ+ (−

r∑
i=1

aiEi) .

Therefore, an element f is contained in the integral closure a if and only if
ordE′i ( f ) ≥ a′i for 1 ≤ i ≤ r′.

Lemma 7.42. Let x ∈ Z be a closed point on a normal variety and G = (g = 0)
an effective Cartier divisor on Z. Let ρ : Y → Z be a birational morphism from
a normal variety, such that ρ−1(mx) = OY (−

∑r
i=1 aiEi) is a Cartier divisor.

Denote by ordEiρ
∗(G) = bi. Then

ôrdx(G) = inf
1≤i≤r

bi

ai
.

Proof We may assume Z is affine. Denote by t0 = inf1≤i≤r
bi
ai

. For a fixed
m ∈ N, we denote by ordx(mG) = cm. Then gm ∈ m

cm
x , so

ordEi (ρ
∗(mG)) = mbi ≥ aicm .

Thus cm
m ≤

bi
ai

for any 1 ≤ i ≤ r, i.e. which implies ôrdx(G) ≤ t0.
Let m be a positive integer, such that mai ∈ N. Then gm ∈ ρ−1(mmt0

x ), so
gm ∈ m

mt0
x by 7.41. By Theorem 7.39,

m
mt0
x ⊆ J(X,∆;mmt0

x ) ⊆ mmt0−n+1
x · J(X,∆;mn−1

x ) .

Thus ordx(mG) ≥ mt0 − n + 1, i.e., ôrdx(G) ≥ t0. �
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Proposition 7.43. We have the following results

(i) for any p ∈ N, f ∈ mp
x if and only if ôrdx( f ) ≥ p.

(ii) ordx( f ) ≤ ôrdx( f ) < ordx( f ) + n.
(iii) ordx( f ) ≤ ôrdx( f ) ≤ (n + 1)ordx( f ).

Proof (i) By Lemma 7.42, f ∈ mp
x if and only if bi := ordEi ( f ) ≥ ai p for any

1 ≤ i ≤ r, which is the same as

p ≤ inf
1≤i≤r

bi

ai
= ôrdx( f ) .

(ii) The first inequality is trivial. If p ∈ N, then

m
p+n
x ⊆ J(X,∆;mp+n

x ) ⊆ mp+1
x · J(X,∆;mn−1

x ) ⊆ mp+1
x ,

so if ordx( f ) = p, then f < mp+1
x , then f < mp+n

x which implies ôrdx( f ) < p + n
by (i).
(iii) holds since either ordx( f ) = ôrdx( f ) = 0 or ordx( f ) ≥ 1. �

Theorem 7.44 (Izumi’s inequality). Let x ∈ (Z,Γ) be a klt singularity. Let
ρ : Y → (Z,Γ,mx) be a log resolution with ρ−1(x) =

∑r
i=1 Ei. Let L be a very

ample line bundle on Y. There is a constant C0 which depends on {Ei · E j ·

Ln−2}1≤i, j≤r such that for any closed point y ∈ ρ−1(x) and any g ∈ OX,x,

ordy(ρ∗g) ≤ C0 · ordx(g) .

Proof Fix a closed point y ∈ ρ−1(x) and an element g ∈ OX,x. Let π : Y ′ → Y
denote the blowup of Y at y with exceptional divisor F0. We write µ := ρ ◦ π

and Fi for the strict transform of Ei on Y ′.
Denote by G = µ∗div(g) and write G =

∑r
i=0 biFi + G̃, where Supp(G̃)

does not contain components of Fi. So b0 = ordy(ρ∗g) and bi := ordEi (g) for
1 ≤ i ≤ r.

Set M = π∗L − 1
2 F0 which is ample. For each 1 ≤ i ≤ r,

r∑
j=0

b j(Fi · F j · Mn−2) = (G · Fi · Mn−2) − G̃ · Fi · Mn−2 ≤ G · Fi · Mn−2 = 0.

Set ci j := Fi · F j · Mn−2. For 1 ≤ i, j ≤ r,

ci j =

Ei · E j · Ln−2 − (1/2)n−2 y ∈ Ei ∩ E j ,

Ei · E j · Ln−2 otherwise ,

and

ci0 =

(1/2)n−2 y ∈ Ei ,

0 otherwise .
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So for each 1 ≤ i, j ≤ r such that i , j and Ei ∩ E j , ∅, we set

Ci j =
|E2

i · L
n−2| + (1/2)n−2

Ei · E j · Ln−2 − (1/2)n−2 .

So |cii |

ci j
≤ Ci j. For each i, we set

Ci0 =
|E2

i · L
n−2| + (1/2)n−2

(1/2)n−2 .

Similarly, |cii |

ci0
≤ Ci0 if y ∈ Ei.

If i , j, then ci j ≥ 0 and it is strict if and only if Fi ∩ F j , ∅, in which case
b j ≤

|cii |

ci j
bi, since ∑

j,i

b j · ci j ≤ −bicii ≤ bi|cii| . (7.9)

Now, set C′ = max{1,Ci j,C0i}. By our choice of C′, if 0 ≤ i, j ≤ r are distinct
and Fi ∩ F j , ∅, then b j ≤ C′ · bi. Since ∪Fi is connected, we set C =

1 + C′ + · · · + C′r and conclude b0 ≤ C · bi for any 1 ≤ i ≤ r.
Set a = max{ai}, where ρ−1(mx) = OY (−

∑r
i=1 aiEi). Then

ordy(ρ∗g) = b0 ≤ C · a · ôrdx(g) ≤ C · a(n + 1)ordx(g) ,

where the first inequality follows from Lemma 7.42, and the second inequality
follows from Proposition 7.43. �

Proposition 7.45. Let f : (Z,Γ)→ U be a locally stable family over a normal
base U with klt fibers. There exists a constant K0 > 0 depending on f such
that for any u ∈ U, an effective Cartier divisor Du on Zu, and v ∈ ValZu with
x ∈ cX(v), we have

v(Du) ≤ K0 · AZu,Γu (v) · ordx(Du) .

Proof After replacing f : (Z,Γ) → U by (Z,Γ) ×U Z → Z, we can assume
there is a section σ : U → Z. So we can assume prove for x = σ(t) for some
t ∈ U. Replacing U by a stratification, we may assume there is a fiberwise log
resolution Y

ρ
−→ (Z,Γ, σ(U))→ U.

So ρ∗(KZ + Γ) = KY + B − A where B and A are effective whose supports
do not have common component. Since the fibers of f are klt, bBc = 0. We
assume the maximal coefficient of B is a < 1 (a = 0 if B = 0), then

AZu,Γu (v) ≥ AYu,Bu (v) ≥ (1 − a)AYu (v) .

Additionally, for y ∈ cY (v) ⊆ Y , by Lemma 1.43, v(Du) ≤ AYu (v) · ordy(Du). By
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Theorem 7.44, there is a constant C depending on the family Y → (X,∆)→ U,
such that ordy(Du) ≤ C · ordx(Du). Putting together, we have

v(Du) ≤
C

1 − a
AZu,Γu (v) · ordx(Du) .

�

Lemma 7.46. Let L be an ample line bundle on X and let Z ⊆ X × U be a flat
family of positive dimensional normal subvarieties of X over a normal variety
U. Let Γ ⊆ Z be an effective Q-divisor such that (Z,Γ)→ U is a locally stable
family with positive dimensional klt fibers. Then there exists some constant
a > 0 such that for all sufficiently large m ∈ N, a general member D ∈ |mL|
such that (Z,Γ + a(D × U)|Z)→ U is locally stable.

Proof By Proposition 7.45, there is a constant K0 satisfying

lctx(Zu,Γu; Du) ≥
1

K0 · ordx(Du)
(7.10)

for all x ∈ Zu and all effective Cartier divisors Du on Zu.
Let m ∈ N be large enough so that the restrictions

ϕu,x : H0(X,OX(mL))→ H0(Zu,OZu (mL))

→ H0(Zu,OZu (mL) ⊗ (OZu/m
dim Z+1
x ))

are surjective for any closed point u ∈ U and x ∈ Zu. This is possible by
Noetherian induction and L is ample. Since dim Zu ≥ 1, we have

dim H0(OZu (mL)⊗ (OZu/m
dim Z+1
x )) = dim H0(OZu/m

dim Z+1
x ) > dim Z . (7.11)

We define the incidence variety

W = {(x, s) ∈ Z × H0(X,mL) | x ∈ Zu, ϕu,x(s) = 0} ⊆ Z × H0(X,mL) ,

and its fiber over Z is a linear space of codimension h0(OZu/m
dim Z+1
x ). So the

second projection W → H0(X,mL) is not surjective by (7.11).
Hence if D ∈ |mL| is a general member, then ordx(Du) ≤ dim Z for all u ∈ U

and x ∈ Zu. By (7.10), this implies lct(Zu,Γu; Du) ≥ 1
K0·dim Z . Thus if we take

a = 1
K0·dim Z , then (Zu,Γu + aDu) is lc for all u ∈ U. �

7.5.2 General boundary

Theorem 7.47 (Kawamata subadjunction). Let (X,∆) be a klt pair. Let ∆′ be
an effective Q-divisor such that (X,∆ + ∆′) is log canonical but not klt. Let W
be a minimal log canonical center of (X,∆ + ∆′). Then
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(i) W is normal.
(ii) There are an effective Q-divisor B and a divisor class J such that J is the

pushforward of a nef class from a birational model over W, and

(KX + ∆ + ∆′)|W ∼Q KW + B + J .

(iii) Let H be an ample divisor on X and a rational number ε > 0, we may find
an effective Q-divisor ∆W such that (W,∆W ) is klt, and

(KX + ∆ + ∆′ + εH)|W ∼Q KW + ∆W .

(iv) For any effective Q-Cartier Q-divisor D such that Supp(D) + W,

lctW (X,∆ + ∆′; D) ≥ lct(W,∆W ; D|W ) .

Proof It follows from Kawamata (1998) and Kollár (2007) that there exists a
resolution π : W ′ → W, such that

(KX + ∆ + ∆′)|W′ = KW′ + B′ + J′ ,

where J′ is a nef Q-divisor class, and B′ is a Q-divisor. So J = π∗J′ and
B = π∗B′. More, there exists an effective big and nef Q-divisor A on W ′, such
that A ∼Q J′ + π∗(εH|W ). Then we can take ∆W = π∗(B′ + A).

Write

(KX + ∆ + ∆′ + tD)|W′ = KW′ + B′ + J′ + tπ∗(D|W ) .

If (X,∆ + ∆′ + tD) is not klt for some t > 0 along W, then (W ′, B′ + tπ∗(D|W )) is
not sub-klt. So (W ′, B′ + A + tπ∗(D|W )) is not sub-klt, which implies (W,∆W +

tD|W ) is not klt. �

7.48. Let T be a torus acting on (X,∆). By Example 6.13, we get a valuation
wtξ for each ξ ∈ NR(T). Let {σ} be the normal cone decomposition of NR(T),
i.e.

λP : ξ → λP(ξ) = min
α∈P
〈α, ξ〉

is linear on each cone σ. Recall Zσ := cX(wtξσ ) for any ξσ ∈ Int(σ). As σ
varies, Zσ enumerates the center of wtξ for all ξ ∈ NR(T). For ξσ ∈ Int(σ) ⊆
N(T), since wtξσ is special, by Theorem 4.28 there exists tσ ∈ (0, 1) and 0 ≤
Gσ ∼Q −tσ(KX + ∆) such that (X,∆ + Gσ) is lc and wtξσ is its unique lc place.
In particular, Zσ is the minimal lc center of (X,∆ + Gσ). Fix 0 < εσ � 1 and
a general G′σ ∈ | − KX − ∆|Q. By Kawamata subadjunction Theorem 7.47, we
may write

(KX + ∆ + Gσ + εσG′σ)|Zσ ∼Q KZσ + Γσ
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for a divisor Γσ ≥ 0 on Zσ such that (Zσ,Γσ) is klt. From now on, for each σ,
we fix the choice of the data (Zσ,Γσ) and Gσ as above.

Lemma 7.49. Notation as in 7.48. Assume that dim Zσ ≥ 1. Let τ be a cone of
the fan on NR(T) such that σ ⊆ τ and λP is linear on τ. Let ξ0 ∈ σ, ξ1 ∈ τ and
let ξt = (1 − t)ξ0 + tξ1 for t ∈ [0, 1]. Then for a sufficiently divisible m and any
0 , s ∈ Rm such that Zσ is not contained in the support of D = div(s), we have

wtξt (s) ≤
t · AX,∆(wtξ1 )

lct(Zσ,Γσ; D|Zσ )
.

Proof Using the weight decomposition, we may write s =
∑
α∈M(T) sα. Let

Ms := {α ∈ M(T) | sα , 0 and 〈ξσ, α〉 = λP(ξσ) } .

We denote by sσ :=
∑
α∈Ms

sα. Since ξσ ∈ Int(σ) and ξ0 ∈ σ, we have

〈ξ0, α〉 = mλP(ξ0) for each α ∈ Ms . (7.12)

By assumption, Ms , ∅ and sσ , 0 as otherwise Zσ ⊆ Supp(D) by (6.2). Since
λP is linear on τ and ξ0, ξ1 ∈ τ, we know that t 7→ λP(ξt) is linear for t ∈ [0, 1].
Thus for each α ∈ Ms and t ∈ [0, 1], we have

wtξt (sα) = 〈ξt, α〉 − mλP(ξt)

= (1 − t)(〈ξ0, α〉 − mλP(ξ0)) + t(〈ξ1, α〉 − mλP(ξ1))

= t · wtξ1 (sα) , (7.13)

where the last equality follows from (7.12). Let D′ = div(sσ). For any α ∈

M(T) with 〈ξσ, α〉 > λP(ξσ)m, Zσ ⊆ div(sα) by (6.2), thus D′
|Zσ

= D|Zσ . By
definition wtξt (s) = min{wtξt (sα) | sα , 0 }, so

wtξt (s) ≤ wtξt (sσ) = t · wtξ1 (sσ) , (7.14)

where the second equality uses (7.13). Thus to prove the lemma, by (7.14) it
suffices to show that

lct(Zσ,Γσ; D′|Zσ ) ≤
AX,∆(wtξ1 )
wtξ1 (D′)

.

As (cX(wtξ1 ) ∩ Zσ) ⊇ Zτ is non-empty, by Theorem 7.47(iv),

lct(Zσ,Γσ; D′|Zσ ) ≤ lctZσ (X,∆ + Gσ; D′)

≤ lctZσ (X,∆; D′) ≤
AX,∆(wtξ1 )
wtξ1 (D′)

.

�



280 K-moduli stack

Lemma 7.50. Any sequence of special degenerations

(X,∆) =: (X(0),∆(0)) (X(1),∆(1)) · · · (X(i),∆(i)) · · ·

satisfying that δ(X(i),∆(i)) = δ and (X(i),∆(i)) � (X(i+1),∆(i+1)) for every i ≥ 0
must terminate after finitely many steps.

Proof All (X(i),∆(i)) are contained in X≥δn,N,V as in Theorem 7.36. In fact, they
are contained in X≥δh = [M/PGL(N + 1)] for some Hilbert polynomial, where
M is finite type. Each (X(i),∆(i)) yields a point zi → [M/PGL(N + 1)].

Consider the G := PGL(N + 1)-action on M, our assumption (X(i),∆(i)) �
(X(i+1),∆(i+1)) implies that zi+1 ∈ G · zi \G · zi. This implies that G · zi+1 ( G · zi

as closed subsets of M. Since M is of finite type, it is a Noetherian topological
space. As a result, the sequence G · z0 ) G · z1 ) · · · must terminate after
finitely many steps. Thus the proof of the claim is finished. �

Proof of Theorem 7.38 Denote by δ = δ(X,∆). For 0 ≤ D ∼Q −(KX + ∆), if
(X,∆ + (1 − t)D) is K-semistable, then for any prime divisor E over X,

AX,∆(E) ≥ AX,∆+(1−t)D(E) ≥ S X,∆+(1−t)D(E) = t · S X,∆(E) ,

thus δ ≥ t. So it suffices to find a 0 ≤ D ∼Q −(KX+∆), such that (X,∆+(1−δ)D)
is K-semistable. We may assume δ < 1.

If (X,∆) has a special degeneration to a log Fano pair (X0,∆0) with δ(X0,∆0) =

δ and the theorem holds for (X0,∆0), i.e. there exists D0 ∼Q −KX −∆ such that
(X0,∆0 + (1 − δ)D0) is K-semistable, then we can lift D0 to D and conclude
(X,∆ + (1 − δ)D) by Theorem 7.27.

By Lemma 7.50, there exists a finite sequence of special degenerations

(X,∆) · · · (X(k),∆(k))

preserving δ such that any special degeneration (X(k),∆(k))  (X(k+1),∆(k+1))
preserving the stability threshold satisfies that

(X(k),∆(k)) � (X(k+1),∆(k+1)) .

Thus from the above argument, we may replace (X,∆) by (X(k),∆(k)) and as-
sume that any special degeneration (X0,∆0) of (X,∆) satisfies

(X0,∆0) � (X,∆) if δ(X0,∆0) = δ , (7.15)

i.e. the degeneration is induced by a one parameter subgroup of Aut(X,∆). Let
m ∈ r · N be sufficiently large and let Dm ∈

1
m | − m(KX + ∆)| be general. Since
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(X,∆ + mDm) is lc by Bertini’s theorem, for any divisor E over X,

AX,∆(E) ≥ AX,∆+(1−δ)Dm (E) = AX,∆(E) − (1 − δ)ordE(Dm)

≥ AX,∆(E) −
1 − δ

m
AX,∆(E) .

Since S X,∆+(1−δ)Dm (E) = δ · S X,∆(E), this implies that

1 −
1 − δ

m
≤ δ(X,∆ + (1 − δ)Dm) ≤ 1 .

If (X,∆ + (1 − δ)Dm) is not K-semistable, by Theorem 5.34, there is a special
degeneration,

(X,∆ + (1 − δ)Dm) (Xm,∆m + (1 − δ)Gm)

which is a given by an optimal destabilization. It is induced by a special divi-
sorial valuation vm, and by Proposition 5.37,

δ(Xm,∆m + (1 − δ)Gm) = δ(X,∆ + (1 − δ)Dm) ≥ 1 −
1 − δ

m
. (7.16)

This implies

AXm,∆m (E) ≥ AXm,∆m+(1−δ)Gm (E) ≥
(
1 −

1 − δ
m

)
S Xm,∆m+(1−δ)Gm (E)

=

(
1 −

1 − δ
m

)
δ · S Xm,∆m (E)

for all valuation E over Xm and hence

δ(Xm,∆m) ≥
(
1 −

1 − δ
m

)
δ (7.17)

is bounded from below. By Theorem 7.25, we see that (Xm,∆m) belongs to a
bounded family.

By Theorem 7.29 and Theorem 7.27, it follows from (7.17) that δ(Xm,∆m) =

δ when m is sufficiently large. Thus by our assumption (7.15), vm is induced
by a one-parameter subgroup of Aut(X,∆). So to prove the K-semistability of
(X,∆ + (1 − δ)Dm) for m � 0, it is enough to show

AX,∆(v) ≥ (1 − δ)v(Dm) + δ · S X,∆(v)

for all v ∈ ValX that are induced by one-parameter subgroups of Aut(X,∆).
Fix a maximal torus T ⊆ Aut(X,∆). Since all maximal tori are conjugate and

the functions AX,∆(·), S X,∆(·) are Aut(X,∆)-invariant, it suffices to show that

AX,∆(wtξ) ≥ (1 − δ)wtξ(g · Dm) + δ · S X,∆(wtξ) (7.18)

for all ξ ∈ NR(T) and g ∈ Aut(X,∆).
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By Exercise 5.9, there exists an Aut(X,∆)-invariant closed subvariety W of
X such that W is contained in cX(v) for any valuation v computing δ(X,∆).
Consider the simplicial fan structure on NR(T) induced by the piecewise linear
function λP : ξ 7→ λP(ξ) as in Example 6.13. Since (X,∆ + mDm) is lc and
W * Supp(Dm) by Bertini’s theorem, this implies that (X,∆ + m(g · Dm)) is lc
and W * Supp(g · Dm).

For any σ such that dim Zσ ≥ 1, let

Aut(X,∆) × (Zσ,Γσ)→ U = Aut(X,∆) (7.19)

be the family. So over a point g ∈ Aut(X,∆), the fiber is

(Zσ,g,Γσ,g) = (g · Zσ, g · Γσ) .

Applying Lemma 7.46 to the effective Cartier divisors mDm and all finitely
families as σ varies, there exists a constant a > 0 independent of m such that
lct(Zσ,g,Γσ,g; Dm|Zσ,g ) ≥ ma, or equivalently,

lct(Zσ,Γσ; g−1 · Dm|Zσ ) ≥ ma (7.20)

for all σ satisfying dim Zσ ≥ 1 and all g ∈ Aut(X,∆).
Let {τi}1≤i≤k be simplicial cones of maximal dimension of NR(T) which are

contained in a fan of normal cones of P, in particular, λP is linear on τi. For
each i = 1, . . . , k, let

σi = { ξ ∈ τi | AX,∆(wtξ) = δ · S X,∆(wtξ) } .

By Exercise 6.2 and the fact that AX,∆(v) ≥ δ · S X,∆(v) for all wtξ, σi ⊆ τi is a
face. Let σ′i ⊆ τi be the smallest face such that τi is the convex hull of σi and
σ′i (such σ′i exists since τi is simplicial). In particular, we have σi ∩ σ

′
i = {0}

and therefore there exists some constant ε0 ∈ (0, 1) such that

AX,∆(wtξ) ≥
δ

1 − ε0
· S X,∆(wtξ) (7.21)

for all i = 1, . . . , k and all ξ ∈ σ′i .
We claim (7.18) holds for all

m ≥ max
{

1 − δ
ε0

,
1 − δ
aε0

}
. (7.22)

There are three cases to consider.

Case 1: σi = {0}. Then σ′i = τi. Since (X,∆+m(g ·Dm)) is lc, combined with
(7.21), we have

AX,∆(wtξ) − δ · S X,∆(wtξ) ≥ ε0 · AX,∆(wtξ)

≥ mε0 · wtξ(g · Dm) ≥ (1 − δ)wtξ(g · Dm)
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for any g ∈ Aut(X,∆). Thus (7.18) holds in this case.

Case 2: σi , {0} and Zσi is a point. Then we necessarily have Zσi = W =

a point. Since Zτi ⊆ Zσi , we have Zτi = W as well. As W * Supp(g · Dm), we
deduce that wtξ(g · Dm) = 0 for any ξ ∈ τi and any g ∈ Aut(X,∆). Thus (7.18)
clearly holds in this case.

Case 3: σi , {0} and dim Zσi ≥ 1. We can write

ξ = (1 − t)ξ0 + t · ξ1 for ξ0 ∈ σi and ξ1 ∈ σ
′
i ,

for some t ∈ [0, 1]. By Lemma 7.49 and (7.20),

wtξ(g · Dm) ≤
t

ma
· AX,∆(wtξ1 ) for any g ∈ Aut(X,∆) . (7.23)

On the other hand, since AX,∆ and S X,∆ are linear on τi by Exercise 6.2,

AX,∆(wtξ) − δ · S X,∆(wtξ) ≥ tε0 · AX,∆(wtξ1 ) (7.24)

by (7.21). Combining the two inequalities (7.23) and (7.24) and the assumption
(7.22) on m, we get

AX,∆(wtξ) − δ · S X,∆(wtξ) ≥ maε0 · wtξ(g · Dm)

≥ (1 − δ)wtξ(g · Dm)

for all g ∈ Aut(X,∆), and (7.18) holds in this case as well.
Thus we have established K-semistability of (X,∆ + (1 − δ)Dm) when m

satisfies (7.22). �

Exercise

7.1 Prove that for a family of log Fano pairs (X,∆) → S over a base, the
locus S ◦ of S which parametrizes geometrically K-stable fibers is open.

7.2 Prove the function

t ∈ S → min{α(Xt,∆t), 1 }

is lower semi-continuous and constructible.
7.3 Fix α0 ∈ (0, 1]. Let Xα≥α0

n,N,V ⊆ X
Fano
n,N,V be the locus parametrizing families

of log Fano pairs (X,∆) with α(Xk̄,∆k̄) ≥ α0 where (Xk̄,∆k̄) is the base
change of (X,∆) to an algebraic closure. Prove Xα≥α0

n,N,V is an open finite
type substack of XFano

n,N,V .
7.4 Let f : X → C = Spec(R) be flat projective morphism where R is a

DVR with fractional field K and residue field κ. Assume that f has n-
dimensional normal fibers and there is a Q-divisor ∆ such that (XK ,∆K)
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and (Xκ,∆κ) are log Fano pairs. Then (X,∆)→ C is a family of log Fano
pairs if and only if (KXK + ∆K)n = (KXκ + ∆κ)n.

7.5 Let (X,∆) be a log Fano pair and let D ∼Q −(KX + ∆) be an effective Q-
divisor such that (X,∆+D) is klt. Assume that (X,∆+tD) is K-semistable
for some t ∈ [0, 1). Then (X,∆ + sD) is K-stable for all s ∈ (t, 1).

7.6 Fix a positive integer n and a positive number V0. Show that all n-dimensional
K-semistable Fano varieties X which satisfies −KX = aH for some ample
Weil (integral) divisor H and a(−KX)n ≥ V0 form a bounded set.

7.7 (Volume of valuations) Let x ∈ X = Spec R be an n-dimensional normal
singularity. For any valuation v ∈ ValX , whose center is x, show that

lim
k→∞

n!
kn length(R/ak(v))

exists, and is equal to limm
1

mn e(am(v)). We define it to be vol(v).
7.8 (Normalized volume) In the same setting of Exercise 7.7, we assume

(X,∆) is klt some Q-divisor ∆, and let

v̂ol(v) =

AX,∆(v)n · vol(v) AX,∆(v) < +∞ ,

+∞ otherwise .

We define v̂ol(X,∆, x) = infv v̂ol(v). Show v̂ol(X,∆, x) > 0.
7.9 Show

v̂ol(X,∆, x) = inf
a

mult(a) · lctn(X,∆; a) ,

where a runs through all mx-primary ideals.
7.10 Show there exists a quasi-monomial valuation v such that

v̂ol(X,∆, x) = v̂ol(v) .

7.11 Show there if v1 and v2 such that

v̂ol(X,∆, x) = v̂ol(v1) = v̂ol(v2) ,

then there exists λ > 0 such that v1 = λ · v2.

Note on history

The right notion of a family of varieties or pairs in higher dimension, i.e. the
concept of local stability, has been investigated for quite a long time, in the
attempt of constructing moduli spaces for pairs with an ample log canonical
class. For a family of varieties, Viehweg and Kollár gave suitable condition.
They differ only in the infinitesimal scheme structure. Here, we take Kollár’s
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condition. For a family of pairs, Kollár’s definition of K-flatness gives a satis-
factory answer. See Kollár (2023) for more discussions.

The boundedness result Theorem 7.25 is first proved in Jiang (2020). The
proof we give here is from Li et al. (2020). Both proofs deduce the bound-
edness of Fano varieties with bounded volumes and δ-variants from Birkar
(2019) and Birkar (2021). In Xu and Zhuang (2021), a new proof is given,
where a stronger result on possible local singularities appearing on the class
of Fano varieties was obtained. From this and Liu (2018), one can deduce the
boundedness from the Batyrev Conjecture proved by Hacon-McKernan-Xu in
Hacon et al. (2014).

The constructibility of stability thresholds function for a family of log Fano
pairs is proved in Blum et al. (2022a). One can also deduce the openness of
K-semistable locus from Xu (2020) by looking at different invariants. Both
arguments use the boundedness of complements proved in Birkar (2021). The
lower-semicontinuity of δ in a family was obtained in Blum and Liu (2022).

The family version of Izumi inequality Theorem 7.44 was proved in Blum
and Liu (2021), based on the work in Li (2018) and Boucksom et al. (2014) for
a single singularity. A version of Theorem 7.38 was Conjectured in Donaldson
(2012), however, its formulation needs a modification as in Székelyhidi (2013)
and Blum and Liu (2022). Then it was confirmed by Liu-Xu-Zhuang in Liu
et al. (2022).
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In Chapter 7, we have showed the K-moduli stack XK
n,N,V is a finite type Artin

stack. However, what distinguishes XK
n,N,V from other functors parametrizing

Fano varieties is it admits a proper good moduli space. As XK
n,N,V is a global

quotient stack, this gives a strong information of the orbital geometry.

8.1 Good moduli space

In Mumford et al. (1994), Mumford systematically developed the theory for
constructing quotients of schemes by reductive groups, called the geometric
invariant theory (GIT). However, as many geometric examples suggest, the
GIT approach to constructing moduli spaces is limited since it is not intrinsic
as one must make a choice of the additional information to parameterize.

It has long been proved in Keel and Mori (1997) that algebraic stacks with
finite inertia (in particular, separated Deligne-Mumford stacks) admit coarse
moduli spaces. The coarse moduli space retains much of the geometry of the
moduli problem, and to study this space to infer geometric properties of the
moduli problem.

Artin stacks without finite inertia rarely admit coarse moduli spaces. For
quotient stack, the notion of good quotient was introduced in Seshadri (1972),
which encapsulates and generalizes geometric invariant theory. Then Alper
(2013) defined and stuided good moduli space as an intrinsic formulation of
many of the useful properties of good quotient. The existence of a good moduli
space for an Artin stack is a very delicate property. Once it is known, one would
expect nice geometric and uniqueness properties similar to those enjoyed by
GIT quotients.

In Alper et al. (2023), Alper-Halpern-Leistner-Heinloth establishes valua-
tive criteria to detect whether an Artin stack admits a separated good moduli

286
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space, which makes the question of verifying the existence of a good moduli
space more conceptual and accessible.

8.1.1 Good moduli space of an Artin stack

Definition 8.1. An algebraic space Y is called a good moduli space of an Artin
stack Y, if there is a quasi-compact morphism π : Y→ Y such that

(i) π∗ is an exact functor on quasi-coherent sheaves; and
(ii) π∗(OY) = OY .

For an Artin stack, admitting a good moduli space is a quite delicate property
and it carries strong information.

Example 8.2. Let A be a finite type algebra over k. Let X = Spec(A) with
a reductive group G acting on X. Then the stack Y = [X/G] admits a good
moduli space Y = Spec(AG) where AG is the ring of invariant functions. We
note that AG is finitely generated.

Example 8.3. Let G be a reductive group acting on a projective schemeσ : G×
X → X which admits an ample line bundle L → X such that σ can be lifted
to a linearization σ̃ : G × L → L. In particular, G acts linearly on each direct
summand of R =

⊕
m∈N H0(X, L⊗m).

Let f ∈ H0(X, L⊗m) be an invariant section, then G acts on the open set
X f = {x ∈ X, f (x) , 0} = Spec(R( f )). So [X( f )/G] admits a good moduli
Y f = Spec(RG

( f )).
Let Xss ⊂ X be the semistable locus, i.e. the union of all open sets X f for

some invariant section f . We can glue all Y f for all invariant sections f , as a
result we get a projective scheme

X//G := Proj RG = Proj
⊕

m

H0(X, L⊗m)G .

Then [Xss/G]→ X//G is a good moduli space.

Theorem 8.4. Let Y be a locally noetherian algebraic stack with a good mod-
uli space π : Y → Y. A vector bundle E on Y is a pull back of a vector bundle
on Y if and only if E has trivial stabilizer action at every closed point of Y.

Proof We aim to show π∗E is locally free and the adjunction map ϕ : π∗π∗E →
E is an isomorphic.

We may assume Y = Spec(A) and rank(E) = m. We first show ϕ is surjective.
Let ξ ∈ |Y| be a closed point, corresponding to a closed immersion i : Yξ →
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Y with a sheaf of ideas I. Denote by y = π′(ξ). So there is a commutative
diagram:

Yξ
i //

π′

��

Y

π

��

y
j

// Y

It suffices to show that i∗ϕ is surjective for any such ξ. First, the adjunction
morphism α : j∗π∗E → π′∗i

∗E is surjective, as j∗α corresponds to

π∗E/π∗I · π∗E → π∗(E/I · E) � π∗(E)/π∗(I · E) ,

which is surjective. So i∗ϕ is the composition

i∗π∗π∗E � π′
∗ j∗π∗E

π′∗α
−−−→ π′∗π′∗i

∗E � i∗E ,

is surjective, where the last isomorphism holds because of our assumption on
the trivial action.

Since Y is affine,
⊕

s∈Γ(Y,π∗E) OY → π∗E is surjective and Γ(Y, π∗E) = Γ(Y,E).
It follows that the composition morphism⊕

s∈Γ(Y,E)

OY → π∗π∗E
ϕ
−→ E

is surjective. Since E is a vector bundle of rank n, there exists n sections of
Γ(Y,E) inducing β : OY → E such that ξ < Supp(cokerβ). Let V = Y \
π(Supp(cokerβ)) which is open, and YV = π−1(V). Then ξ ∈ YV and

β|YV : On
YV
→ E|YV

is a surjective morphism between bundles of the same rank, hence it is iso-
morphic. It follows that ϕ∗β|V : On

V → π∗(E|YV ) and ϕ|YV : π∗π∗E|YV → E|YV are
isomorphic. So ϕ is an isomorphism and π∗E is a vector bundle.

�

Theorem 8.5. Let Y be a locally noetherian Artin stack over k and π : Y→ Y
a good moduli space. Any closed point x ∈ |Y| has a reductive stabilizer.

Proof See (Alper, 2013, Proposition 12.14). �

Theorem 8.6. Let Y be a noetherian algebraic stack over an algebraically
closed field k. Let π : Y → Y be a good moduli space with affine diagonal. If
x ∈ Y(k) is a closed point, then there exists an affine scheme Spec (A) with an
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action of Gx and a cartesian diagram

[Spec A/Gx] //

��

Y

π

��

Spec (AGx ) // Y

such that Spec (AGx )→ Y is an étale neighborhood of π(x).

Proof See (Alper et al., 2020a, Theorem 4.12). �

8.1.2 Valuative criterion for existing good moduli space

Let R be a DVR contain k. Let η = Spec(K) be its generic point and Spec(κ) its
close point. Let Y be an Artin stack over k.

Let R be a DVR with fraction field K and uniformizing parameter π. Recall
that Θ = [A1/Gm] and that ΘR = Θ × Spec (R) = [Spec (R[s])/Gm], where s
has weight −1.

Definition 8.7 (Θ-reductivity). Let ΘR := [A1
R/(Gm)R] be the stack with the

multiplicative action Gm on A1. Set 0 = [0κ/Gm] ∈ ΘR to be the unique closed
point. Then we say Y is Θ-reductive if any morphism ϕ◦ : Θ◦R := ΘR \ 0 → Y
can be uniquely extended to a morphism ϕ : ΘR → Y.

Θ◦R
ϕ◦

//
� _

j

��

Y

ΘR

ϕ

88

A quasi-coherent OΘR -module F corresponds to a Z-graded R[s]-module⊕
p∈Z Fp, which in turn corresponds to a diagram

· · ·
s
−→ Fp+1

s
−→ Fp

s
−→ Fp−1

s
−→ · · ·

of R-modules. The restriction of F to Spec (R)
s,0
↪−−→ ΘR is the R-module colimpFp

and the the restriction to Θκ
π=0
↪−−→ ΘR is the graded κ[s]-module

⊕
p∈Z Fp/πFp.

The OΘR -module F is flat and coherent if and only if each Fp is flat and finite
R-module, the maps s : Fp+1 → Fp are injective, each Fp/Fp+1 is flat over R,
Fp = 0 for p � 0, and Fp stabilize for p � 0.

We will compute the pushforward along the open immersion j : ΘR \ 0 ↪→

ΘR. Denote the open immersions by

js : Spec (R)
s,0
↪−−→ ΘR, jπ : ΘK

π,0
↪−−→ ΘR and jsπ : Spec (K)

sπ,0
↪−−−→ ΘR .
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Let E be a flat coherent sheaf on ΘR \ 0. It corresponds to an R-module E and
a Z-filtration

G•EK : · · · ⊂ Gp+1EK ⊂ G
pEK ⊂ · · ·

of EK . Then

j∗E = ( js)∗E ∩ ( jπ)∗G•EK ⊂ ( jsπ)∗EK .

As graded R[s]-modules, js and jπ correspond to the graded inclusions R[s] ⊂
R[s, s−1] and R[s] ⊂ K[s], and jsπ corresponds to R[s] ⊂ K[s]s. We compute
that

( jsπ)∗EK � K[s]s ⊗R EK �
⊕
p∈Z

EK s−p ,

( js)∗E � E ⊗R R[s]s �
⊕
p∈Z

Es−p ⊆ ( jsπ)∗EK ,

( jπ)∗G•EK �
⊕
p∈Z

(GpEK)s−p ⊆ ( jsπ)∗EK .

Therefore,

j∗E �
⊕
p∈Z

(
E ∩ GpEK

)
s−p ⊆

⊕
p∈Z

EK s−p . (8.1)

The OΘR -module j∗E is flat and coherent, and is given by the filtration

GpE := E ∩ GpEK (8.2)

of E. So GpE/Gp+1E is a torsion free R module. In particular,

dimK G
pE/Gp+1E ⊗R K = dimκ G

pE/Gp+1E ⊗R κ . (8.3)

Definition 8.8 (S -completeness). Fix a uniformizer π of R. Denote by

ST(R) := [Spec(R[s, t]/(st − π))/Gm] , (8.4)

where the action is (s, t)→ (µ · s, µ−1 · t). Let 0 = [(0, 0)/Gm] and we denote by
ST(R)◦ = ST(R)\0. Then a stackY is called to be S -complete if any morphism
π◦ : ST(R)◦ → Y can be uniquely extended to a morphism π : ST(R)→ Y.

ST(R)◦ π◦ //
� _

j
��

Y

ST(R)

π

77

Lemma 8.9. There is an isomorphism

ST(R)◦ � Spec(R) ∪Spec(K) Spec(R) .
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Proof We have
(
R[s, t]/(st − π)

)
s
� R[s]s. Thus

(s , 0) �
(
SpecR[s, s−1]

)
/Gm � Spec (R) .

Similarly, (t , 0) � Spec (R) and (st , 0) � Spec (K). �

Example 8.10. Exercise 3.2 has given a description of a quasi-coherent sheaf
over [A1

s/Gm]. Similarly, if R is a DVR with fraction field K, residue field κ and
uniformizing parameter π, then a quasi-coherent sheaf F on STR corresponds
to a Z-graded R[s, t]/(st − π)-module F :=

⊕
p∈Z Fp, where Fp is the weight-

p part of F. An R[s, t]/(st − π) module F is the same as R module with two
elements s, t ∈ EndR(F, F) such that st = ts = π. So F corresponds to a
diagram of maps of R-modules

· · ·

s
++
Fp+1

s
**

t
jj Fp

s
++

t
kk Fp−1

s
))

t
jj · · ·

t
kk ,

such that st = ts = π. The restriction of F along

• Spec (R)
s,0
↪−−→ STR corresponds to colimit(· · ·

s
−→ Fp

s
−→ Fp−1

s
−→ · · · ),

• Spec (R)
t,0
↪−−→ STR corresponds to colimit(· · ·

t
←− Fp

t
←− Fp−1

t
←− · · · ),

• Θκ
s=0
↪−−→ STR corresponds to the sequence

(· · ·
t
←− Fp/sFp+1

t
←− Fp−1/sFp

t
←− · · · ) ,

• Θκ
t=0
↪−−→ STR corresponds to the sequence

(· · ·
s
−→ Fp+1/tFp

s
−→ Fp/tFp−1

s
−→ · · · ) ,

• along BκGm
s=t=0
↪−−−−→ STR is the Z-graded κ-module⊕

p∈Z

Fp/(sFp+1 + tFp−1) .

The following statement follows from the local criterion for flatness.

Claim 8.11. The sheaf F is a flat and coherent over STR if and only if

(i) each Fp is flat and finite over R,
(ii) the maps s and t are injective, the induced maps t : Fp−1/sFp → Fp/sFp+1

are injective,
(iii) s : Fp → Fp−1 is an isomorphism for p � 0 and t : Fp−1 → Fp is an

isomorphism for p � 0.
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8.12. Let j : ST
◦

R ↪→ STR be the open immersion. We will show how to com-
pute the pushforward of coherent sheaves under this open immersion. This will
be needed in Section 8.2.2.

Let jt (resp. js) : Spec (R) → STR and jst : Spec (K) → STR be the open
immersions corresponding to t , 0 (resp. s , 0) and st , 0. Let E be a
flat coherent sheaf on ST

◦

R; this corresponds to a pair of R-modules E and E′

together with an isomorphism α : EK → E′K . Under α, we may identify both E
and E′ as submodules of EK . Then

j∗E � ( jt)∗E ∩ ( js)∗E′ ⊂ ( jst)∗EK .

As graded R[s, t]/(st − π)-modules, jt and js correspond to the graded inclu-
sions R[s, t]/(st−π) ⊂ R[t]t and R[s, t]/(st−π) ⊂ R[s]s, and jst corresponds to
R[s, t]/(st − π) ⊂ K[t]t. We take the weight decomposition and compute

( jst)∗EK � EK ⊗R R[t]t �
⊕
p∈Z

EK t−p ,

( jt)∗E � E ⊗R R[t]t �
⊕
p∈Z

Et−p ⊂ ( jst)∗EK ,

( js)∗E′ � E′ ⊗R R[s]s �
⊕
p∈Z

(πp · E′)t−p ⊂ ( jst)∗EK ,

where we have used the identification s = t−1π. Therefore,

j∗E �
⊕
p∈Z

(
E ∩ (πp · E′)

)
t−p ⊂

⊕
p∈Z

EK t−p . (8.5)

If we define the filtration GpE = E ∩ (πp · E′), then it gives the weight-(−p)
component of j∗E. Therefore, j∗E is the OSTR

-module given by the diagram

· · ·

t
,,
Gp+1E

t
++

s
jj GpE

t
,,

s
ll Gp−1E

t
**

s
kk · · ·

s
ll

of R-modules, where t : Gp+1E → GpE is inclusion and s : GpE → Gp+1E
is multiplication by π. Note that j∗E is necessarily a flat and coherent OSTR

-
module, because non-equivariantly it is the pushforward of a vector bundle
from the complement of a closed point in the regular surface Spec (R[s, t]/(st−
π)).

Theorem 8.13. LetY be an Artin stack of finite type with affine diagonal over
k, then Y admits a separated good moduli space if Y is S -complete and Θ-
reductive.

Proof (Alper et al., 2023, Theorem A). �



8.2 K-moduli space XK
n,N,V 293

8.2 K-moduli space XK
n,N,V

In this section, we aim to prove the following theorem.

Theorem 8.14. The finite type Artin stack XK
n,N,V admits a separated good mod-

uli space φ : XK
n,N,V → XK

n,N,V .

Proof In light of Theorem 8.13, it suffices to prove XK
n,N,V is Θ-reductive and

S -complete. These two criteria are settled in Theorem 8.19 and Theorem 8.32.
�

Definition 8.15. The good moduli space XK
n,N,V is called K-moduli space which

parametrizes K-polystable n-dimensional log Fano pairs (X,∆) marked by N
with (−KX − ∆)n = V .

By (7.8), we can write XK
n,N,V =

⊔
h X

K
n,N,h, and Theorem 8.14 implies

XK
n,N,V =

⊔
h

XK
n,N,h (8.6)

for finitely many Hilbert functions h, where XK
n,N,h is the good moduli space of

XK
n,N,h.

Theorem 8.16. For any K-polystable log Fano pair (X,∆), Aut(X,∆) is reduc-
tive.

Proof This follows from Theorem 8.5. �

Corollary 8.17. There locus of XK
n,N,V which parametrizes K-polystable log

Fano pairs is constructible.

8.2.1 Θ-reductivity

A polarized family f̃ ◦ : (X◦,L◦) → ΘR \ 0 corresponds to a polarized family
(X, L) over Spec (R) and a polarized family (XK ,LK) over ΘK together with an
isomorphism of (XK , LK) with the fiber of (XK ,LK) over 1.

For each m ≥ 0, set Vm := H0(X,OX(mL)). For each m ≥ 0, the vector
space VK,m := H0(XK ,OXK (mLK)) inherits a Z-filtration G•VK,m. Equation
(8.1) yields

j∗ f̃ ◦∗ OX◦ (mL
◦) �

⊕
p∈Z

(
Vm ∩ G

pVK,m
)
s−p ⊆

⊕
p∈Z VK,ms−p . (8.7)

If we set GpVm = Vm ∩ G
pVK,m, then the direct sum

⊕
p,m G

pVm is a bigraded
R[s]-module, where multiplication by s is given by the inclusions GpVm →

Gp−1Vm.
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Corollary 8.18. The extension of f̃ ◦ : (X◦,L◦) → ΘR \ 0 to f̃ : (X,L) →
ΘR as a family of flat polarized projective varieties is unique. Moreover, it
can be extended as a family of flat polarized projective schemes if and only if⊕

m∈N,p∈Z G
pVm is finitely generated.

Proof If OΘR -algebra
⊕

m≥0 j∗ f̃ ◦∗ OX◦ (mL
◦) is finitely generated, then

X := Proj ΘR

⊕
m∈N

j∗ f̃ ◦∗ OX◦ (mL
◦)

is a flat family of polarized schemes over ΘR, i.e. (X,L) = ([P/Gm],OP(1)),
where

P = ProjR[s]

⊕
p∈Z,m∈N

GpVms−p ,

and the grading in p gives an action of Gm on P and a linearization of OP(1).
Conversely, if there is an extension (X,L), then f∗(mL) = j∗ f̃ ◦∗ OX◦ (mL

◦),
so

⊕
m≥0 j∗ f̃ ◦∗ OX◦ (mL

◦) is finitely generated, which is equivalent to saying⊕
p,m G

pVms−p is finitely generated by (8.7). �

To check Θ-reductivity, we need to establish the following

Theorem 8.19. For any family of K-semistable log Fano pairs (XR,∆R) over
R, any special K-semistable degeneration fK : XK → A1

K of the generic fiber
(XK ,∆K) can be extended to a family of K-semistable log Fano pairs fR : XR →

A1
R of (XR,∆R).

Proof For a sufficiently divisible r, let

R :=
⊕
m∈r·N

Em =
⊕
m∈r·N

H0(XR,−m(KXR + ∆R)) .

The special test configuration XK is induced by a special divisor GK , which
yields a filtration FK := FGK on RK = R ⊗R K. For each m and p, (8.2) yields
an R-submodule F pEm ⊆ Em defined by

F pEm =
{

s ∈ Em | ordGK (s|XK ) ≥ p
}
.

Denote by F •κ (R ⊗R κ) the restricting filtration, i.e.

F
p
κ (Em ⊗R κ) = Im(F pEm → Em → Em ⊗R κ) .

Then F •κ yields a linearly bounded multiplicative filtration on R ⊗R κ.
By (8.3),

dvDH,FK = dvDH,Fκ , (8.8)
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in particular S (Fκ) = S (FK). Since Fut(XK) = 0, µ(FK) = S (FK) = AXK ,∆K (GK).
On the other hand,

Im,p(F ) ⊗ K = Im,p(FK) and Im,p(F ) ⊗ κ = Im,p(Fκ) ,

so µ(Fκ) ≤ µ(FK) by the lower semi-continuity of log canonical thresholds.
Thus µ(Fκ) ≤ S (Fκ), which implies µ(Fκ) = S (Fκ) as (Xκ,∆κ) is K-semistable.
In particular, µ(FK) = µ(Fκ), which we denote it by µ.

Since GK is special, then λmax(FK) > µ, which implies λmax(Fκ) > µ by
(8.8). By Lemma 3.46, lct(Xκ,∆κ; I(t)

• (Fκ)) is continuous for t ∈ (µ − ε, µ + ε).
There is a sufficiently large m and sufficiently small ε > 0, such that

lct(XR,∆R + Xκ;
1
m

Im,(µ−ε)m(F )) ≥ 1 .

Thus for a general divisor D ∈ F (µ−ε)mRm, (XR,∆R + Xκ+ 1
m D) is log canonical.

On the other hand,

AXR,∆R+Xκ+ 1
m D(G) = µ −

1
m

ordG(D) ≤ ε .

So by Corollary 1.68, there is a projective morphism µR : YR → XR, such that
Ex(µR) is an irreducible divisor GR induced by GK . Therefore, we can construct
a family over (XR,∆XR )→ ΘR, such that over 0R, we get an irreducible divisor
X0R which arises as (ordG, 1). More precisely,

fR : XR = ProjR
⊕

m∈r·N,p∈N

H0(−mµ∗R(KXR − ∆R) − pGR)→ A1
R ,

where the finite generation follows from Corollary 1.70. Moreover, (XR,∆XR +

(1−ε)X0,R) is log canonical. In particular, this implies that the test configuration
Xκ of (X,∆) is Cohen-Macaulay.

Since Fut(XR) = Fut(Xκ) = 0, and Xκ is K-semistable, this implies that Xκ
is a special test configuration by Theorem 2.51, with the central fiber being
K-semistable by Proposition 5.37.

Denote by (X◦R,∆X◦R ) → A1
R \ {0κ} the family. Let m be a number such

that ω[m]
X◦R

(m∆X◦R ) and ω[m]
Xκ

(m∆κ) is Cartier. The sheaf ω[m]
XR

(m∆XR ) is mostly flat

over A1
R, so by Proposition 7.8(ii), there is a locally closed partial decompo-

sition S → A1
R, such that A1

R \ {0κ} → A1
R and A1

κ → A1
R factors through

S , which implies S = A1
R. Therefore, ω[m]

XR
(m∆XR ) is invertible. Therefore,

fR : (XR,∆XR )→ A1
R is a locally stable family. �

Theorem 8.20. For any family of log Fano pairs (XR,∆R) over R. Assume there
is a special test configuration XK → A1

K of the generic fiber (XK ,∆K) induced
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by a valuation vK , such that

AX,∆(vK)
S (vK)

≤ min {δ(Xκ,∆κ), 1} ,

then XK → A1
K can be extended to a family of log Fano pairs (XR,∆XR ) over

A1
R, which gives a family of special test configurations of (XR,∆R) over A1

R.

Proof Denote by δ =
AX,∆(vK )

S (vK ) ≤ 1. Let ZK = cXK (vK) ⊆ XK and Z be its closure
in XR. Since δ ≤ δ(Xκ,∆κ), we may find an effectiveQ-divisor Dκ ∼Q −KXκ−∆κ

given by Theorem 7.38, such that (Xκ,∆κ + (1−δ)Dκ) is K-semistable. We may
also assume Zκ is not contained in Supp(Dκ).

We lift Dκ to a Q-Cartier divisor DR ∼Q −KXR − ∆R, so Supp(DK) does not
contain ZK . By Theorem 7.27, (XK ,∆K + (1 − δ)DK) is K-semistable. Then

AXK ,∆K+(1−δ)DK (vK) = AXK ,∆K (vK)

= δ · S XK ,∆K (vK) = S XK ,∆K+(1−δ)DK (vK) .

ThusXK yields a K-semistable degeneration of (XK ,∆K +(1−δ)DK) by Propo-
sition 5.37. By Theorem 8.19, we can extend the family to get XR → A1

R such
that −(KXR + ∆XR ) is ample over A1

R. (By Corollary 8.18, this extension does
not depend on the choice of DR.) �

Corollary 8.21. If Xi (i = 1, 2) are optimal destabilizations of (X,∆). Then
there exists a G2

m-equivariant family of log Fano pairs over X → A2, such that
the restriction over A1 × {t} (resp. {t} × A1) (t , 0) yields X1 (resp. X2).

Proof We can glue X1 and X2 to get a G2
m-equivariant family X◦ over A2 \ 0.

By Proposition 5.37, we can apply Theorem 8.20 to get the unique extension
X → A2 as in Corollary 8.18. Then it is G2

m-equivariant. �

Proposition 8.22. Notation as in Corollary 8.21. If ker(G2
m → Aut(X0)) con-

tains {(t, t−1) | t ∈ Gm}, then X1 and X2 are isomorphic as test configurations.

Proof Let ρ : Gm → G2
m denote the 1-PS defined by t 7→ (t, t−1). By assump-

tion, ρ acts trivially on X0 and, hence, acts trivially on H0(X0,mL0), which is
isomorphic to ⊕p,qGrp,qRm by Exercises 5.1. Since ρ acts with weight p − q on
Grp,qRm, this means Grp,qRm = 0 if p − q , 0.

The latter implies the filtrations F andG of Rm are equal. Indeed, by Lemma
3.5, there exists a basis {s1, . . . , sNm } of Rm such that

F pRm = span〈si | ordF (si) ≥ p〉 and GqRm = span〈si | ordG(si) ≥ q〉,

where ordF (si) := max{p | si ∈ F
pRm} and ordG(si) := max{q|si ∈ G

qRm}.
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Since Grp,qRm has basis given by {s̄i | ordF (si) = p and ordG(si) = q}, the van-
ishing of Grp,qRm for p , q implies ordF (si) = ordG(si) for each i and, hence,
F = G. Therefore, X1 and X2 are isomorphic as test configurations. �

Corollary 8.23. Let (X,∆) be a log Fano pair with a torus T-acting on (X,∆).
Then (X,∆) is T-equivariantly K-polystable if and only if (X,∆) is K-polystable.

Proof Assume (X,∆) is T-equivariantly K-semistable, it is K-semistable by
Theorem 4.64. Assuming there is non-product special test configuration X of
(X,∆) with Fut(X) = 0, we aim to produce a T-equivariant non-product test
configuration Y with Fut(Y) = 0. We make induction on the rank r of T, if
it is 0, then this is clear. We may assume the theorem holds for r − 1. Thus
if we write T = T1 × T2 with T1 of rank r − 1 and T2 � Gm, then there is a
non-product T1-equivariant test configuration X1 of (X,∆) with Fut(X1) = 0.

By gluing X1 together with the product test configuration X2 induced by T2,
we get a G2

m-family X◦ → A2 \ 0. By Theorem 8.19, this uniquely extends to a
family X → A2. Since the special fiber of (X1,∆X1 ) over 0 is not isomorphic to
(X,∆), we conclude that the fiber of (X,∆X) over 0 is not isomorphic to (X,∆).
As X◦ → A2 \ 0 admits a fiberwise T1-action which commutes with G2

m, X
admits a T1 ×G

2
m-action. Then we get a non-product T-equivariant special test

configuration Y over A1 by restricting over A1 × 0 with Fut(Y) = 0. �

See Exercise 8.7 for a more general result.

8.2.2 S -completeness

Let f : (X, L) → Spec (R) and f ′ : (X′, L′) → Spec (R) be two flat projective
morphisms over Spec (R) for a DVR R with residue field κ and fractional field
L. Let L (resp. L′) is an ample Q-line bundle on X (resp. X′). We assume there
is a positive integer r such that rL and rL′ are Cartier, with an isomorphism

ϕ◦ : (XK , rLK) � (X′K , rL′K)

over Spec(K).
By Lemma 8.9, we obtain a family

f̃ ◦ : (X◦,L◦)→ ST(R)◦ ,

such that

(X◦,L◦) ×ST(R)◦ (t , 0) � (X, L) and (X◦,L◦) ×ST(R)◦ (s , 0) � (X′, L′) .

We apply the computation in 8.12 for the bundles f̃ ◦∗ (mL◦) for any m divided
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by r. We define a filtration on Em := H0(X,OX(mL)) by

GpEm = Em ∩ (πp · E′m) ,

where E′m = f ′∗ (L
′⊗m), and similarly

G′
qE′m = E′m ∩ π

qEm .

By (8.5), j∗ f̃ ◦∗ OX◦ (mL
◦) is given by

⊕
p G

pEmt−p.

Corollary 8.24. The extension of f̃ ◦ : (X◦,L◦) → ST(R)◦ to f̃ : (X,L) →
ST(R) as a family of flat polarized projective varieties is unique. Moreover, it
can be extended as a family of flat polarized projective varieties if and only if⊕

m∈N,p∈Z G
pEm/G

p+1Em is finitely generated.

Proof If
⊕

m∈N,p∈Z G
pEm/G

p+1Em is finitely generated, then so is
⊕

p,m G
pEm.

So the above discussion implies the OST(R)-algebra
⊕

m≥0 j∗ f̃ ◦∗ OX◦ (mL
◦) is

finitely generated, then

X := ProjST(R)

⊕
m≥0

j∗ f̃ ◦∗ OX◦ (mL
◦) ,

is a flat family of polarized schemes over ST(R), i.e. (X,L) = ([P/Gm],OP(1)),
where

P = ProjR[s,t]/(st−π)

⊕
p,m

GpEm

and the grading in p gives an action of Gm on P and a linearization of OP(1).
Conversely, if there is an extension (X,L), then f∗(mL) = j∗ f̃ ◦∗ OX◦ (mL

◦),
so

⊕
m≥0 j∗ f̃ ◦∗ OX◦ (mL

◦) is finitely generated, which is equivalent to saying⊕
p,m G

pEmt−p is finitely generated. So
⊕

m∈N,p∈Z G
pEm/G

p+1Em is finitely
generated. �

8.25. Let Y be a common resolution

Y
ρ

��

ρ′

  

X X′ .

There are natural isomorphisms

πpH0 (
X′,OX′ (mL′)

)
' H0 (

X′,OX′ (mL′ − pX′κ)
)

' H0 (
Y,OY

(
ρ′∗(mL′ − pX′κ)

))
= H0 (

Y,OY
(
mρ∗L + m(ρ′∗L′ − ρ∗L) − pρ′∗X′κ

))
.
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For any s ∈ H0(X,OX(mL)), we set G = {s = 0}. By the above isomorphisms,
s ∈ πpH0(X′,OX′ (mL′)) if and only if

G′ := ρ∗G +
(
m(ρ′∗L′ − ρ∗L) − pρ′∗X′κ

)
≥ 0 . (8.9)

Note that G′ is the pullback of a Q-Cartier Q-divisor on X′, and

G′ ∼Q mρ∗L +
(
m(ρ′∗L′ − ρ∗L) − pρ′∗X′κ

)
∼Q ρ

′∗(mL′ − pX′κ) .

Therefore, G′ is effective if and only if ρ′∗G
′ is effective.

Now we specialize to the case that (X,∆)→ Spec(R) and (X′,∆′)→ Spec(R)
are two families of K-semistable log Fano pairs, and L = −(KX + ∆) (resp.
L′ = −(KX′ + ∆′)). There is an isomorphism

(XK ,∆K) � (X′K ,∆
′
K) ,

from which we obtain a family of log Fano pairs (X◦,∆X◦ )→ ST(R)◦.

Lemma 8.26. A section s ∈ GpEm if and only if ordX′κ (s) −ma ≥ p, where a is
the discrepancy of X′κ with respect to (X,∆).

Proof Since ρ′∗L′−ρ∗L = (KY − ρ
′∗(KX′ + ∆′))−(KY − ρ

∗(KX + ∆)) ,we have

ρ′∗
(
m(ρ′∗L′ − ρ∗L) − pρ′∗X′κ

)
= (−ma − p)X′κ .

By (8.9), G′ ≥ 0 if and only if ρ′∗G
′ ≥ 0, which is equivalent to

ordX′κ (s) − ma ≥ p .

�

Definition 8.27. We define a filtration F on Rm := H0(−m(KXκ + ∆κ)) given
by

F pRm = Im
(
GpEm → Em → Em ⊗R κ = Rm

)
.

Symmetrically, we can define a filtration F ′q on R′m := H0(−m(KX′0 + ∆′0))
given by

F ′
qR′m = Im

(
G′

qE′m → E′m → E′m ⊗R κ = R′m
)
.

Lemma 8.28. The filtration F (resp. F ′) is linearly bounded on

R :=
⊕
m∈r·N

H0(−m(KXκ + ∆κ))
(
resp. R′ :=

⊕
m∈r·N

H0(−m(KX′κ + ∆′κ))
)
.

Moreover, there is an isomorphism GrFR � GrF ′R′ which sends the degree p
component of GrFR to the degree −p component of GrF ′R′.
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Proof The filtration is multiplicative. Since

GpEm = Em ∩ π
pE′m � π

−pEm ∩ E′m = G′
−pE′m , (8.10)

as R-module and π · GpEm ⊆ G
p+1Em, we have

Grp
G

Em � Grp
F

Rm .

Therefore, by (8.10) for any m, there is a graded isomorphism

GrFR � GrF ′R′,

which sends degree p part to degree −p part. �

Lemma 8.29. The support of the Duistermaat-Heckman measure νDH,F ,R is
[−a, a′].

Proof By Lemma 8.26, any s ∈ GpEm if and only if coeffX′κ (s) ≥ p+ma, thus
G−maEm = Em. Similarly,

G′
−p′E′m = π−p′Em ∩ E′m = E′m

for any p′ ≥ ma′. So if p′ > ma′, then

Em ∩ π
p′E′m = πp′ (π−p′Em ∩ E′m)

= πp′E′m
= πp′−ma′πma′E′m = πp′−ma′ (Em ∩ π

ma′E′m) .

This implies that if p′ > ma′, then Grp′

F
Rm = 0. This shows that the support of

νDH,F ,R is contained in [−a, a′].

Since a general element s′ ∈ R′m will not vanish along cX′ (Xκ), by (the sym-
metric statement of) Lemma 8.26, s′ < F ′1−ma′ (R′m), i.e. ords(F ′) = −ma′. By
Lemma 8.28, it yields an element s ∈ Rm with ordF (s) = ma′, thus

λmax(F ) = T (F ) ≥ Tm(F ) ≥ a′ ,

which implies λmax(F ) = a′.

Applying Lemma 8.28 again, we know for any interval [λ1, λ2], the measure

νDH,F ,R([λ1, λ2]) = νDH,F ′,R′ ([−λ2,−λ1]) ,

and this implies λmin(F ) = −a.
�

Lemma 8.30. We have µ(F ), µ(F ′) ≤ 0.
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Proof Let a• be the base ideal sequences for FX′κ on X, i.e., ap = ap(ordX′κ );
and b• the restriction of a• on Xκ. The inversion of adjunction implies that

lct(X,∆ + Xκ; a•) = lct(Xκ,∆κ; b•) .

Set a = AX,∆+Xκ (X
′
κ). Since a ≤ 1

m ordX′κ (aam) for any m,

lct(X,∆ + Xκ; {aam}m) ≤ 1 .

By Lemma 8.26, for the filtration F defined in Definition 8.27, its a-shift Fa

satisfies that bp ⊇ Im,p(Fa) for any m (and for a fixed p, the equality holds for
m � 0). Therefore,

lct(Xκ,∆κ; {bma}m) ≥ lct(Xκ,∆κ; I(a)
• (Fa)) .

This implies a ≥ µ(Fa) = µ(F ) + a. Therefore, µ(F ) ≤ 0. It is completely
symmetric to prove µ(F ′) ≤ 0. �

Corollary 8.31. If (Xκ,∆κ) and (X′κ,∆
′
κ) are K-semistable, then F is finitely

generated.

Proof By Lemma 8.28 and µ(F ), µ(F ) ≤ 0, we have

D(F ) + D(F ′) ≤ 0 .

On the other hand, D(F ) and D(F ′) ≥ 0, as we assume (Xκ,∆κ) and (X′κ,∆
′
κ)

are K-semistable. It implies µ(F ) = 0, and µ(Fa) = a. By Lemma 3.46,

lct(Xκ,∆κ; I(a)
• (Fa)) = 1

as a < λmax(Fa) = a + a′ by Lemma 8.29.
For any m and λ, let Im,λ(G) be the base ideal of GλEm → Em, i.e.

OX/Im,λ(G) � OXκ/Im,λ(F ) .

So there is a sufficiently large m and sufficiently small ε > 0, such that

lct(X,∆ + Xκ;
1
m

Im,(a−ε)m(G)) = lct(Xκ,∆κ;
1
m

Im,(a−ε)m(F )) ≥ 1 .

Thus for a general divisor D ∈ G(a−ε)mEm, (X,∆ + Xκ + 1
m D) is log canonical.

On the other hand,

AX,∆+Xκ+ 1
m D(X′κ) = a −

1
m

ordX′κ (D) ≤ ε .

Thus by Corollary 1.68, there exists a model µ : Z → X, which precisely
extract X′κ, and by Corollary 1.70, the ring⊕

m∈r·N

⊕
p∈N

H0(Z, µ∗(−mKX − m∆) − pX′κ)
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is finitely generated. Its tensor over κ yields ⊕pF
pR, which is finitely gener-

ated. �

Therefore, we can take

X := Proj
⊕
m∈r·N

j∗
(
f̃ ◦∗ (−mKX◦ − m∆X◦ )

)
,

which is flat over STR, as j∗
(
f̃ ◦∗ (−mKX◦ − m∆X◦ )

)
is a flat OSTR

-sheaf.

Theorem 8.32. X is normal. Let ∆X be the closure of ∆X◦ , then (X,∆X)→ STR

is a locally stable family (i.e., non-equivariantly a locally stable family over
Spec R[s, t]/(st − π)) of K-semistable log Fano pairs.

Proof Since f̃ ◦ : X◦ → ST(R)◦ is normal, and X \ X◦ is of codimension 2 in
X, we conclude that X is normal as j∗(OX◦ ) = OX.

Denote by D the Q-divisor on X constructed as in Corollary 8.31 and D̃
the closure of D on X. We consider X′ the family over ST(R) obtained by the
trivial isomorphism X → X, and D̃′ (resp. ∆X′ ) the divisor on X′ which is the
closure of D (resp. ∆). The resriction of (X′,∆X′ + 1

m D̃′) over (st = 0) is trivial.
In particular, (X′,∆X′ + 1

m D̃′) is a locally stable family by Proposition 7.8.
On X (resp. X′), (s = 0) and (t = 0) correspond to two divisors Xs and Xt

(resp. X′s and X′t ). In particular, Xs (resp. Xt) corresponds to a test configuration
of (Xκ,∆κ) (resp. (X′κ,∆

′
κ)). The center of Xt is contained in the open set over

(s , 0). Therefore,

ε′ := A
X′, 1

m D̃′+∆X′+X′s+X′t
(Xt) = A

X′, 1
m D̃′+∆X′+X′t

(Xt)

= AX, 1
m D+∆+Xκ (X

′
κ) ≤ ε .

Since KX′ + 1
m D̃′ + ∆X′ + X′s + X′t is a relatively trivial Q-Cartier Q-divisor

class, then (X, 1
m D̃ + ∆X + Xs + (1 − ε′)Xt) is crepant birationally equivalent to

(X′, 1
m D̃′ + ∆X′ + X′s + X′t ), which in particular implies that (X, 1

m D̃ + ∆X + Xs +

(1− ε′)Xt) is log canonical. In particular, Xs is Cohen-Macaulay. Similarly, we
can prove Xt is Cohen-Macaulay.

Since Xs (resp. Xt) induces a test configuration of (Xκ,∆κ) (resp. (X′κ,∆
′
κ))

with identical central fiber but opposite Gm-action,

Fut(Xs,L|Xs ) + Fut(Xt,L|Xt ) = 0 ,

which implies Fut(Xs,L|Xs ) = Fut(Xt,L|Xt ) = 0. So by Theorem 2.51, (Xs,L|Xs )
and (Xt,L|Xt ) are special test configurations. By Proposition 5.37, the central
fiber over 0 = (s = t = 0) is a K-semistable log Fano pair.

Let m be a number such that ω[m]
X◦

(m∆X◦ ), ω
[m]
Xs

(m∆Xs ) and ω[m]
Xt

(m∆Xt ) are
Cartier. The sheaf ω[m]

X
(m∆X) is mostly flat over Spec(R[s, t]/(st = π)), so
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by Proposition 7.8(ii), there is a locally closed partial decomposition S →
Spec(R[s, t]/(st = π)), such that Spec(R[s, t]/(st = π)) \ 0, (s = 0) and (t =

0) factor through S , which implies S = Spec(R[s, t]/(st = π)). Therefore,
ω[m]
X

(m∆X) is invertible and

(X,∆X)→ Spec(R[s, t]/(st = π))

is a locally stable family of K-semistable log Fano pairs. �

Definition 8.33. Two K-semistable log Fano pairs (X,∆) and (X′,∆′) are S-
equivalent if there are special test configurations (X,∆X) and (X′,∆X′ ) with
K-semistable central fibers such that there is a (not necessarilyGm-equivariant)
isomorphism

(X,∆X) × {0} � (X′,∆X′ ) × {0} .

8.3 Properness of K-moduli

In this section, we aim to prove the good moduli space XK
n,N,V is proper over k.

By the valuative criterion, for a DVR R with the fractional field K, and a K-
semistable log Fano pair fK : (XK ,∆K) → Spec(K), after a possible extension
of R, it suffices to show that we can extend fK to a family of K-semistable log
Fano pairs fR : (XR,∆R)→ Spec(R).

However, we can not directly construct fR. Instead, we need to go through a
process which is a vast generalization of Langton (1975). This is encoded in the
notion of Θ-stratification invented in Halpern-Leistner (2022) to conceptualize
the pioneering work in Kempf (1978). The Semistable Reduction Theorem
(Alper et al., 2023, Theorem 6.5) (see Theorem 8.38) then follows from the
existence of a well-ordered Θ-stratification, which yields the properness of the
good moduli space for the semistable locus.

8.3.1 Θ-stratification

We first briefly review the Θ-stratification theory that we need in our setting. A
much more comprehensive treatment can be found in Halpern-Leistner (2022).

Let X = [Z/G] be a quotient stack, where G is a linear algebraic group with
split maximal torus acting on a quasi-projective scheme Z, linearized by an
ample line bundle.

Definition-Theorem 8.34. Let Map(Θ,X) be the presheaf of groupoids

Map(Θ,X) : T 7→ Map(Θ ×k T,X) ,
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where Map(·) denotes groupoid of 1-morphisms between stacks. Then

Map(Θ, [Z/G]) =
⊔
λ∈N′

[Yλ/Pλ] .

Here N′ is the complete set of conjugacy classes of one parameter subgroups
λ : Gm → G, Yλ is the union of Bialynicki-Birula strata (see Białynicki-Birula
(1973)) of Z associated to λ which equals { x ∈ Z | limt→0 λ(t) · x exists } set
theoretically, and

Pλ = {g ∈ G | lim
t→0

λ(t)gλ−1(t) exists }

is a parabolic subgroup.

Proof See (Halpern-Leistner, 2022, Theorem 1.4.8). �

Definition 8.35. Let ev1( resp. ev0) : Map(Θ,X) → X be the evaluation map
over 1 ∈ Θ (resp. 0 ∈ Θ).

(i) A Θ-stratum in X consists of a union of connected components

S ⊆ Map(Θ,X)

such that ev1 : S → X is a closed immersion. Informally, we sometimes
identify S with the closed substack ev1(S) ⊆ X.

(ii) A Θ-stratification of X indexed by a totally ordered set Γ is a cover of X by
open substacks X≥m for m ∈ Γ such that X≥m′ ⊆ X≥m for m′ > m , along
with a Θ-stratum Sm ⊆ Map(Θ,X≥m) in each X≥m whose complement is⋃

m′>m X≥m′ ⊆ X≥m. We require that ∀x ∈ |X| the subset {m ∈ Γ | x ∈ X≥m}

has a maximal element. We assume for convenience that Γ has a maximal
element 0 ∈ Γ.

(iii) We say that a Θ-stratification is well-ordered if for any point x ∈ |X|, every
nonempty subset of {m ∈ Γ | ev1(Sm) ∩ {x} = ∅} has a maximal element.

Given a Θ-stratification, we denote by Xss := X≥0 the semistable locus of
X. For any x ∈ X(k) \ Xss(k), the unique stratum Sc such that x ∈ ev1(Sc)
determines a canonical map f : Θ → X with f (1) = x. This map is referred to
as the HN-filtration of x.

Definition 8.36. Let X be an algebraic stack and let ξ : Spec(R) → X be a
morphism where R is a DVR with fraction field K.

(i) A modification of ξ is the data of a morphism ξ′ : Spec(R) → X along with
an isomorphism between the restrictions ξ|K � ξ′|K .

(ii) An elementary modification ξ′ of ξ is the data of a morphism h : STR → X

along with an isomorphism ξ � h|s,0 and ξ′ � h|t,0.
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Theorem 8.37 (Langton’s algorithm). Let X be an algebraic stack locally of
finite type and quasi-separated, with affine automorphism groups, over k, and
let S+ → X be a Θ-stratum. Let R be a DVR with fraction field K and residue
field κ. Let ξR : Spec(R) → X be an R-point such that the generic point ξK is
not mapped to S+, but the special point ξκ is mapped to S+:

Spec(K) //

ξK

��

Spec(R)

ξR

��

Spec(κ)oo

ξκ

��

X \S+ // X S+ .oo

Then there exists a morphism R→ R′ of DVRs with K → K′ = Frac(R′) a finite
extension, and an elementary modification ξ′R′ of ξR′ such that ξ′R′ : Spec(R′)→
X lands in X \S+.

Proof (Alper et al., 2023, Theorem 6.3). �

Theorem 8.38 (Semistable reduction). Let X be a quasi-separated algebraic
stack with affine automorphism groups that is locally finite type over k, with
a well-ordered Θ-stratification. Then for any morphism Spec(R) → X, there
is a morphism R → R′ of DVRs with K → K′ = Frac(R′) a finite extension,
and a modification Spec(R′)→ X, obtained by a finite sequence of elementary
modifications, such that its image lies in a single stratum of X.

Proof (Alper et al., 2023, Theorem 6.5). �

In practice, a Θ-stratification is usually induced by a numerical invariant.

Definition 8.39. Let Γ′ be a set with a marked element 0 ∈ Γ′. A numerical
invariant is a locally constant function

µ : Map(Θ,X)→ Γ′ ,

with value 0 on the component of Map(Θ,X) of trivial maps.

Definition 8.40. Let µ be a numerical invariant. Given an unstable x ∈ X, we
say f ∈ Map(Θ,X) with ev1( f ) = x induces a Harder-Narasimhan filtration of
x with respect to µ if µ( f ) ≤ µ( f ′) for any f ′ with ev1( f ′) = x, and moreover,

if µ( f ) < 0 then the equality holds if and only if f ′ comes from Θ
zk

−→ Θ
f
−→ X.

We say the numerical invariant µ satisfies the destabilization property if for
any x ∈ X, there exists a Harder-Narasimhan filtration f of x with respect to µ.
In this case, we define the stability function

Mµ(x) = { µ( f ) | f induces a Harder-Narasimhan filtration of x } .
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Theorem 8.41. Let µ : Map(Θ,X) → Γ′ be a numerical invariant, which sat-
isfies the destabilization property, and it induces a stability condition Mµ. As-
sume

(i) For any m ∈ Γ′, X≥m := {x ∈ X | Mµ(x) ≥ m} is open.
(ii) If f satisfies ev1( f ) = x and µ( f ) = Mµ(x), then Mµ(x) = Mµ(x0) where

x0 = ev0( f ).
(iii) Let xR ∈ X(R) be a DVR R with the fractional field K and residue field κ.

Then for any fK ∈ Map(Θ,X)(K) with ev1( fK) = xK and µ( fK) ≤ Mµ(xκ), fK

can be extended to fR ∈ Map(Θ,X)(R).

Then X admits a Θ-stratification with covering open stacks X≥m (m ∈ Γ),
where Γ ⊆ Γ′ is the set of values that µ takes.

Proof Fix m. We construct the Θ-stratum Sm ⊂ Map(Θ,X≥m). We may
write X≥m = [Z≥m/G]. Let T be a maximal torus of G. Denote by N(T) :=
Hom(Gm,T) and M(T) := Hom(T,Gm). Let N′ ⊂ N(T) be a subset repre-
senting conjugacy classes of one parameter groups in G. Then by Definition-
Theorem 8.34,

Map(Θ,X≥m) = Map(Θ, [Z≥m/G]) =
⊔
λ∈N′

[Yλ/Pλ] .

We know that Yλ → Z≥m is a locally closed immersion with image {z ∈ Z≥m |

limt→0 λ(t) · z exists}. We will often identify a point in Yλ with its image in
Z≥m. In particular, if λ = 0 ∈ N′ then Y0 = Z≥m and P0 = G, i.e. [Y0/P0] =

X≥m is the connected component of Map(Θ,X≥m) parametrizing trivial maps
Θk → Spec (k)→ X≥m. Thus to construct the Θ-stratum Sm, it suffices to find
a suitable union of connected components of Yλ for each λ ∈ N′.

Suppose m , 0. For each λ ∈ N′ \ {0}, consider the subset S λ ⊂ Yλ as

S λ := {z ∈ Yλ | µ(z, λ) = m} . (8.11)

For λ = 0 ∈ N′, we define S 0 := Y0. We will show that S λ is a disjoint union
of connected components of Yλ. Indeed, by the definition of Yλ there is a Gm-
equivariant map φλ : Yλ × A1 → Z≥m where the Gm-action on Z≥m is λ and
φλ(z, 1) = z. Since z 7→ µ(z, λ) is a locally constant function on Yλ, S λ is a
disjoint union of connected components of Yλ.

Claim 8.42. With the above notation, for any m , 0 and λ ∈ N′ \ {0} the map
ev1(φλ) : S λ → Z≥m is a closed immersion.

Proof By definition we know that ev1(φλ) is a locally closed immersion. Thus
it suffices to show that it is proper. Suppose f : Spec (R)→ Z≥m is a morphism
from a DVR such that zK := f (Spec (K)) ∈ S λ.
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Since zκ ∈ Z≥m, we know that Mµ(zκ) ≥ m. Hence by (iii), we may extend f
to f̃ : Θ1

R → Z≥m, i.e. f admits a lifting to S λ

Spec(K)

��

// S λ

��

Spec(R) //

66

Z≥m

It implies that ev1(φλ) : S λ → Z≥m is proper. �

Denote by N′prim the subset of N′ \ {0} consisting of primitive one parameter
subgroups. For m , 0, we define

Sm :=
⊔

λ∈N′prim

[S λ/Pλ] , where S λ is given as in (8.11) .

For m = 0, we define S0 := [Y0/P0] = X≥0 parametrizing trivial maps. We
aim to show that the data (X≥m,Sm)m∈Γ form a well-ordered Θ-stratification of
X = XFano

n,N,V .
We first show that for each m ∈ Γ, the stack Sm is a Θ-stratum of X≥m. The

statement is clear when m = 0 as S0 = X0. Hence we may assume that m , 0.
By Claim 8.42, S λ → Z≥m is a closed immersion. Thus we know that the
morphism ev1 : Sm → X≥m is a composition of proper morphisms as below:

Sm = tλ[S λ/Pλ]→ [Z≥m/Pλ]→ [Z≥m/G] = X≥m .

Hence ev1 is proper.
Next, we show that ev1 is universally injective. Since we work over charac-

teristic zero, it suffices to show that the G-equivariant morphism

ψ : G ×Pλ S λ → Z≥m

is injective whose G-quotient gives ev1. Suppose (g1, z1) and (g2, z2) in G × S λ

have the same image in Z≥m, i.e. z1 = g−1
1 g2 · z2. Hence we know that z1 and z2

belong to the same G-orbit in Z≥m. Since z1, z2 ∈ S λ, we know that µ(z1, λ) =

µ(z2, λ) = m which implies that λ induces Harder-Narasimhan filtration. By
uniqueness of Harder-Narasimhan filtration, we know that the two morphisms
Θ→ X≥m induced by (zi, λ) for i = 1, 2 represent the same point in the mapping
stack. Therefore, we have that z2 = p · z1 for some p ∈ Pλ. Denote by g :=
g−1

1 g2 p, so that z1 is a g-fixed point. By the uniqueness, we know that g acts
on (z1, λ) which implies that g ∈ Pλ. In particular, g−1

1 g2 ∈ Pλ. Hence ψ is
injective which implies that ev1 is universally injective. By (Halpern-Leistner,
2022, Corollary 2.1.9), this implies that Sm is also a Θ-stratum of X≥m.

Next, we show that the complement of Sm in X≥m is precisely X>m. This
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is trivial for m = 0, so we assume m , 0. If z ∈ S λ, then we have µ(z, λ) =

m. Hence Sm is disjoint from X>m. On the other hand, if x ∈ |X≥m| \ |X>m|,
then since µ satisfies the destabilization property, there exists a primitive f ∈
Map(Θ,X) such that µ( f ) = Mµ(z) = m and x = ev1( f ). Let x0 = ev0( f ). By
(ii), we know that

Mµ(x) = Mµ(x0) = m .

Hence f corresponds to a point in Map(Θ,X≥m) with µ( f ) = m. From the
definition of S λ and Sm, we know that f is induced by some λ ∈ N′prim and
z ∈ S λ. Hence x belongs to the image of ev1 : Sm → X≥m. This shows that the
complement of Sm in X≥m is X>m.

Putting all this together, we conclude that

(Sm,X≥m)m∈Γ

yields a Θ-stratification. �

Lemma 8.43. Notation as in Theorem 8.41. Assume for any m ∈ Γ, the subset
Γ≥m := {m′ ∈ Γ | m′ ≥ m} of Γ is finite, then the Θ-stratification (Sm,X≥m)m∈Γ

is well-ordered.

Proof Definition 8.35(iii) clearly holds under the finiteness assumption. �

8.3.2 µ-optimal destabilization

In this section, we want to construct a numerical invariant µ on X := XFano
n,N,V

which satisfies all assumptions in Theorem 8.41. It takes values in Γ′ = R2

equipped with the lexicological order. Any point f ∈ Map(Θ,X) corresponds
to a special test configuration X of (X,∆) where [(X,∆)] = ev1( f ).

Let X be a special test configuration of a log Fano pair (X,∆), we define

‖X‖2 := ‖(X0,∆0, ξ)‖2 , (8.12)

where the norm ‖(X0,∆0, ξ)‖2 is given as in Definition 2.38. Similarly, we also
have

‖X‖m = ‖(X0,∆0, ξ)‖m .

(see Exercise 3.6).

Definition 8.44. Let X be a nontrivial special test configuration of a log Fano
pair (X,∆). We define

µ(X) = (µ1(X), µ2(X)) :=
(Fut(X)
‖X‖m

,
Fut(X)
‖X‖2

)
∈ Γ′ . (8.13)

If Xtriv is the trivial test configuration, we define µ(Xtriv) = (0, 0).
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Lemma 8.45. Let f : (X,∆) → S be a family of log Fano pairs admitting a
fiberwise Gm-action. If S is connected, then Fut(Xt,∆t, ξ), ‖(Xt,∆t, ξ)‖m and
‖(Xt,∆t, ξ)‖2 are independent of t ∈ S .

Proof Fix a positive integer r such that L := −r(KX/S +∆) is a Cartier divisor.
Since Hi(Xt,OXt (mLt)) = 0 for all m, i > 0 and t ∈ S by Kawamata-Viehweg
vanishing, f∗OX(mL) is a vector bundle and commutes with base change. Since
ξ induces a fiberwiseGm-action on f∗OX(mL), the vector bundle admits a direct
sum decomposition into weight spaces

f∗OX(mL) =
⊕
λ∈Z

( f∗OX(mL))λ ,

where each ( f∗OX(mL))λ is a vector bundle and commutes with base change.
Therefore, dim(H0(Xt,OXt (mLt))λ) is independent of t ∈ S and the result fol-
lows. �

By Lemma 8.45, we see that µ is a locally constant function on Map(Θ,X).
The next theorem shows it yields a numerical invariant, which satisfies the
destabilization property (see Definition 8.40).

Theorem 8.46. For any log Fano pair (X,∆), there exists a special test config-
uration X such that

µ(X) = inf
{
µ(X′) | X′ is a special test configuration of (X,∆)

}
. (8.14)

Moreover if (X,∆) is K-unstable, and µ(X′) = µ(X), then X′ and X induce the
same divisor over X.

In other words, µ yields a numerical invariant on Map(Θ,XFano
n.N.V ).

Before proving Theorem 8.46, we first review some basic facts of torus act-
ing on a projective space.

8.47 (Torus action on projective space). Let T act linearly on a vector space W.
So we may choose a basis {e1, . . . , el} for W and characters u1, . . . , ul ∈ M(T)
such that

t · ei = ui(t)ei for each 1 ≤ i ≤ l and t ∈ T .

Hence, if we write a point [w] = [w1 : · · · : wl] ∈ P(W) using coordinates in
this basis and fix v ∈ N(T), then

v(t) · [w] = [t〈u1,v〉w1 : · · · : t〈ul,v〉wl] for t ∈ Gm .

Therefore, if we set I := {1 ≤ i ≤ l |wi , 0}, then limt→0 v(t) · [w] = [w′], where

w′j =

w j if 〈u j, v〉 ≤ 〈ui, v〉 for all i ∈ I

0 otherwise
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and v fixes [w] if and only if 〈ui, v〉 = 〈u j, v〉 for all i, j ∈ I. For each nonempty
I ⊆ {1, . . . , l}, we set

UI := { [w] ∈ P(W) |wi , 0 iff i ∈ I } . (8.15)

and when J ⊆ I, write

ϕI,J : UI → UJ

for the projection map, sending the coordinates indexed by I \ J to 0.
We recall how limt→0 v(t) · z changes as we vary v ∈ N(T). Fix a point

[w] ∈ P(W) and consider the polytope

Q := conv.hull (ui |wi , 0) ⊆ MR(T) . (8.16)

For a face F ⊆ Q, the normal cone to F is given by

σF :=
{
v ∈ NR(T) | 〈u, v〉 ≤ 〈u′, v〉 for all u ∈ F and u′ ∈ Q

}
and is a rational polyhedral cone. Note that the cones σF as F varies through
faces of Q form a fan supported on NR(T). For a face F ⊆ Q, set

wF
j =

w j if u j ∈ F

0 otherwise

Note that

lim
t→0

v(t) · [w] = [wF] if v ∈ Int(σF) ∩ N(T) . (8.17)

Additionally, if v ∈ spanR(σF) ∩ N(T), then v fixes [wF].

Proof of Theorem 8.46 (Existence) If (X,∆) is K-semistable, then we can take
X to be the trivial test configuration. So we may assume (X,∆) is K-unstable.

Set δ = δ(X,∆). Set h to be the Hilbert function of

m ∈ N · N→ h0(X,OX(−m(KX + ∆)) .

Let M be given as in Theorem 7.36 for X≥δn,N,h, which is a locally closed sub-
scheme of P(W) with a G = PGL-action.

For a special test configuration X with µ1(X) = δ(X,∆) − 1, by Proposition
5.37, δ(X0,∆0) = δ(X,∆). Therefore, by the definition of µ(X) as in (8.13), it
suffices to consider among all Gm-equivariant degeneration

(X,∆) (X0,∆0) with δ(X,∆) = δ(X0,∆0) ,

which corresponds to morphisms f : Θ→ X≥δn,N,h, with ev1( f ) = [X,∆]. Such f
can be lifted to aGm-equivariant morphismA1 →M under a map λ : Gm → G,
where 1 ∈ A1 is mapped to z ∈M corresponding to (X,∆).
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Fix z ∈M corresponding to (X,∆). For a one parameter subgroup λ : Gm →

G, consider the Gm-equivariant map

A1 \ 0→M defined by t · z 7→ λ(t) · z.

We assume

z0 := lim
t→0

λ(t) · z ∈ P(W) .

If z0 ∈ M, i.e. z0 corresponds to a log Fano pair with δ(X0,∆0) ≥ δ, and the
pullback of (XM,

1
N DM) by A1 → M is naturally a special test configuration

of (X,∆) that we denote by Xλ. In this case, we set µ(z, λ) := µ(X) ∈ R2. If
z0 ∈ P(W) \M, we set µ(z, λ) = (+∞,+∞).

Fix a maximal torus T ⊂ G. Since µ(z, λ) = µ(gz, gλg−1) for any g ∈ G and
λ ∈ Hom(Gm,G) and for any λ ∈ Hom(Gm,G), there exists g ∈ G such that
gλg−1 ∈ N(T), we have the right hand side of (8.14) is equal to

inf
λ∈Hom(Gm,G)

µ(z, λ) = inf
g∈G

inf
v∈N(T)

µ(gz, v) . (8.18)

For each nonempty subset I ⊂ {1, . . . , l} as in 8.47, consider UI defined as
in (8.15) and the locally closed subset

MI := UI ∩M ⊆M .

Write MI = tkMI,k as the disjoint union of finitely many connected locally
closed subschemes such that, for each J ( I, ϕI,J(MI,k) is either contained
entirely in M or in P(W) \M.

Fix a component MI,k and v ∈ N(T). Set

J :=
{

j ∈ I | 〈v, u j〉 ≤ 〈v, ui〉 for all i ∈ I
}
⊆ I

and note that (i) if z ∈ MI,k, then limt→0 v(t) · z = ϕI,J(z) and (ii) v fixes the
points in MJ. If ϕI,J(MI,k) ⊆M, then ϕI,J(MI,k) lies in a connected component
of MJ, since MI,k is connected. In this case,

µ(z, v) = µ(ϕI,J(z), v)

and the latter is independent of z ∈MI,k by Lemma 8.45. On the other hand, if
ϕI,J(MI,k) ⊆ P(W) \M, then µ(z, v) = (+∞,+∞) for all z ∈MI,k.

Therefore, putting all (I,k) together, the decomposition of M =
⊔s

p=1 Mp

into locally closed subsets satisfies that

Mp × N(T) 3 (z, v) 7→ µ(z, v) is independent of z ∈Mp .

Therefore, pick up any z ∈Mp (1 ≤ p ≤ s), we define

µp : N(T)→ R2 ∪ {(+∞,+∞)}, µp(v) = µ(z, v) .
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Set mp := infv∈N(T) µ
p(v).

Claim 8.48. If mp < 0, then there exists vp ∈ N(T) so that mp := µp(vp).

Proof Let [w] ∈ P(W) be a representation of z in coordinates and consider the
polytope Q ⊂ NR(T) as defined in (8.16). Now, fix a face F ⊆ Q. Since there
are only finitely many faces, it suffices to show that if µ takes a value < 0 on
Int(σF) ∩ N(T), then

inf { µ([w], v) | v ∈ σF ∩ N(T) }

is a minimum. Note that if v ∈ Int(σF)∩ N(T), then limt→0 v(t) · [w] = [wF] by
(8.17), and the assumption µ([w], v) < 0 in particular implies that wF ∈M.

We claim that if µ([w], v) < 0,

µ([w], v) = µ([wF], v) for all v ∈ σF ∩ N(T) . (8.19)

Indeed, if v ∈ Int(σF) ∩ N(T), then limt→0 v(t) · [w] = [wF] and the formula
holds. On the other hand, if v ∈ (σF \ Int(σF)) ∩ N(T), then limt→0 v(t) · [w] =

[wG], where G is the face of Q such that v ∈ Int(σG). Using that any element
in N(T)∩ Int(σF) gives a degeneration [wG] [wF] and Lemma 8.45, we see

µ(z, [w]) = µ([wG], v) = µ([wF], v) .

which shows (8.19) holds.

Now, consider the subspace

NF
R := spanR(σF) ⊆ NR(T)

and the lattice NF := NF
R ∩ N(T). Write TF ⊆ T for the subtorus satisfying

NF = Hom(Gm,T
F) and note that TF fixes [wF]. Applying Proposition 2.46 to

the log Fano pair corresponding to [wF] with the action by TF , we see

inf
{
µ([wF], v) | v ∈ σF ∩ N(T)

}
is a minimum, which completes the proof. �

If g · z ∈Mp, inf
v
µ(g · z, v) = inf

v
µp(v) = mp. Therefore, by Claim 8.48,

inf
λ∈Hom(Gm,G)

µ(z, λ) = min
{

mp |G · z ∈Mp
}
. (8.20)

The action of vp on z induces a special test configuration X of (X,∆) which,
by (8.18), satisfies

µ(X) = inf
{
µ(X′) | X′ is a special test configuration of (X,∆)

}
.
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(Uniqueness) Let X1 and X2 be special test configurations of a K-unstable
log Fano pair (X,∆) satisfying

µ(X1) = Mµ(X,∆) = µ(X2) .

Since (X,∆) is K-unstable, Fut(Xi) < 0 for i = 1, 2. Therefore, we may scale
X1 and X2 such that Fut(X1) = Fut(X2) < 0.

Since R2 is endowed with the lexicographic order,

µ1(X1) = µ2(X2) = δ(X,∆) − 1 .

LetX → A2 denote the T(:= G2
m)-equivariant family of log Fano pairs given by

Corollary 8.21. Consider the induced T-action on X0 and the functions Fut(·)
and µ(·) on NR(T) as in Section 2.2.2. Note that

µ(1, 0) = µ(X1) and µ(0, 1) = µ(X2) ,

which are equal to µ(X,∆) by assumption. Additionally, µ(a, b) ≥ µ(X,∆) for
all (a, b) ∈ Z2

≥0, since pulling back X → A2 via the map A1 → A2 sending
t 7→ (ta, tb) induces a test configurations X(a,b) of (X,∆) and

µ(a, b) = µ(X(a,b)) ≥ Mµ(X,∆) .

Therefore,

µ : R2
≥0 ∩ (N2 \ (0, 0))→ R2

is minimized at both (1, 0) and (0, 1). The previous statement combined with
Proposition 2.46 implies that G2

m → Aut(X0,∆X0 ) has a positive dimensional
kernel. Therefore, there exists (0, 0) , (a, b) ∈ Z2 such that Gm → G2

m defined
by t 7→ (ta, tb) acts trivially on X0. Since

0 = Fut(a, b) = aFut(1, 0) + bFut(0, 1) = aF + bF ,

where the first inequality uses that the action is trivial and the second is the
linearity of Fut, we see a = −b and, hence,{

(t, t−1) | t ∈ Gm

}
⊆ ker

(
G2

m → Aut(X0,∆X0 )
)
.

Applying Proposition 8.22, we conclude X1 ' X2. �

Definition 8.49. For a log Fano pair (X,∆), we define

Mµ(X,∆) = inf
{
µ(X) | X is a special test configuration of (X,∆)

}
.

For any K-unstable special test configurationX of a log Fano pair (X,∆) which
satisfies Mµ(X,∆) = µ(X), we call it a µ-optimal destabilization.

We also denote by

Γ :=
{

Mµ(X,∆) | [(X,∆)] ∈ XFano
n,N,V

}
⊂ Γ′ .
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If (X,∆) is K-semistable, Mµ(X,∆) = (0, 0). If (X,∆) is K-unstable, then

Mµ(X,∆) = (δ(X,∆) − 1,Mµ2 (X,∆)) ,

where

Mµ2 (X,∆) = inf { µ2(X) | X satisfies µ1(X) = δ(X,∆) − 1 } . (8.21)

The following theorem is a refinement of Theorem 7.29.

Theorem 8.50. The function Mµ on XFano
n,N,V is constructible.

Proof The stratum Mµ(X,∆) = (0, 0) corresponds to the open subset XK
n,N,V ⊆

XFano
n,N,V . So we may assume the value (µ1, µ2) < (0, 0). Set δ = µ1 + 1. Fix a

Hilbert function h appearing in (7.8), then X≥δn,N,h is a connected component of
an open substack X≥δn,N,V of XFano

n,N,V . So it suffices to show the restriction of Mµ

on X≥δn,N,h is constructible. Let M be given as in Theorem 7.36. In particular, it
is a locally closed subscheme of P(W) with a G = PGL-action.

For a 1-PS λ : Gm → G and a closed point z ∈ M corresponding to a log
Fano pair (X,∆) := (Xz,

1
N Dz), consider the Gm-equivariant map

A1 \ 0→M defined by t · z 7→ λ(t) · z .

We assume

z0 := lim
t→0

λ(t) · z ∈ P(W) .

If z0 ∈ M, i.e. z0 corresponds to a log Fano pair with δ(X0,∆0) ≥ δ, and the
pullback of (XM,

1
N DM) by A1 →M is naturally a special test configuration of

(X,∆) that we denote by Xλ. In this case, we set

µ(z, λ) := µ(X0,∆0; λ) ∈ R2

as in Definition 2.42. If z0 ∈ P(W) \M, we set µ(z, λ) = (+∞,+∞).
Now, fix z ∈ M corresponding to log Fano pair (X,∆) with δ(X,∆) ≥ δ.

Recall that

Mµ(X,∆) = inf
λ∈Hom(Gm,G)

µ(z, λ) .

Combining with (8.20), it gives

{Mµ(X,∆) | [(X,∆)] ∈M } ⊆ {0} ∪ {m1, . . . ,ms }

and, in particular, is finite. In addition, for each m,

M≥m = M \
⋃

mp<m
G ·Mp .

Since each set G ·Mp is constructible by Chevalley’s Theorem, M≥m is also
constructible. �
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Lemma 8.51. Let R be a DVR with K the fractional field and κ the residue
field. Let (X,∆)→ Spec(R) be a family of log Fano pair over Spec(R). Then

Mµ(XK ,∆K) ≥ Mµ(Xκ,∆κ) .

Proof If (XK ,∆K) is K-semistable, then the statement holds trivially. Now,
assume (XK ,∆K) is K-unstable. By Theorem 7.27 and Theorem 4.64, since

δ(XK ,∆K) ≥ δ(Xκ,∆κ) ,

if the inequality is strict, then the statement follows since we take the lexico-
graphical order on R2.

Therefore, we may assume δ(XK ,∆K) = δ(Xκ,∆κ). Let XK be a test config-
uration which gives an optimal degeneration of (XK ,∆K). By Theorem 8.20,
the test configuration extends to a Gm-equivariant family of a log Fano pairs
X → A1

R with the fiber over 1 to be (XR,∆R). Therefore,

µ2(XK) = µ2(Xκ) ≥ Mµ2 (Xκ,∆κ) .

�

For each m ∈ Γ, we define the subfunctor X≥m
n,N,V of XFano

n,N,V as

X
≥m
n,N,V (T ) =

{
[(X,∆)→ T ] ∈ Xn,K,V (T ) | µ(Xt,∆t) ≥ m for all t ∈ T

}
.

(See Definition 8.49 for the definition of µ.) It is clear that X≥0
n,N,V = XK

n,N,V .

Proposition 8.52. For each m ∈ Γ, the functor X≥m
n,N,V is represented by an

open substack of XFano
n,N,V of finite type.

Proof Let m := (m1,m2) ∈ Γ. Then we know that every log Fano pair (X,∆)
with µ(X,∆) ≥ m must satisfy δ(X,∆) − 1 ≥ m1. Set δ = m1 + 1. Hence,
X≥m

n,N,V is a subfunctor of X≥δn,N,V , which is a finite type open substack of XFano
n,N,V

by Theorem 7.31. Thus, it suffices to show that X≥m
n,N,V is an open substack of

X≥δn,N,V . Moreover, this is equivalent to show for each Hilbert function h,

X
≥m
n,N,h := X≥m

n,N,V ∩ X
≥δ
n,N,h ⊆ X

≥δ
n,N,h

is open.
By Theorem 7.36, we know that X≥δn,N,h � [M/G] and M is quasi-projective.

By constructibility and lower semicontinuity of µ from Theorem 8.50 and
Lemma 8.51, we know that the locus

M≥m := { [(X,∆)] ∈M | µ(X,∆) ≥ m }

is an open subscheme of M. Hence

X
≥m
n,N,h = [M≥m/G] ⊆ [M/G] = X≥δn,N,h



316 K-moduli space

is an open substack. �

Proposition 8.53. Let (X,∆) be a log Fano pair, and let X be a special test
configuration of (X,∆) such that µ(X) = Mµ(X,∆). Let (Y,∆Y ) be the central
fiber of X. Then µ(X,∆) = µ(Y,∆Y ).

Proof Since Mµ(X,∆) ≥ Mµ(Y,∆Y ), it suffices to prove Mµ(X,∆) ≤ Mµ(Y,∆Y ).
If Mµ(X,∆) > Mµ(Y,∆Y ), then by Theorem 8.46, Mµ(Y,∆Y ) is computed by a
test configurationX′ equivariantly with respect to theGm-action on (Y,∆Y ). Let
(Z,∆Z) be the central fiber of X′.

By Lemma 5.38, there is a test configuration Y which degenerates X to Z,
with the weight N(ξ+εξ′), where ξ corresponds toGm action on (Y,∆Y ) induced
by X and ξ′ corresponds to the Gm-action on (Z,∆Z) induced by X′.

So we can apply Lemma 2.43 to conclude that µ(Y) < µ(X) = Mµ(X,∆),
which is a contradiction. �

Theorem 8.54. The numerical invariant µ induces a well-ordered Θ-stratification
on X = XFano

n,N,V .

Proof We have seen that µ as in (8.13) defines a numerical invariant on
Map(Θ,X) by Theorem 8.46.

It suffices to prove that the corresponding stability condition Mµ satisfies the
assumptions in Theorem 8.41. To see this, Proposition 8.52 implies Theorem
8.41(i); Proposition 8.53 implies Theorem 8.41(ii); and Theorem 8.20 implies
Theorem 8.41(iii).

Theorem 8.50 implies Γ satisfies the assumption of Lemma 8.43. �

Corollary 8.55. XK
n,N,V satisfies the existence part of the valuative criterion for

properness with respect to DVRs over k. In particular, XK
n,N,V is proper.

Proof By Corollary 2.50, there exists a finite extension R→ R′ of DVRs and
a family [(X′,∆′)→ Spec (R′)] ∈ XFano

n,N,V (R′) so that

(X′K′ ,∆
′
K′ ) ' (X,∆) ×R K′.

Since X := XFano
n,N,V admits a well-ordered Θ-stratification with X≥0 = XK

n,N,V
(Theorem 8.54) and [(X′K′ ,∆

′
K′ )] ∈ X

K
n,N,V (K′), Theorem 8.38 implies the exis-

tence of a finite extension R′ → R′′ of DVRs and a family

[(X′′,∆′′)→ Spec (R′′)] ∈ XK
n,N,V (R′′) ,

so that

(X′′K′′ ,∆
′′
K′′ ) ' (X′,∆′) ×R′ K′′.

Since the latter is isomorphic to (XK ,∆K) ×K K′′, the proof is complete. �
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Exercise

8.1 Let Y be a noetherian algebraic stack over an algebraically closed field
k. Let π : Y → Y be a good moduli space with affine diagonal. Then for
any point y ∈ Y , π−1(y) contains a unique closed point.

8.2 Let Gm act on P1 by µ · [x0 : x1] 7→ [x0 : µ · x1]. Then [P1/Gm] does not
admit a good moduli space.

8.3 A log Fano pair (X,∆) is K-polystable if it is K-semistable and any
special test configuration X of (X,∆) with a K-semistable central fiber
(Y,∆Y ) satisfies (X,∆) ' (Y,∆Y ).

8.4 Let X+K
n,N,V ⊆ X

K
n,N,V be the open locus parametrizing families of (uni-

formly) K-stable log Fano pairs. Prove X+K
n,N,V is a separated Deligne-

Mumford stack, it is called the uniform K-moduli stack. In particular, it
admits a coarse moduli space X+K

n,N,V , called the uniform K-moduli space.

8.5 Let Xα>
1
2

n,N,V ⊆ X
Fano
n,N,V be the open locus parametrizing families of log

Fano pairs (X,∆) with α(X,∆) > 1
2 . Prove Xα>

1
2

n,N,V is a separated Deligne-

Mumford stack. In particular, it admits a coarse moduli space Xα> 1
2

n,N,V .
8.6 Let k be an algebraically closed field andY a finite type Artin stack over

k. Let

0 = [(0, 0)/Gm] ∈ ST(k[π]) := [Spec(k[π][s, t]/(st − π))/Gm] ,

where the action is (s, t)→ (µ · s, µ−1 · t). If any morphism π◦ : ST(k[π]) \
0→ Y can be uniquely extended to a morphism π : ST(k[π])→ Y,

ST(k[π]) \ 0 π◦ //
� _

j
��

Y

ST(k[π])

π
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then for any closed point y ∈ Y, the inertial group Gy := IsomY(y) is
reductive.

8.7 Let G be a reductive group acting on a log Fano pair (X,∆). Then (X,∆)
is G-equivariant K-polystable if and only if (Xk̄,∆k̄) is K-polystable.

8.8 Let (X,∆) → S be a family of log Fano pairs over an integral variety S .
Then there is a generic finite dominant morphism U → S and a torus
group TU := T × U acts on (XU ,∆U) over U, such that for every point
t ∈ U, Tt is a maximal torus group of Aut(Xt,∆t).

8.9 The (reduced) locus which parametrizes K-polystable log Fano varieties
in XK

n,N,V is constructible.
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8.10 Let (XR,∆R)→ Spec(R) be a family of K-polystable log Fano pairs over
Spec(R), where R is a DVR with the fractional field K. For a splitting
torus T � Gm, prove that any TK-action on (XK ,∆K) can be extended to
a TR-action on (XR,∆R).

8.11 Let X be an Artin stack which is finite type over k. Assume X admits a
good moduli space X → X. Then for any morphism Spec(R) → X for a
DVR R essentially of a finite type with the fractional field K and residue
field κ, there exists a finite extension R→ R′ with a lifting Spec(R′)→ X,
such that the special point Spec(κ′) of Spec(R′) is mapped to the unique
closed point in X ×X Spec(κ).

8.12 Let f ◦ : C◦ → XK
n,N,V be a morphism from a smooth curve mapped

into the K-polystable locus of XK
n,N,V , then there is a finite morphism

β◦ : C′◦ → C◦ with a projective smooth compactification C′ ⊇ C′◦ and
g : C′ → XK

n,N,V ,

C′◦

��

β◦
// C◦

f ◦

��

C′ g
// XK

n,N,V

such that g(C′) is contained the K-polystable locus.

Note on history

Before the general construction, explicit examples of K-moduli spaces parametriz-
ing del Pezzo surfaces and its Kähler-Einstein degenerations were established
in pioneering works in Mabuchi and Mukai (1993) and Odaka et al. (2016).

Constructing components which parametrize smoothable Fano varieties were
settled by Li-Wang-Xu in Li et al. (2019) (with some partial results also ob-
tained in Odaka (2015)). However, the arguments heavily relied on analytic
results, e.g. Chen et al. (2015a), Chen et al. (2015b), Chen et al. (2015c) and
Tian (2015), making it difficult to extend the arguments to treat components
whose general points parametrize singular log Fano pairs.

Therefore, researchers have been searching for a purely algebraic construc-
tion for a while. Li-Wang-Xu in Li et al. (2021) first considered the question
of extending a family of K-semistable log Fano pairs over an equivariant punc-
tured surface to the entire surface for the surface [A1/Gm]2. The results were
extended to the unstable case by Blum-Liu-Zhou in Blum et al. (2022b), as-
suming the existence of a divisorial valuation computing δ when δ ≤ 1 (which
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was later proved in Liu et al. (2022)). The uniqueness of limiting K-semistable
log Fano pair up to S -equivalence was proved in Blum and Xu (2019).

These two papers provided the basis for the crystallization of arguments by
Alper-Blum-Halpern-Leistner-Xu in Alper et al. (2020b). They used the pow-
erful general theory established by Alper-Halphern-Leistner-Heinloth in Alper
et al. (2023), where the valuative criteria of S -completeness and Θ-reductivity
were formulated and proved to guarantee that an algebraic stack admits a sep-
arated good moduli space.

To prove the properness of K-moduli spaces, Blum-Halpern-Leistner-Liu-
Xu Blum et al. (2021) followed the Θ-stratification theory systematically de-
veloped in Halpern-Leistner (2022), whichgeneralizes the Kempf-Ness strati-
fication in GIT and the Harder-Narasimhan stratification of the moduli of co-
herent sheaves on a projective scheme. As a consequence, a Θ-stratification on
XFano

n,N,V was established by introducing the R2-order function µ.



9
Positivity of the CM line bundle

In this section, we aim at proving aQ-line bundle, called Chow-Mumford (CM)
line bundle, is ample on the K-moduli space. One main recipe of showing the
positivity of CM line bundle is connecting it to apply the general theory to
a concrete filtration, namely the Harder-Narasimhan filtration coming from a
family of polarized varieties.

We introduce the concept of Harder-Narasimhan filtration in Section 9.1
for a family of log Fano pairs over a smooth projective curve. In Section 9.2,
we study Ding invariants of the Harder-Narasimhan filtration, and show the
K-semistability of a general fiber implies the semi-positivity of the CM line
bundle. However, to get the positivity, we need to twist the family, which we
introduce in Section 9.3. Then in Section 9.4, we establish the positivity of
the CM line bundle, by putting together positivity from K-stability and from a
family of log pairs.

9.1 Harder-Narasimhan filtration for a family

9.1.1 Semistable bundles over a curve

Definition 9.1. Let C be a smooth projective curve of genus g. Given a vector
bundle E on C, its slope is defined to be

µ(E) =
deg(E)
rank(E)

.

We say a vector bundle E is semistable if for any subsheaf E′ ⊆ E we have

µ(E′) ≤ µ(E) .

If E′ ⊆ E is subsheaf, then there exists a unique vector bundle E′′ such that
E′ ⊆ E′′ ⊆ E, E′′/E′ is a torsion sheaf, and E/E′′ is locally free, i.e. E′′ ⊆ E

320
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is a subbundle. We say E′′ is the saturation of E′ in E. Since µ(E′′) ≥ µ(E′), to
check Definition 9.1, it suffices to check for all saturation subbundles E′ ⊂ E.

Lemma 9.2. Let E be a semistable vector bundle on C. Then

(i) If F is a quotient bundle of E, then µ(F) ≥ µ(E).
(ii) The dual bundle E∗ := Hom(E,OC) is semistable with µ(E∗) = −µ(E).

(iii) If E′ is a semistable bundle with slope µ(E) > µ(E′), then Hom(E, E′) = 0.
(iv) If E is a semistable bundle with µ(E) < 0, then H0(C, E) = 0.

Proof (i) If E′ ⊆ E is the kernel of E → F. Then rank(E′) + rank(F) =

rank(E) and deg(E′) + deg(F) = deg(E). So µ(F) ≥ µ(E) if µ(E′) ≤ µ(E).

(ii) To check Definition 9.1, it suffices to check for saturations E′ ⊂ E, i.e.
there is an exact sequence

0→ E′ → E → F → 0 (9.1)

of vector bundles. Taking the dual, we have

0→ F∗ → E∗ → (E′)∗ → 0 . (9.2)

All exact sequences (9.1) and (9.2) are one-to-one correspondence with each
other. Since deg(E) = − deg(E∗), so µ(E) = −µ(E∗). Thus µ(F∗) ≤ µ(E∗) if
and only if µ(E) ≥ µ(F) which is equivalent to µ(E′) ≤ µ(E).

(iii) If there is a non-zero map E → E′, then we let F be the image of E → E′.
Since F is a locally free sheaf, we have

µ(E) ≤ µ(F) ≤ µ(E′) ,

which contradicts to the assumption that µ(E) > µ(E′).

(iv) The assumption and (iii) imply that Hom(OC , E) = 0. �

Lemma 9.3. Assume E is a semistable vector bundle on C. If µ(E) > 2g − 2,
then H1(C, E) = 0; and if µ(E) > 2g − 1, then E is globally generated.

Proof If E is semistable, then its dual E∗ is semistable with slope −µ(E). So
if µ(E) > 2g − 2, as µ(E∗ ⊗ ωC) < 0

H1(C, E)∗ � H0(C, E∗ ⊗ ωC) = 0 .

For any t ∈ C and µ(E) > 2g − 1, let G = E or E(−t), then µ(G) > 2g − 2.
Thus

H0(C,G) = χ(C,G) = rank(E)(1 − g + µ(G)) .
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This implies H0(C, E) = H0(C, E(−t)) + rank(E), i.e.

H0(C, E) −→ H0(k(t), E ⊗ k(t))

is surjective. �

Definition 9.4. For any vector bundle E, there exists a unique filtration,

0 = E0 ( E1 ( · · · ( Eq−1 ( Eq = E , (9.3)

called the Harder-Narasimhan filtration such that

• for any 1 ≤ i ≤ q, the quotient Ei/Ei−1 is a nonzero semistable vector bundle
with slope λi;

• The slopes satisfy λ1 > λ2 > · · · > λq.

We define µmax(E) = λ1, which is the maximal slope of nonzero subbundles
E′ ⊆ E; and µmin(E) = λq the minimal slope of nonzero quotient bundles
E � E′. We call E1 the maximal destabilizing subbundle.

Lemma 9.5. Every vector bundle E on C has a semistable subbundle F with
µ(F) ≥ µ(E).

Proof If E is semistable, then we can take F = E. If E is not semistable,
then there exists a subbundle F ( E such that µ(F) ≥ µ(E). By induction on
the rank, we may assume F contains a semistable subbundle F′, with µ(F′) ≥
µ(F) ≥ µ(E). Since

0→ F/F′ → E/F′ → E/F → 0 ,

F′ is also a subbundle of E. �

Theorem 9.6. Given a vector bundle E over C, there exists a unique Harder-
Narasimhan filtration of E.

Proof We first prove the uniqueness of the Harder-Narasimhan filtration:

0 = E0 ( E1 ( · · · ( Eq−1 ( Eq = E ,

and

0 = E′0 ( E′1 ( · · · ( E′p−1 ( E′p = E .

By induction it suffices to prove, E1 = E′1. First we have µ(E1) = µ(E′1), since
otherwise, if say µ(E1) > µ(E′1), then

Hom(E1, E′i/E
′
i−1) = 0 for i = 1, . . . , p ,
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which absurdly implies Hom(E1, E) = 0. Since µ(E1) = µ(E′1), then

Hom(E1, E/E′1) = 0 ,

thus E1 ⊆ E′1. For the same reason, E′1 ⊆ E1. So E1 = E′1.
Now we prove the existence. If E is semistable, there is nothing to prove. So

we may assume E is not semistable.
There exists m � 0 such that E∗(mP) is globally generated, i.e. there is a

surjection
⊕
OC → E∗(mP), which implies H0(C, E((−m−1)P)) = 0. For any

non-trivial subbundle F ⊆ E,

µ(F) ≤ (m + 1) + 2g − 1 ,

since otherwise, we may assume there is a semistable subbundle F of E by
Lemma 9.5 with µ(F) > (m + 1) + 2g − 1. However, this yields a contradiction
since H0(C, F((−m − 1)P)) , 0 by Lemma 9.3.

We can put a lexicographical order (µ(F), rank(F)) on the set

{ F | F ⊆ E, µ(F) > µ(E) }

which is non-empty by our assumption that E is not semistable. Since the value
µ(F) has an upper bound by the above argument, and it only takes value p

q
(1 ≤ q < rank(E)), this implies there exists a subbundle F which takes the
maximum.

We claim that F is the maximal destabilizing bundle. First we see F is
semistable, since otherwise F does not attain the maximum. By induction on
rank, E/F has a Harder-Narasimhan filtration, with F′ its maximal destabiliz-
ing bundle. It suffices to prove µ(F) > µ(F′). In fact, there is an exact sequence

0→ F → F1 → F′ → 0 .

So µ(F1) < µ(F) by our assumption of F attaining the maximum. This implies
that µ(F) > µ(F1) > µ(F′). �

Lemma 9.7. For a vector bundle E over a smooth projective curve C of genus
g,

(i) if E is globally generated, then µmin(E) ≥ 0;
(ii) if µmin(E) ≥ 2g, E is globally generated.

Proof (i) If E is globally generated, then the same holds for any quotient,
including E/Eq−1, which implies

µmin(E) = µ(E/Eq−1) ≥ µ(
⊕
OC) = 0 .
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(ii) We know there is a filtration,

0 = E0 ( E1 ( · · · ( Eq−1 ( Eq = E ,

such that Ei/Ei−1 is a semistable bundle with slope at least 2g.
By Lemma 9.3, we know H1(C, Ei) = 0 for any i. Moreover,

0 −→ H0(Ei−1) ⊗ OC −→ H0(Ei) ⊗ OC −→ H0(Ei/Ei−1) ⊗ OC −→ 0
↓ ↓ ↓

0 −→ Ei−1 −→ Ei −→ Ei/Ei−1 −→ 0 .

Since the left vertical arrow is surjective by induction, and the right left ver-
tical arrow is surjective by Lemma 9.3, we know the middle vertical arrow is
surjective. �

9.8. For any vector bundle E on the curve C, we can define a filtration FHN on
E by setting

F λ
HNE = Ei ,

where Ei is the subbundle appearing in the Harder-Narasimhan filtration, such
that the semistable vector bundle Ei/Ei−1 has slope at least λ while the slope
of Ei+1/Ei is strictly less than λ. (We set E−1 = 0 and µ(0) = +∞.)

If a subbundle E′ ⊆ E with µmin(E′) ≥ λ, then E′ ⊆ F λ
HNE as

Hom(E′, E/F λ
HNE) = 0

by Lemma 9.2(iii).

Lemma 9.9. Let π : C′ → C be a degree d finite morphism between smooth
projective curves. If E is a semistable vector bundle on C, then π∗E is semistable
with µ(π∗E) = d · µ(E).

Proof We may assume C′ → C is Galois as char(k) = 0. We denote by G the
Galois group. Let F ⊆ π∗(E) be the maximal destabilizing bundle. Since F is
unique, it is G-invariant. Let F1 be invariant elements of F, then F1 induces a
vector bundle on C such that π∗F1 → F is isomorphic outside ram(π).

Let F′1 ⊇ F1 be the saturation of F1 in E. So π∗(F′1) is the saturation of
π∗(F1), in particular π∗F1 ⊆ F ⊆ π∗F′1. Since F is the maximal destabilizing
bundle, we have

π∗F1 = F = π∗F′1 ,

which implies µ(F1) > µ(E). Since E is semistable, this is a contradiction. �

Definition 9.10. A vector bundle E on a projective variety X is called nef
(resp. ample) if the tautological bundle OP(E)(1) is nef (resp. ample) on P(E).
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Theorem 9.11. If E and F are nef (resp. ample) vector bundles over C, then
E ⊗ F is nef (resp. ample).

Proof See (Lazarsfeld, 2004b, Corollary 6.1.16 and Theorem 6.2.12). �

Lemma 9.12. A vector bundle E is nef, if and only if for any finite morphism
π : C′ → C and a quotient π∗E → L line bundle, we have degC′ (L) ≥ 0.

Proof A smooth curve C′ → PE which induces a finite morphism π : C′ → C,
precisely corresponds to a line bundle quotient π∗E → L on C′. Moreover,

degC′ (L) = C′ · OP(E)(1) .

So degC′ (L) ≥ 0 if and only if C′ · OP(E)(1) ≥ 0. �

Proposition 9.13. If a vector bundle E satisfies deg(E) = 0, then E is nef if
and only if it is semistable.

Proof If E is a semistable vector bundle, then for a finite morphism π : C′ →
C from a smooth projective curve, π∗E is semistable. So degC′ (L) ≥ 0 for any
surjection, which implies E is nef by Lemma 9.12.

Conversely, assume E → F is a surjection of vector bundles. Denote rank(F) =

q, then ∧qE → ∧qF is surjective. By Theorem 9.11, ∧qE is nef as char(k) = 0,
which implies deg(F) = deg(∧qF) ≥ 0. �

Lemma 9.14. Let C be a smooth projective curve. Then for any positive integer
d, there exists a finite morphism f : C′ → C from a smooth projective cure such
that d = deg( f ).

Proof This is clear if C � P1, so we assume the genus of C is at least 1. Let L
be a degree one line bundle such that L⊗d � OC(

∑d
i=1 Pi) for d distinct points.

Then we can define a finite OC-algebra O =
⊕d−1

i=0 L⊗−i such that L−d s
−→ OC ,

where div(s) =
∑d

i=1 Pi. So we define C′ = SpecOC
OC′ , which is a cyclic

covering of C with branched points P1, . . . , Pd. �

Proposition 9.15. Let E and E′ be two semistable vector bundles on C, then
E ⊗ F is semistable with µ(E ⊗ F) = µ(E) + µ(F).

Proof By Lemma 9.14, there exists a π : C′ → C such that deg(π) · µ(E) and
deg(π) · µ(F) are integers, denote by a1and a2. Let P ∈ C′ be a smooth point.
Then π∗E(−a1P) and π∗F(−a2P) are semistable with slope 0. So they are nef
by Proposition 9.13. Then Theorem 9.11 says π∗(E ⊗ F)(−(a1 + a2)P) is nef,
with slope equal to 0. Therefore, by Proposition 9.13, it is semistable. Thus
π∗(E ⊗ F) is semistable, which implies E ⊗ F is semistable. �
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We say a vector bundle E is generically globally generated if

H0(C, E) ⊗ OC → E

is globally generated on a nonempty open set U ⊆ C.

Lemma 9.16. Let E be a vector bundle on a smooth curve C. If there exists a
line bundle L such that for every m > 0, (

⊗m
i=1 E) ⊗ L is generically globally

generated, then E is nef.

Proof By Lemma 9.12 it suffices to check for a finite morphism π : C′ → C
from a smooth projective curve and a quotient π∗E → H, deg(H) ≥ 0.

From our assumption, π∗(
⊗m

i=1 E ⊗ L) is generically globally generated,
which implies its quotient H⊗m⊗L has nonzero sections. In particular, deg(H) ≥
0. �

9.1.2 Harder-Narasimhan filtration

Let f : X → C be a flat morphism from an (n + 1)-dimensional integral pro-
jective variety to a smooth projective curve C with f∗(OX) = OC . Denote by
g = g(C) the genus of C, and F the class of a fiber of X → C.

Let L be an f -ample Q-Cartier divisor on X. Assume rL is Cartier. Then for
m ∈ r · N, f∗OX(mL) is locally free since it is torsion free and C is a smooth
curve. We fix a point t ∈ C such that Xt is integral, and the restriction map
f∗OX(mL) → H0(Xt,mLt) is surjective for all m ∈ r · N (this holds when t ∈ C
is general or we replace r by a sufficiently large multiple). Denote by

Rm := f∗OX(mL) (m ∈ r · N) ,

and Nm = rank(Rm).

Definition-Lemma 9.17. Let (Xt, Lt) be a fiber over t ∈ C, and

R :=
⊕
m∈r·N

Rm =
⊕
m∈r·N

H0(Xt,mLt) .

We define a linearly bounded multiplicative filtration on R, called the Harder-
Narasimhan filtration (HN-filtration) FHN, f ,L as follows:

F λ
HN, f ,L(Rm) := Im

(
F λ

HNRm → Rm → Rm ⊗OC k(t) = Rm
)
,

where the filtrations FHN of Rm is given as in 9.8. By abuse of notation, when
f and L are clear in the context, we often abbreviate it to FHN.

Proof Let E be the image of the multiplication map

F λ
HNRm ⊗ F

λ′

HNRm′ → Rm+m′ .
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By Proposition 9.15, we have

µmin(E) ≥ µmin(F λ
HNRm ⊗ F

λ′

HNRm′ )

= µmin(F λ
HNRm) + µmin(F λ′

HNRm′ ) ≥ λ + λ′ ,

hence E ⊆ F λ+λ′

HN Rm+m′ , which implies that FHN on R is multiplicative.
Fix a point P ∈ C. Since L is f -ample, R is a finitely generated OC-algebra.

So we may assume there exists an m0 such that R is generated by Rm (m ≤ m0).
We fix c ∈ Z, such that Rm ⊗ OC(cmP) is globally generated for any m ≤ m0.
Then Rm ⊗ OC(cmP) is globally generated for any m ∈ r · N. This implies that
µmin(Rm) ≥ −cm for all m by Lemma 9.7, thus FHN is linearly bounded from
below.

Similarly, let b ∈ Q>0 be such that N = L − b f ∗P is not pseudo-effective.
Then for m � 1, we have

H0(C,Rm ⊗ OC(−bbmPc)) = H0(C, f∗OX(dmNe)) = H0(X, dmNe) = 0 .

Hence by Lemma 9.3, µmax(Rm ⊗ OC(−bbmPc)) < 2g; equivalently, we have
µmax(Rm) < 2g + bm. This shows that FHN is linearly bounded from above. �

Lemma 9.18. We have S m(FHN) = 1
mNm

degRm.

Proof By definition,

S m(FHN) =
1

mNm

∑
i=1

µ(Ei/Ei−1)rank(Ei/Ei−1)

=
1

mNm

∑
i=1

deg(Ei/Ei−1)

=
1

mNm
degRm .

�

For any c ∈ Q, we have

FHN, f ,L+ f ∗(cP) = (FHN, f ,L)c . (9.4)

Lemma 9.19. We have

λmax(FHN) = sup { c ∈ R | L − c · F is pseudo-effective } . (9.5)

Proof We denote by λ+(L) the right hand side of (9.5).
From the proof of Lemma 9.17, we have seen that λmax(FHN) ≤ λ+(L). Let

c′ < λ+(L) be a rational number. Then M′ = L−c′F is big, thus for sufficiently
divisible m, and a point P ∈ C

H0(X,mM′) = H0(C,Rm ⊗ OC(−mc′P)) , 0 .



328 Positivity of the CM line bundle

In particular, µmax(Rm ⊗ OC(−mc′P)) ≥ 0, which implies that µmax(Rm) ≥ mc′.
By Lemma 3.22, λmax(FHN) ≥ c′. Letting c′ → λ+(L), we obtain λmax(FHN) =

λ+(L). �

Let dνDH,FHN be the Duistermaat-Heckman measure for the filtration FHN on
R.

Theorem 9.20. Denote by Ln · F = V. We have

1
(n + 1)V

vol(L) =

∫ +∞

0
t dνDH,FHN . (9.6)

Proof We may assume L is big, since otherwise both sides of (9.6) are equal
to 0.

The restriction of F 2gRm to Rm is multiplicative for all m ∈ r · N, therefore
{F 2gRm} gives a graded linear system which contains ample sublinear series as
λmax > 0 by Lemma 9.19. For any m, we assume F 2g

HNRm is filtered by vector
bundles,

0 = E0 ( E1 ( · · · Ei−1 ( Ei ,

whose graded bundles E j/E j−1 have slopes at least 2g. Then,

h0(F 2gRm) =

i∑
j=1

h0(E j/E j−1) Lemma 9.3
==

i∑
j=1

χ(E j/E j−1)

=

i∑
j=1

rank(E j/E j−1)(µ(E j/E j−1) + 1 − g) . (9.7)

Let dνm,FHN be the measure defined in (3.14). Thus by Proposition 3.27, we
have

lim
m→∞

1
mNm

h0(F 2gRm) = lim
m→∞

∫ +∞

2g
m

tdνm,FHN + lim
m→∞

rank(F 2gRm)
mNm

(1 − g)

=

∫ +∞

0+

t dνDH,FHN

=

∫ +∞

0
t dνDH,FHN .

Since Rm/F
0Rm admits a filtration with semistable graded bundles of slope

less than 0, by Lemma 9.2(iv), we have

H0(C,Rm/F
0Rm) = 0 .

For F 0Rm/F
2gRm, we fix P ∈ C, and let

E := F 0Rm/F
2gRm ⊗ OC(2gP) .
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Then E is a vector bundle admitting a filtration with semistable graded bundles
of slope in [2g, 4g). Then similar to Lemma 9.7,

h0(F 0Rm/F
2gRm) ≤ h0(E)

≤ rank(F 0Rm/F
2gRm)(4g + 1 − g)

≤ 3gNm .

Therefore,

lim
m→∞

1
mNm

h0(Rm) = lim
m→∞

1
mNm

h0(F 2gRm) + lim
m→∞

1
mNm

h0(Rm/F
2gRm)

= lim
m→∞

1
mNm

h0(F 2gRm) .

So ∫ +∞

0
t dνDH,FHN = lim

m→∞

1
mNm

h0(Rm)

= lim
m→∞

1
mNm

h0(Lm) =
1

(n + 1)V
vol(L) .

�

Corollary 9.21. For t0 ∈ (−∞, λmax), we have

1
V

volX|Xt (L − t0F) =

∫ +∞

t0
dνDH,FHN .

Proof For t ∈ (−∞, λmax), by Theorem 9.20,

vol(L − tF)
(n + 1)V

=

∫ +∞

t
(u − t) dνDH,FHN .

For any ε sufficiently close to 0, we have

1
(n + 1)V

d vol(L + tF)
dt

∣∣∣∣
t=−t0

=

(
d
dt

∫ +∞

t
(t + u) dνDH,FHN

) ∣∣∣∣
t=t0

=

∫ +∞

t0
dνDH,FHN ,

where we use dνDH,FHN is absolute continuous with respect to the Lebesgue
measure in a neighborhood of t0.

By Theorem 1.15,

1
(n + 1)

d vol(L + tF)
dt

∣∣∣∣
t=−t0

= volX|Xt (L − t0F) ,

hence
1
V

volX|Xt (L − t0F) =

∫ +∞

t0
dνDH,FHN .
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�

Lemma 9.22. Assume t ∈ C is general. We have

λmin(FHN) = sup { c ∈ R | L − c · F is nef } . (9.8)

In particular, λmin(FHN) ∈ Q.

Proof We denote by

λ−(L) = sup { c ∈ R | L − c · F is nef } .

We first prove λmin(FHN) ≥ λ−(L). Otherwise, we assume λmin(FHN) ≤ λ−(L),
which implies that

vol(L − λmin(FHN)F) − vol(L − λ−(L)F)

= (L − λmin(FHN)F)n+1 − (L − λ−(L)F)n+1

= (n + 1)(λ−(L) − λmin(FHN))V . (9.9)

By Theorem 9.20, we know that for any c ≥ λmin(FHN),

1
(n + 1)V

vol(L − cF) =

∫ +∞

c
(t − c) dνDH,FHN .

Inserting this into (9.9),

λ−(L) − λmin(FHN)

=
1

(n + 1)V
(vol(L − λmin(FHN)F) − vol(L − λ−(L)F))

=

∫ +∞

λmin(FHN)
(t − λmin(FHN))dνDH,FHN −

∫ +∞

λ−(L)
(t − λ−(L))dνDH,FHN

=

∫ +∞

λmin(FHN)
(λ−(L) − λmin(FHN))dνDH,FHN +

∫ λ−(L)

λmin(FHN)
(t − λ−(L))dνDH,FHN

= λ−(L) − λmin(FHN) +

∫ λ−(L)

λmin(FHN)
(t − λ−(L))dνDH,FHN .

However, ∫ λ−(L)

λmin(FHN)
(t − λ−(L)) dνDH,FHN ≤ 0 ,

and the equality holds if and only if λ−(L) = λmin(FHN).

Assume λmin(FHN) > λ−(L). Fix λ ∈ (λ−(L), λmin(FHN)), then in particular
L − λ · F is not nef. Let µ : Y → X be a resolution. Since t ∈ C is general,
µt : Yt → Xt is birational. So there is an irreducible curve C′ ⊆ Y such that
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C′ → C is finite and µ∗(L − λ · F) · C′ < 0. Therefore C′ ⊆ B−(L − λF). By
Proposition 1.63, for the divisor E obtained by blowing up C′, we have

c := ordE(‖L − λF‖) > 0 ,

so ordE(Bs|m(L − λF)|) ≥ mc, thus

H0(X,m(L − λF)) ⊆ F cm
E H0(mL) .

So

Im
(
H0(X,m(L − λF))→ H0(Xt,mLt)

)
⊆ Im

(
F cm

E Rm → H0(Xt,mLt)
)
.

Let η ∈ C be the generic point, and Eη the restriction of E over η. Then for the
restriction Rm → Rη,m := Rm ⊗OC k(η) satisfies

F λ
ERm

��

// F λ
Eη

Rη,m

��

Rm // Rη,m .

So

volX|Xt (L − λF) = lim
m→∞

n!
mn dim Im

(
H0(X,m(L − λF))→ H0(Xt,mLt)

)
≤ lim

m→∞

n!
mn dim Im

(
F cm

E Rm → H0(Xt,mLt)
)

= lim
m→∞

n!
mn rank(F cm

E Rm)

= lim
m→∞

n!
mn dimK(C) F

cm
Eη

Rη,m

< volXt (Lt) ,

which is contradictory with Corollary 9.21 as λ < λmin(F ). This implies λ−(L) ≥
λmin(FHN).

To prove the last claim, it suffices to show that the right hand side of (9.8)
is a rational number. Since L − λ−(L) · F is nef but not ample, by the Nakai-
Moishezon criterion, we have

(L − λ−(L) · F)d · Z = 0

for some irreducible subvariety Z ⊆ X of dimension d, which reduces to

Ld · Z = dλ−(L) · (Ld−1 · F · Z) .

This implies λ−(L) ∈ Q. �
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Lemma 9.23. In the above notation. Let π : C′ → C be a finite morphism
between smooth projective curves and denote by d = deg(π). Let f ′ : X′ :=
X ×C C′ → C′ and L′ the pull back of L. Let t ∈ C′ such that X′t is integral and
we identify X′t = Xπ(t). Then F dλ

HN, f ′ = F λ
HN, f .

Proof By Lemma 9.9, the pull back of a semistable vector bundle with slope
µC by π : C′ → C is semistable with slope d · µC . So the Harder-Narashimhan
filtration of f ′∗ (mL′) is precisely the pullback of the Harder-Narashimhan fil-
tration of Rm = f∗(mL). Therefore, the induced filtration FHN, f ′ on⊕

m∈r·N

H0(−m(KX′t + ∆′t′ )) � R

satisfies that F dλ
HN, f ′R = F λ

HN, f R. �

9.2 Semi-positivity of CM line bundles

The resources of semi-positivity of CM line bundles come from two places:
the semi-positivity of pushforwards and the positivity from K-stability.

9.2.1 Semi-positivity of pushforwards

9.24. Let f : X → C be a flat morphism from a normal variety X to a smooth
projective curve C, with reduced fibers. Let

X(m) := X ×C X ×C · · · ×C X︸                   ︷︷                   ︸
m-times

and f (m) : X(m) → C be the natural morphism which is flat. Denote by pi : X(m) →

X the i-th projection. Since X is normal, Xt is S 2 and R1 for a general t ∈ C, so
Xm

t := Xt × Xt × · · · × Xt︸                ︷︷                ︸
m-times

is S 2 and R1. Moreover, for any t0 ∈ C, Xt0 is reduced,

so Xm
t0 is reduced, i.e. S 1 and R0. This implies X(m) is normal.

Assume f is proper, and L is a line bundle on X. Denote by L(m) the line
bundle

⊗m
i=1 p∗i L. Let qm : X(m) → X(m−1) be the projection to the first (m − 1)

factors. Then

f (m)
∗ (L(m)) = f (m)

∗ (q∗mL(m−1) ⊗ p∗mL)

= f (m−1)
∗ qm∗(q∗mL(m−1) ⊗ p∗mL)

= f (m−1)
∗ (L(m−1) ⊗ qm∗p∗mL) (by projection formula)

= f (m−1)
∗ (L(m−1) ⊗ f (m−1)∗ f∗L) (by flat base-change)

= f (m−1)
∗ (L(m−1)) ⊗ f∗L (by projection formula) .
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So by induction f (m)
∗ (L(m)) =

⊗m
i=1 f∗L.

Theorem 9.25. Let f : X → C be a projective flat morphism from a normal
variety to a smooth projective curve with reduced fibers. Let ∆ be an effective
Q-divisor and L a Cartier divisor. Assume

(i) KX + ∆ is Q-Cartier and a general fiber (Xt,∆t) is klt,
(ii) L − KX/C − ∆ is nef and f -ample.

Then f∗(L) is a nef vector bundle.

Proof Using notation above, we have

m⊗
i=1

f∗OX(L) ⊗ ωC(2t) � f (m)
∗ OX(m) (L(m)) ⊗ ωC(2t)

� f (m)
∗ OX(m) (L(m) + f (m)∗KC + 2X(m)

t ) , (9.10)

where X(m)
t = X(m) ×C t for a general t ∈ C. We have

L(m) = (L − KX/C − ∆)(m) + (KX/C + ∆)(m) ,

where for a Q-divisor D on X, D(m) =
∑m

i=1 π
∗
i D. Let

N := L(m) + f (m)∗KC + 2X(m)
t .

Then

N − X(m)
t = (L − KX/C − ∆)(m) + X(m)

t + (KX + ∆)(m)

= (L − KX/C − ∆)(m) + X(m)
t + (KX(m) + ∆(m)) ,

so

H1(X(m),OX(m) (N)(−X(m)
t ) ⊗ I(X(m),∆(m))) = 0

by Nadel Vanishing Theorem as (L − KX/C − ∆)(m) + X(m)
t is ample. Since

(X(m)
t ,∆X(m)

t
) is klt, the multiplier ideal I(X(m),∆(m)) has its cosupport over spe-

cial fibers. Therefore,

H0(X(m),OX(m) (N) ⊗ I(X(m),∆(m)))

��

// H0(X(m)
t ,OX(m) (N)

|X(m)
t

) // 0

H0(X(m),OX(m) (N))

44

By (9.10), this implies that
⊗m

i=1 f∗OX(L) ⊗ ωC(2t), is generically globally
generated. By Lemma 9.16, f∗(L) is nef. �
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We need a semi-positivity result on the pushforward of the pluri-canonical
sheaves. This topic has been well studied in the literature, see Fujita (1978),
Kawamata (1981), Viehweg (1989), Kollár (1990) and Fujino (2018). Here we
only need some basic versions where we assume the fiber is klt and the base is
a curve.

Theorem 9.26. Let f : X → C be a projective morphism from a normal variety
to a smooth projective curve C. Let ∆ be an effectiveQ-divisor such that KX +∆

isQ-Cartier, and (Xt,∆t) is klt for a general t ∈ C. Then for any positive integer
m such that OX(m(KX/C + ∆)) is Cartier, f∗OX(m(KX/C + ∆)) is a nef vector
bundle on C.

Proof Let π : Y → (X,∆) be a log resolution. Write π∗(KX +∆) = KY +∆1−∆2

where ∆1 and ∆2 are effective without common components. Then

f∗OX(m(KX/C + ∆)) = ( f ◦ π)∗OY (m(KY/C + ∆1))

⊇ ( f ◦ π)∗OY (m(KY/C + {∆1})) ,

which is isomorphic over general points. So we conclude by (Fujino, 2017,
Theorem 1.1) for (Y, {∆1}). �

We also need the case that the general fiber is a log Calabi-Yau pair.

Theorem 9.27. Let f : X → C be a projective morphism from a normal variety
to a smooth projective curve C. Let ∆ be an effectiveQ-divisor such that (Xt,∆t)
is klt for a general t ∈ C. Assume KX/C + ∆ ∼Q f ∗L, then L is pseudo-effective.

Proof This easily follows from the canonical bundle formula. See e.g. Kawa-
mata (1998), Fujino and Mori (2000) and Kollár (2007). �

9.2.2 CM line bundle

In this section we recall the definition and some basic properties of CM line
bundles.

9.28 (Knudsen-Mumford expansion). Let f : X → S be a flat proper mor-
phism, with n-dimensional equi-dimensional fibers. Let L be a f -ample line
bundle on X. Then there uniquely exist line bundlesMi(L) (0 ≤ i ≤ n + 1) over
S , such that for m � 0, the following isomorphism

det f∗OX(mL) �
n+1⊗
i=0

Mi(L)⊗(
m
i ) (9.11)

holds. See Knudsen and Mumford (1976).
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Definition 9.29. Let f : (X,∆) → S be a family of log Fano pairs over S . Let
L = ω[−r]

X/S (−r∆) (see Paragraph 7.4) be an ample line bundle on X. By (9.11),
for m � 0,

det f∗OX(mL) �
n+1⊗
i=0

Mi(L)⊗(
m
i ) .

The Chow-Mumford (CM) Q-line bundle of the family of log Fano pairs
f : (X,∆)→ S is defined as

λ f := −
1

rn+1Mn+1(L) ,

which clearly does not depend on the choice of r.

The formation of CM line bundle is compatible with base change in the
following sense.

Proposition 9.30. Let f : (X,∆) → S be a family of log Fano pairs and let
π : S ′ → S be a morphism. Let f ′ : (X′,∆′) → S ′ be the base change of f to
S ′.

X′

f ′

��

πX // X

f
��

S ′ π // S

(9.12)

Then there exists a canonical isomorphism λ f ′ � π
∗λ f .

Proof By Definition 7.19, we know π∗X(ω[−r]
X/S (−r∆)) = ω[−r]

X′/S ′ (−r∆′). So for a
sufficiently divisible m, we have

f ′∗π
∗
X(ω[−m]

X/S (−m∆)) = π∗ f∗ω
[−m]
X/S (−m∆) ,

which implies in the Knudsen-Mumford expansion,

π∗(Mi(ω
[−r]
X/S (−r∆))) =Mi(ω

[−r]
X′/S ′ (−r∆′)) ,

When i = n + 1, and divided by rn+1, we have π∗(λ f ′ ) � λ f . �

Corollary 9.31. The CM line bundle can be defined for a family of log Fano
pairs f : (X,∆)→ S over an algebraic stack S .

Definition 9.32. We denote by λCM the CM (Q-)line bundle on the moduli
stack XK

n,N,V for the universal family

f : UnivK
n,N,V → X

K
n,N,V .

Proposition 9.33. There exists a positive integer M, such that M·λCM descends
to the good moduli space XK

n,N,V .
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Proof By Theorem 8.4, it suffices to show that for any closed point z ∈ XK
n,N,V ,

the stabilizer of z acts trivially on the fiber M · λCM, for some integer M =

M(n,N,V) which does not depend on z.
Let r be a positive integer such that r(KX + ∆) is Cartier. So rn+1λCM is

Cartier corresponding to a line bundle L. A closed k-point x of XK
n,N,V corre-

sponds to a K-polystable log Fano pair (X,∆) over k. Its automorphism group
G := Aut(X,∆) is a reductive linear algebraic group by Theorem 8.16. Let G0

be the connected component of the identity of G. For every one parameter sub-
group ξ : Gm → G0, we obtain a product test configuration X whose ∞-trivial
compactification is denoted by π : X → P1. Then we can write

π∗OX(−m(K
X/P1 + ∆)) �

n+1⊗
i=0

M
⊗(m

i )
i .

Since (Mn+1)|{0} = Lx,

deg(Mn+1) = −(weight of the Gm-action ξ on (Mn+1)|{0}) ,

and the left hand is equal to

(n + 1)(−KX − ∆)n · Fut(X,∆X) = (n + 1)(−KX − ∆)n · Fut(X,∆, ξ) = 0

(see Proposition 2.18), the representation of G0 on L is trivial.
Let Isom(XK

n,N,V ) be the inertia stack of XK
n,N,V . Let Isom0(XK

n,N,V ) ⊆ Isom(XK
n,N,V )

be the group scheme of connected components over XK
n,N,V . Since Isom(XK

n,N,V )
is of finite type, then

µ : I := Isom(XK
n,N,V )/Isom◦(XK

n,N,V )→ XK
n,N,V

is quasi-finite. Therefore, |µ−1(x)| is bounded by a constant for any closed point
x ∈ XK

n,N,V . So we may assume there exists a positive integer M0 divided by
|µ−1(x)| for any x ∈ XK

n,N,V . Thus L⊗M0 descents to XK
n,N,V . �

Definition 9.34. We denote by ΛCM the descent of λCM as a Q-line bundle on
XK

n,N,V .

9.2.3 Semi-positivity of CM line bundles

Let f : (X,∆)→ C be a family of log Fano pairs over a smooth projective curve
C and r a positive integer such that r(KX/C +∆) is Cartier. Assume L = −KX−∆

is ample over C and (Xt,∆t) is klt for a general t ∈ C. Fix a general t. Denote
by FHN the Harder-Narasimhan filtration defined as in Definition-Lemma 9.17
on

R =
⊕
m∈r·N

Rm =
⊕
m∈r·N

H0(Xt,−m(KXt + ∆t)) .
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Denote by Nm = dim Rm and V = (−KXt − ∆t)n.

Lemma 9.35. We have

(i) deg λ f = −(n + 1)V · S (FHN), and
(ii) deg(λ f ) = −(−KX/C − ∆)n+1.

Proof (i) Let Rm := f∗OX(mL) so that Rm = Rm ⊗ k(t). By Lemma 9.18,

S m(FHN) =
1

mNm
degRm .

By (9.11), we have

deg λ f = − lim
m→∞

(n + 1)!
mn+1 degRm ,

so

deg λ f = − lim
m→∞

(n + 1)
n! dim Rm

mn · S m(FHN)

= −(n + 1)V · S (FHN) . (9.13)

(ii) By Lemma 9.22, let c ∈ Q be the nef threshold of − f ∗P with respect to
−KX/C − ∆, i.e. L := −KX/C − ∆ − c f ∗P is nef but not ample.

So

(−KX/C − ∆)n+1 − c(n + 1)V

= Ln+1

= (n + 1)V
∫ +∞

0
tdνFHN, f ,L by Theorem 9.20

= (n + 1)V
∫ +∞

−∞

tdνFHN, f ,L by Lemma 9.22

= (n + 1)VS (FHN, f ,L)

= (n + 1)V(S (FHN) − c) by (9.4)

= − deg(λ f ) − (n + 1)Vc by (i) ,

which implies (−KX/C − ∆)n+1 = − deg(λ f ). �

Lemma 9.36. We have µ(FHN) ≤ 0.

Proof Suppose that this is not the case, i.e. µ(FHN) > 0, then we also have
µ(FHN, δ) > 0 for some δ > 1 by Lemma 3.46. Choose a rational ε such that
0 < 2ε < µ(FHN, δ), then by the definition of δ-log canonical slope, the pair
(Xt,∆t + 1

m Im,2εm) is klt for a sufficiently divisible m.
On the other hand, for any P ∈ C, F 2εm

HN Rm is the fiber of

F 2εm
HN Rm � F

εm
HN (Rm ⊗ OC(−mεP))
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at t ∈ C. Hence by Lemma 9.7, if m � 0 such that εm ≥ 2g, then every element
of F 2εm

HN Rm can be lifted to a global section of Rm ⊗OC(−mεP), i.e. an element
of H0(X,−m(KX/C + ∆) − mε f ∗P). Let

f ∈ H0(X,−m(KX/C + ∆) − mε f ∗P)

be a lift of a general member of F 2εm
HN Rm and let D = 1

m div( f ).
By construction we know that

KX/C + ∆ + D ∼Q −ε f ∗P

and (Xt,∆t + Dt) is klt for t ∈ C. Then Theorem 9.27 implies that KX/C + ∆ +

D ∼Q f ∗Q for some pseudo-effective divisor Q on C, which is a contradiction
to ε > 0. �

Corollary 9.37. We have

deg λ f ≥ (n + 1)V · D(FHN) .

In particular, if (Xt,∆t) is K-semistable for a general t ∈ C, then deg λ f ≥ 0

Proof As D(FHN) = µ(FHN) − S (FHN), this is an immediate consequence of
Lemma 9.35 and 9.36. �

Using a similar strategy, we can also bound the nef threshold of the CM line
bundle.

Proposition 9.38. Assume for (Xt,∆t), D(FHN, δ) ≥ 0 for some δ > 1. Then

−(KX/C + ∆) +
δ

(n + 1)V(δ − 1)
f ∗λ f

is nef.

Proof First assume that δ ∈ Q. By our assumption, we have

µ(FHN, δ) ≥ S (FHN) = −
deg λ f

(n + 1)V
.

Fix two rational numbers

λ > λ′ >
deg λ f

(n + 1)V
.

Since −λ′ < µ(FHN, δ), there exists m � 0 and some G ∈ |F −mλ′
HN Rm| such that

(Xt,∆t + δ
mG) is klt. We may also assume m(λ − λ′) ≥ 2g + 2. By Lemma 9.7,

we can lift G to a section in

H0
(
C,F 2g

HN
(
Rm ⊗ OC(d(mλ′ + 2g)Pe)

))
⊆ H0(X,OX(−m(KX/C+∆)+bmλc f ∗P)) .
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Hence we get an effective Q-divisor

D ∼Q −(KX/C + ∆) + λ f ∗P , (9.14)

such that (Xt,∆t + δDt) is klt.
By Theorem 9.26, this implies that f∗OX(m(KX/C + ∆ + δD)) is nef for all

sufficiently divisible m ∈ N and hence

f∗OX(m(KX/C + ∆ + δD)) ⊗ OC(2gP)

is globally generated by Lemma 9.7, which implies

H0(m(KX/C +∆+δD)+2g f ∗P)⊗OX → f ∗ f∗OX(m(KX/C +∆+δD))⊗ f ∗OC(2gP)

is surjective. As

KX/C + ∆ + δD ∼C,Q −(δ − 1)(KX/C + ∆)

is f -ample, it follows that for a sufficiently divisible m,

f ∗ f∗OX(m(KX/C + ∆ + δD))→ OX(m(KX/C + ∆ + δD))

is surjective. Thus OX(m(KX/C + ∆ + δD) + 2g f ∗P) is globally generated for
any sufficiently divisible m ∈ N. Letting m→ ∞ we deduce that

KX/C + ∆ + δD ∼Q −(δ − 1)(KX/C + ∆) + δλ f ∗P

is nef. As λ > deg λ f

(n+1)V is arbitrary, we see that

−(KX/C + ∆) +
δ

(n + 1)V(δ − 1)
f ∗λ f

is nef.
In the general case, let δ′ ∈ Q ∩ (1, δ). If DXt ,∆t (FHN, δ) ≥ 0, then we also

have DXt ,∆t (FHN, δ
′) ≥ 0. The above argument implies that

−(KX/C + ∆) +
δ′

(n + 1)V(δ′ − 1)
f ∗λ f

is nef. Letting δ′ → δ, we finish the proof. �

Corollary 9.39. Assume that DXt ,∆t (FHN, δ) ≥ 0 for some δ > 1. Let M ≥
δ

(n+1)V(δ−1) and a positive integer m such that m(−(KX/C + ∆) + 2M f ∗λ f ) is
Cartier. Then

f∗OX

(
m(−(KX/C + ∆) + 2M f ∗λ f )

)
is nef.
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Proof Let L = m(−(KX/C + ∆) + 2M f ∗λ f ), then

L − KX/C − ∆ = (m + 1)(−(KX/C + ∆) + M f ∗λ f ) + (m − 1)M f ∗λ f

is nef by Proposition 9.38 and f -ample over C. Thus the claim follows from
Theorem 9.25. �

9.3 Twisted families

In this section, we show that after a suitable modification, one can construct
a twisted family whose HN-filtration is the twist of the original HN-filtration.
Let T be a split torus, i.e. T � G

p
m for some p ∈ N. Denote the weight lattice

by M(T) = Hom(T,Gm) and the coweight lattice by N(T) = Hom(Gm,T). Let
f : X → S be a projective morphism with a fiberwise T-action and let H be a
T-linearized f -ample Q-line bundle on X. Let r be a positive integer such that
rH is a line bundle. For any m ∈ r · N, we have the weight decomposition

Rm := f∗OX(mH) =
⊕
α∈M(T)

Rm,α .

9.3.1 Twisted families

Definition 9.40 (Twist a family). Let A be a Cartier divisor on S and ξ ∈ N(T).
Then the ξ-twist fξ : (Xξ,Hξ)→ S of f : (X, L)→ S along A is defined to be

fξ :
(
Xξ = ProjS

⊕
m∈r·N

⊕
α∈M

Rm,α ⊗ OS (〈α, ξ〉 · A),Hξ

)
→ S , (9.15)

where Hξ = 1
rOXξ (r) and OXξ (r) arises from the grading. Note that over any

Zariski open set U of S where A|U � OU , (Xξ,Hξ)|U is isomorphic to (X,H)|U .
If Z ⊆ X is a T-invariant closed subscheme, then Zξ is naturally a closed sub-
scheme of Xξ. Therefore, for a Q-divisor ∆ =

∑
ai∆i of X, we can define the

Q-divisor ∆ξ =
∑

ai(∆i)ξ of Xξ.

In particular, fξ∗OXξ (mHξ) =
⊕

α∈M Rm,α ⊗ OS (〈α, ξ〉 · A).

Lemma 9.41. Let f : (X,∆) → S be a projective morphism between normal
projective varieties such that (X,∆) admits a fiberwise T-action. We assume
H = −(KX/S + ∆) is ample. Let ξ ∈ N(T). Then in the notation of Definition
9.40, we have Hξ = −(KXξ/S + ∆ξ).

Proof Let {Ui} be an open covering of S such that on each Ui there is a local
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trivialization ϕi : OUi (A|Ui ) � OUi and m ∈ r ·N. Over Ui j = Ui ∩U j, it induces
an invertible element

ϕi j = ϕ j ◦ ϕ
−1
i ∈ O

×
Ui j
.

Over each Ui j, and for each α we have an isomorphism

ϕ
〈α,ξ〉
i j : Rm,α ⊗ OUi j � Rm,α ⊗ OUi j .

for all α. So (Xξ,∆ξ,OXξ (r)) is obtained by gluing {(X,∆,OX(r))|Ui }i via iso-
morphisms

(X,OX(r))|Ui j → (X,OX(r))|Ui j , (x, s) 7→ (φξ(ϕi j) · x, φξ(ϕi j) · s)

given by the composition Ui j
ϕi j
→ Gm

φξ
→ T. Similarly, (Xξ,∆ξ, ω

[−r]
Xξ/S

(−r∆ξ)) is

obtained by gluing {(X,∆, ω[−r]
X/S (−r∆))|Ui }i via isomorphisms

(X, ω[−r]
X/S (−r∆))|Ui j → (X, ω[−r]

X/S (−r∆))|Ui j , (x, s) 7→ (φξ(ϕi j) · x, φξ(ϕi j) · s) .

Since on X, there is an isomorphism OX(r) � ω[−r]
X/S (−r∆)), it implies there is an

isomorphism OXξ (r) � ω[−r]
Xξ/S

(−r∆ξ). This yields Hξ = −(KXξ/S + ∆ξ). �

Corollary 9.42. Let T be a torus and let f : (X,∆) → S be a family of log
Fano pairs. We assume Fut(Xt,∆t, ξ) = 0 for any ξ ∈ N(T) for a general t ∈ S .
Then for any Cartier divisor A on S we have λ f ∼Q λ fξ .

Proof By the definition of CM line bundle,

c1( f∗OX(mH)) = −
mn+1

(n + 1)!
λ f + O(mn) .

For sufficiently large m ∈ r · N,

c1( fξ∗(mHξ)) = c1( f∗(mH)) +
∑
α

rank(Rm,α)〈α, ξ〉 · A .

By Definition 2.39, we have

λ fξ ∼Q λ f + (n + 1)V · Fut(Xt,∆t, ξ) · A .

The result follows from the assumption that Fut(Xt,∆t, ξ) = 0. �

9.3.2 Twisted Harder-Narasimhan filtration

Assume S = C is a smooth curve and f : (X,∆) → C be a family of log Fano
pairs over a smooth projective curve C. Set H = −KX/C − ∆. Fix a general
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t ∈ C, let (Xt,∆t) be the fiber which is a log Fano pair. Denote by FHN the
Harder-Narasimhan filtration on

R =
⊕
m∈r·N

Rm =
⊕
m∈r·N

H0(Xt,−m(KXt + ∆t))

defined as in Definition-Lemma 9.17. Denote by Nm = dim Rm and V =

(−KXt − ∆t)n.

Lemma 9.43. For ξ ∈ N(T), let fξ : (Xξ,∆ξ)→ C be the ξ-twist of f , then

FHN, fξ = (FHN, f )deg(A)·ξ .

Proof By Lemma 9.41, FHN, fξ is computed for fξ : (Xξ,Hξ = −(KXξ/C +

∆ξ))→ C as in (9.15). Since we have a weight decomposition Rm =
⊕

α Rm,α,
the Harder-Narasimhan filtration satisfies

F λ
HNRm =

⊕
α

(
F λ

HNRm ∩ Rm,α

)
,

and the Harder-Narasimhan filtration of Rm,α ⊗ OC(〈α, ξ〉 · A) comes from the
one of Rm,α tensoring with OC(〈α, ξ〉 · A). Thus for all λ,m,

F λ
HN, fξRm,α = Im

((
F λ

HN, fξ fξ∗OXξ (mHξ)
)
α
→ Rm,α

)
= Im

(
F λ

HN
(
Rm,α ⊗ OS (〈α, ξ〉 · A)

)
→ Rm,α

)
= Im

(
F
λ−deg(A)〈α,ξ〉

HN Rm,α → Rm,α

)
= F

λ−deg(A)〈α,ξ〉
HN, f Rm,α = (FHN, f )λdeg(A)·ξRm,α ,

i.e. FHN, fξ = (FHN, f )deg(A)·ξ. �

Let C′ → C be a finite morphism between smooth projective curves and
t′ ∈ C′ whose image on C is t. Let (X′,∆′) = (X,∆) ×C C′, and we identify
(X′t′ ,∆

′
t′ ) = (Xt,∆t).

Lemma 9.44. We have
(i) S (FHN) ∈ Q, and

(ii) for any ξ ∈ NQ(T), λmin((FHN)ξ) ∈ Q.

Proof (i) By Lemma 9.35, S (FHN) is a rational multiple of deg λ f , which is
rational as λ f is a Q-line bundle.

(ii) Let d be a positive integer such that dξ ∈ N(T). Let C′ → C be a finite
morphism of degree d given by Lemma 9.14. Let P ∈ C′ be a smooth point
and consider the (dξ)-twist g : (X′dξ,∆

′
dξ) → C′ of f ′ along P. Let FHN,g be
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filtration on R induced by the the Harder-Narasimhan filtration for g. Putting
together Lemma 9.23 and Lemma 9.43, we know

F λ
HN,gR = (FHN)λ/dξ R .

Hence λmin(FHN,g) = d · λmin((FHN)ξ). By Lemma 9.22, λmin(FHN,g) ∈ Q, thus
λmin((FHN)ξ) ∈ Q as well. �

Proposition 9.45. Fix α, η > 0. Assume that (Xt,∆t) is reduced uniformly
Ding stable with slope at least η > 0, T ⊆ Aut(Xt,∆t) is a maximal torus and
α(Xt,∆t) ≥ α. Then there exists some constant δ = δ(η, n, α) > 1 such that
D((FHN)ξ, δ) ≥ 0 for some ξ ∈ NQ(T).

Proof By assumption, Fut(Xt,∆t, ξ) = 0 for all ξ. It follows from Theorem
6.33 and Proposition 6.6 that there exists some ξ0 ∈ NR(T) such that

D((FHN)ξ0 ) ≥ η · J((FHN)ξ0 ) .

We claim that for some ξ ∈ NQ(T),

D((FHN)ξ) ≥
η

2
· J((FHN)ξ) . (9.16)

If J((FHN)ξ0 ) > 0 this follows from D((FHN)ξ) = D(FHN) and the continuity
of J((FHN)ξ) with respect to ξ by Proposition 6.6.

So we may assume J((FHN)ξ0 ) = 0, i.e.,

λmax((FHN)ξ0 ) = λmin((FHN)ξ0 ) = S ((FHN)ξ0 ) =: λ0 . (9.17)

By Lemma 6.4, S ((FHN)ξ0 ) = S (FHN) , thus λ0 ∈ Q by Lemma 9.44(i). This
implies dνDH,T,(FHN)ξ0 supports over P × λ0. It follows from Lemma 6.5 that for
any ξ, dνDH,(FHN)ξ supports on[

λmin((FHN)ξ), λmax((FHN)ξ)
]

=
[
λ0 + min

α∈P
〈α, ξ − ξ0〉, λ0 + max

α∈P
〈α, ξ − ξ0〉

]
.

In particular, for any ξ ∈ NQ(T), by Lemma 9.44(ii),

λmin((FHN)ξ) = λ0 + min
α∈P
〈α, ξ − ξ0〉 ∈ Q .

Since P is a rational polytope in MR(T), this can only be true if ξ0 ∈ NQ(T),
and (9.16) holds if we choose ξ = ξ0.

Then the statement follows from Theorem 3.50. �

Putting all these results together, we have the following.
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Corollary 9.46. Notation and assumptions as in Proposition 9.45. Then there
exists a constant δ = δ(η, n, α) > 1 such that for any finite cover C′ → C of a
sufficiently divisible degree, we can find ξ ∈ N(T) which satisfies that

D(FHN,g, δ) ≥ 0 ,

where g : (X′ξ,∆
′
ξ) → C′ is the ξ-twist of (X,∆) ×C C′ along a smooth point

P ∈ C′.

Proof By Proposition 9.45, there exists δ = δ(η, n, α) > 1 and ξ0 ∈ NQ(T)
such that D((FHN)ξ0 , δ) ≥ 0. Let C′ → C be a finite cover of degree d with
dξ0 ∈ N(T). Let ξ = dξ0 and let g be the ξ-twist of (X,∆)×C C′ along a smooth
point P ∈ C′. Then by Lemma 9.23 and Lemma 9.43, for any λ and m,

F λ
HN,gRm = (FHN)λ/dξ0

Rm .

Hence D(FHN,g, δ) = d · D((FHN)ξ0 , δ) ≥ 0. �

9.4 Positivity of CM line bundle

In this section, we aim to prove

Theorem 9.47. The CM line bundle ΛCM is ample on XK
n,N,V .

By (8.6), it suffices to show ΛCM is ample on XK
n,N,h for each fixed Hilbert

function h.

9.4.1 Universal constants

For fixed n,N and h, we fix some constants which only depend on XK
n,N,h. We

call them universal constants.
We fix an positive integer M = M(n,N, h) such that L0 := −M(KX + ∆) is

a very ample Cartier divisor with an embedding X → PN0 for any [(X,∆)] ∈
XK

n,N,h with N0 = h(M) − 1. Moreover, we assume for any positive integer m,

SymmH0(X, L0)→ H0(X,mL0) (9.18)

is surjective.

For a fixed M as above, let {gi}i∈I be all possible Hilbert polynomials of
D = Supp(∆) in (PN0 ,O(1)) for some [(X,∆)] ∈ XK

n,N,h. There are only finitely
many such gi (see 7.37). We fix a positive integer r = r(M) and set L := rL0,
such that for any

D′ ⊂ X ⊂ (PN0 ,O(1)) ,
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where [(X,∆)] ∈ XK
n,N,h for some ∆, and the Hilbert polynomial of D′ is gi

for some i ∈ I, it satisfies that for any positive integers j and m, we have
H j(D′,mL) = 0, and

H0(X,mL)→ H0(D′,mL) (9.19)

is surjective. In particular, |L| embeds X into PN1 , where N1 = dim H0(X, L) −
1 = h(rM) − 1.

For the fixed choice of M and r, we fix another positive integer d = d(M, r)
such that if we denote by IX and ID′ the ideal sheaves of X and D′ in PN1 , then

IX(−dL) and ID′ (−dL) are globally generated . (9.20)

Let q0 = h0(X, dL) = h(drM) and q1 = h0(D, dL) = gi(dr) for some i (so there
are finitely many possible q1).

Applying Exercise 8.8 to the universal family

(UnivK
n,N,h,∆UnivK

n,N,h
)→ XK

n,N,h ,

we can stratify the K-polystable locus into finitely many disjoint unions
⊔

Ti

with the pull back families (Xi,∆i)→ Ti, such that for each i, there is a surjec-
tive base change S i → Ti, with the group scheme

GS i := Isom(XK
n,N,h) ×XK

n,N,h
S i → S i (9.21)

is smooth, and admits a maximal split torus Ti × S i. In particular, by Theorem
6.41 and Theorem 7.32, we can fix a uniform η > 1 which only depends on
XK

n,N,h, such that for any K-polystable log Fano pair [(X,∆)] ∈ XK
n,N,h(k̄), and a

maximal torus T ⊆ Aut(X,∆),

δT(X,∆) ≥ η . (9.22)

For a fixed η as above, we fix a rational number δ > 1 given by Proposition
9.45, which only depends on n,N and h as so do both η and α.

For fixed δ and r as above, we fix a positive integer r0 such that

r0 ≥
2rMδ

V(δ − 1)(n + 1)
and r0λCM is Cartier . (9.23)

Let

AXK
n,N,h

:= −rM(KUnivK
n,N,h/X

K
n,N,h

+ ∆UnivK
n,N,h

) + r0λCM (9.24)

be the Cartier line bundle on UnivK
n,N,h.

Fix c < 1
δ−1 such that for any [X,∆] ∈ XK

n,N,h,

− KX − (1 + c)∆ (9.25)
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is a big Q-divisor.
We denote by Vmin to be

min
{
V, min

i
(−KX − ∆)n−1 · ∆i

}
,

where the minimum runs through all [(X,∆)] ∈ XK
n,N,h and components ∆i of D.

Similarly, we define Vmax to be

max
{
V, min

i
(−KX − ∆)n−1 · ∆i

}
,

where the maximum runs through all [(X,∆)] ∈ XK
n,N,h and components ∆i of

D.

9.4.2 The ampleness lemma

One main ingredient of the proof is the ampleness lemma. We start with some
general construction.

9.48 (Universal basis). Let V be a vector bundle on a quasi-projective variety
S with rank v.

Let P = PS (⊕v
i=1V∗) be the projectivized space. Then a point on P corre-

sponds to v vectors in V , which we regard as a matrice with columns in V . Let
π : P → S be the projection. Consider the universal basis map ⊕v

i=1OP(−1) →
π∗V , or equivalently

ζ : O⊕v
P → π∗V ⊗ OP(1) ,

sending a matrix to its columns. Let Γ ⊆ P be the divisor of matrices of deter-
minant zero. Then ζ is surjective outside Γ.

Assume there is a surjection to a rank q vector bundle on S

Symd(V)→ Q .

We get the following map

UGr : Symd
(
O⊕v
P

)
→ π∗SymdV ⊗ OP(d)→ π∗Q ⊗ OP(d) ,

which is also surjective outside Γ. This gives a morphism

u : P \ Γ→ Gr := Gr(w′, q) ,

where w′ is the rank of Symd
(
O⊕v
P

)
. Composing with the Plücker embedding

Gr(w′, q) ⊆ PN , which amounts to taking the q-th exterior power on both sides
of UGr to get an induced map

ρ :
∑
OP → π∗ det(Q) ⊗ OP(dq)



9.4 Positivity of CM line bundle 347

which is again surjective over P \ Γ.
Let g : P̃ → P be the normalization of the blowup of the ideal sheaf corre-

sponding to the image of ρ. Then the map u extends to P̃ (which we denote by
ũ) and there exists an effective Cartier divisor E ⊆ P̃ such that

g∗ (π∗ det(Q) ⊗ OP(dq)) = ũ∗OGr(1) ⊗ OP̃(E) . (9.26)

Definition 9.49. Let S be projective a normal variety with a dense open subset
S ◦ ⊆ S . Let H be a very ample line bundle on S . Let ν : S ′ d S be a dominant
rational map from a quasi-projective normal variety S ′.

Let f ◦ : (X◦,∆◦) → S ◦ and f ′ : (X′,∆′) → S ′ be two families of log Fano
pairs. We say that f ′ is a birational pullback of f if there exists an open subset
U ⊆ S ′ where ν is defined and a diagram

(X′,∆′)

f ′

��

(XU ,∆U)? _oo

fU
��

// (X◦,∆◦)

f ◦

��

S ′ U? _
iUoo

ν|U // S ◦

(9.27)

such that both squares are Cartesian.

Notation 9.50. We follow the notation as in Section 9.4.1. Let ν : S ′ d S ◦ be a
birational pull back of two families of K-semistable log Fano pairs f ′ : (X′,∆′)→
S ′ and f ◦ : (X◦,∆◦) → S ◦ over normal varieties S ′ and S ◦ (see Definition
9.49). We assume D◦ = Supp(∆◦) (resp. D′ = Supp(∆′)) is flat over S ◦ (resp.
S ′). For any t ∈ S ◦, we denote the scheme theoretic fiber D ×S {t} to be Dsch

t .
Let H be a line bundle on S and ν∗H its rational pullback on S ′,

S ]

p′

~~

p

  

S ′ ν // S .

i.e. ν∗H = p′∗p
∗H where p′ : S ] → S ′ is a proper log resolution that resolves

the indeterminacy locus of ν : S ′ d S and p = ν ◦ p′ : S ] → S . Let A be the
restriction of AXK

n,N,h
(see (9.24)) on X◦, W = f ◦∗ OX◦ (A), and

Q = f ◦∗ OX◦ (−dA)︸         ︷︷         ︸
=:Q0

⊕ f ◦∗ OD◦ (−dA)︸         ︷︷         ︸
=:Q1

on S ◦. Similarly we define W ′ and Q′ with f ′ in place of f ◦. We have w =

rank(W), and q := rank(Q) = q0 + q1 as q0 = rank(Q0) and q1 = rank(Q1).
Note that by (9.18) and (9.19), we have natural surjective maps

SymdW → Q0 and SymdW → Q1 (9.28)
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(similarly with W ′, Q′ in place of W, Q).

Theorem 9.51. In the situation of Notation 9.50, assume the set theoretic map

S ◦(k)→ Hilb(PN)2(k)/PGL(N + 1)(k), t 7→ (Xt ⊆ P
N ,Dsch

t ⊆ PN) (9.29)

has finite preimage. Then there exist a nonempty open set O ⊆ S ◦ and a positive
integer m depending only on the universal constants (see Section 9.4.1), H on
S and the family f ◦ (but neither f ′ nor ν) such that there is a non-zero map

Symdqm
(
W ′⊕w

)
→ OS ′ (−ν∗H) ⊗ det(Q′)⊗m (9.30)

for any birational pull back family as in Definition 9.49 with ν(U) intersecting
with O.

Proof Applying 9.48 to the maps in (9.28). We get a morphism

(P \ Γ)→ Gr(w′, q0) × Gr(w′, q1) := Gr,

which can be extended to a morphism u : P̃→ Gr. Denote by

OGr(1) = p∗1OGr(w′,q0)(1) × p∗2OGr(w′,q1)(1) ,

where p1 : Gr→ Gr(w′, q0) and p2 : Gr→ Gr(w′, q1) are the projections.
Similarly to (9.26), there is an effective divisor E on P̃ such that

ũ∗OGr(1) ⊗ OP̃(E)

= g∗ (π∗ det(Q0) ⊗ OP(dq0)) ⊗ g∗ (π∗ det(Q0) ⊗ OP(dq1))

= g∗ (π∗ det(Q) ⊗ OP(dq)) . (9.31)

Let Y◦ be the image of the product map (π ◦ g, u) : P̃→ S ◦ ×Gr, let Y be its
closure in S × Gr and let π1 be the projection to S and π2 the projection to Gr.

P̃
g

//

��

(π◦g,u)

''

P

��

Y

(π1,π2)

66Y◦? _oo � � // S ◦ × Gr �
�

// S × Gr .

Claim 9.52. The morphism π2 : Y → Gr is generically finite.

Proof The image of u on P \ Γ over t ∈ S ◦ is the PGL(N + 1)-orbit of(
[SymdH0(Xt, Lt)→ H0(Xt, Ld

t )], ([SymdH0(Xt, Lt)→ H0(Dsch
t , Ld

t )]
)
.
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Thus from (9.20) and (9.29), if we let Y∗ ⊆ Y◦ be the image of P \ Γ over S ◦,
then the restriction of π2 : Y∗ → Gr is quasi-finite. Since Y∗ contains an open
set of Y , we conclude π2 is generically finite. �

By Claim (9.52), π∗2OGr(1) is big on Y . In particular, there exists a positive
integer m such that π∗2OGr(m)⊗π∗1OS (−H) on Y has a non-zero section. Pulling
back to P̃, we see that u∗OGr(m) ⊗ g∗π∗OS ◦ (−H) also has a non-zero section.
By (9.26), this yields a nonzero section

0 , σ ∈ H0(̃P, ũ∗OGr(m) ⊗ g∗π∗OS ◦ (−H)
)

⊆ H0(P,OP(dqm) ⊗ π∗(OS ◦ (−H) ⊗ det(Q)m)
)
.

Pushing down to S ◦, we obtain a nonzero map on S ◦ as

Symdqm
(
W⊕w

)
= (π∗OP(dqm))∗ → det(Q)m ⊗ OS ◦ (−H) . (9.32)

We claim that the same choice of m works for the family f ′ : (X′,∆′, L′) →
S ′ as well. Indeed, most of the constructions here are functorial, namely, we
have a corresponding π′ : P′ = PS ′ (⊕w

i=1W ′∗)→ S ′ and a rational map u′ : P′ d
Gr that extends to a proper birational model g′ : P̃′ → P′ such that

g′∗
(
π′∗ det(Q′) ⊗ OP′ (dq)

)
= ũ′∗OGr(1) ⊗ OP̃′ (E

′) (9.33)

for some effective Cartier divisor E′ on P̃′. It then suffices to show that

H0 (̃P′, ũ′∗OGr(m) ⊗ g′∗π′∗OS ′ (−ν∗H)) , 0. (9.34)

Indeed, by (9.27), pulling back f ◦ and f ′ to U, we get the same family. Thus
the restriction of u′ to P′ ×S ′ U factors through P and the restriction of g′

to P̃′ ×S ′ U factors through P̃ as well. In particular, we have the following
commutative diagram

P̃′

��

ρ:=(ν◦π′◦g′,u′)
// Y

π1

��

π2 // Gr

S ′ // S

Let P̃σ be the non-empty open set of P̃ where σ , 0. Let O be a non-empty set
of S ◦ contained in π(̃Pσ). So if O meets ν(U), the rational pull back of σ on P̃′

is nonzero. So we prove (9.34) by the following claim.

Claim 9.53. The rational pullback of π∗2OGr(m) ⊗ π∗1OS (−H) by ρ equals to
ũ′∗OGr(m) ⊗ g′∗π′∗OS ′ (−ν∗H).
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Proof First let us assume ν : S ′ d S is indeed a morphism. Then as ũ′ : P̃′ →
Gr is a morphism, it admits a morphism to S ×Gr, and its image is contained in
Y as Y is proper. Therefore, the rational map ρ : P̃′ d Y is indeed a morphism.
Then the claim follows from ũ′ = π2 ◦ ρ and π1 ◦ ρ = ν ◦ π′ ◦ g′.

In general, we can pull back the family (X′,∆′)→ S ′ by p′ : S ] → S ′ to get
(X],∆])→ S ]. Then there is a cartesian product

P̃]
p′P //

π]◦g]
��

P̃′

π′◦g′

��

S ] p′
// S ′

and for any divisor D on S ], we have

(π′ ◦ g′)∗(p′∗D) = (p′P)∗(π] ◦ g])∗(D) ,

where g] and π] are defined the same way as g′ and π′ for the family (X],∆])→
S ]. So

(π′ ◦ g′)∗OS ′ (−ν∗H) = (π′ ◦ g′)∗OS ′ (−p′∗(p∗H))

= OP̃′
(
(p′P)∗(π] ◦ g])∗(−p∗H)

)
,

which is the rational pull back of π∗1OS (−H) from Y . Moreover, the morphism
P̃] → Gr factors through π2 : Y → Gr, which implies the rational pull back of
π∗2OGr(m) by ρ is ũ′∗OGr(m). �

�

9.4.3 First reductions

We have shown that ΛCM is nef by Corollary 9.37, so to prove the ampleness
of ΛCM, we can apply the following criterion.

Theorem 9.54 (Nakai-Moishezon criterion). Let Z be a finite type proper al-
gebraic space over k, and H is a nef line bundle on Z. Then H is ample if and
only if for any proper irreducible d-dimensional subspace M, (H|M)d > 0.

Proof Applying Lemma 9.55, we reduce to the case when Z is a proper vari-
ety, which is proved in (Kleiman, 1966, Chapter 3, Section 1, Theorem 1). �

Lemma 9.55. Let Z′ be a proper algebraic space of finite type over k. Then
there is a scheme Z and a finite and surjective map p : Z → Z′. If Z is normal
and irreducible, then one can choose Z and p such that p is the quotient map
by a finite group action.
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Proof We may normalize Z′ and therefore it suffices to prove the second part.
Let {pi : Ui → Z′}1≤i≤ j be an affine étale cover of Z′, and Z be the nor-

malization of Z′ in the Galois closure of 〈k(Ui) : i = 1, ..., j〉. Then we have
p : Z → Z′ with the required action. Given any z′ ∈ Z′, there is at least one
point z ∈ Z, such that z → z′ ∈ Z′ factors through z → Ui → Z. Then z has a
neighborhood which is a scheme. By the group action, any point in p−1(z′) is
such. Therefore, Z is a scheme. �

9.56 (Assumptions on the family). By Nakai-Moishezon criterion Theorem
9.54, to get the ampleness of ΛCM, it suffices to show that for any d-dimensional
irreducible closed subspace M ⊆ XK

n,N,h, (ΛCM |M)d > 0. By Lemma 9.55,
we can replace M by a proper irreducible variety Z, and it suffices to show
(ΛCM |Z)d > 0. Finally, by Chow’s Lemma, there is a morphism from a projec-
tive scheme T → Z which is birational over Z, and (ΛCM |Z)d = (ΛCM |T )d. We
fix an ample line bundle H on T .

So to prove Theorem 9.47, it suffices to show that for a projective variety T
which admits a generically finite map to XK

n,N,h, ΛCM |T is big. Moreover, after a
finite extension K(T )→ K(L), there is a lifting

XK
n,N,h

π

��

Spec(L) //

44

Spec K(T ) // XK
n,N,h

such that Spec(L) is mapped to the closed point in

XK(T ) = XK
n,N,h ×XK

n,N,h
Spec K(T ) .

Therefore, if we replace T by its normalization in Spec(L), we may assume
there is an open T ◦ ⊆ T , such that T ◦ → XK

n,N,h lifts to T ◦ → XK
n,N,h. By

Corollary 8.17, after possibly shrinking T ◦, we may further assume

(XT ◦ ,∆T ◦ ) := (UnivK
n,N,h,∆UnivK

n,N,h
) ×XK

n,N,h
T ◦ → T ◦

parametrizes a family of K-polystable Fano varieties. After shrinking T ◦, we
may assume Supp(∆T ◦ )→ T ◦ is flat.

Replacing K(T ) by a finite extension L′, we may assume

Spec(L′)→ Spec K(T )→ XK
n,N,h

factors through Spec(L′)→ S i defined as in (9.21). Therefore

Isom(XL′ )→ Spec(L′)
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has a split maximal torus TL′ . Let h : S → T be the normalization of T in L′,
we may assume there is an open set S ◦ ⊆ h−1(T ◦) such that

GS ◦ := Isom(XK
n,N,h) ×XK

n,N,h
S ◦ → S ◦

is smooth, and the maximal torus TL′ extends to a split torus group scheme TS ◦

over S ◦ as a maximal torus ubgroup scheme of GS ◦ over S ◦.

S ◦� _

��

// XK
n,N,h

π

��

S
ϕ
// XK

n,N,h

Lemma 9.57. With the embedding of (Xs,∆s) in PN1 (N1 = h(rM) − 1) by |Ls|,
there is a dense open set U ⊆ S ◦ such that the map (9.29)

ϕ : U(k)→ Hilb(PN1 )2(k)/PGL(N1 + 1)(k)

s 7→
(
Hilb(Xs),Hilb(Dsch

s )
)

induced by the pull back family for U → S ◦ → XK
n,N,h has finite preimage.

Proof Since S ◦ → XK
n,N,h is generically finite, we can chose U ⊆ S ◦ be a

dense open set such that the morphism from U → XK
n,N,h is quasi-finite. If

two elements (X1,∆1) and (X2,∆2) correspond to U(k) which are mapped to
the same element by ϕ, then we know that there exists subschemes Zi of Xi

(i = 1, 2) such that (X1,Z1) � (X2,Z2) and red(Zi) = Supp(∆i).
Since given a reduced divisor D on X and the upper bound of the degree

d, there are only finitely many effective Weil integral divisors Zi such that
red(Zi) = D and Zi · Ln−1 ≤ d. Therefore, ϕ has finite preimage. �

By Theorem 9.54, we aim to show ΛCM |S is big.

Definition 9.58. We say a projective smooth curve C is a member of a covering
family of curves on S

C

��

//

p

''
U

u
��

pV
// S

point // V

(9.35)

if U → V is smooth projective with C a fiber over a point in V , and pV : U → S
is dominant.



9.4 Positivity of CM line bundle 353

Lemma 9.59. Let M be a projective variety with an ample line bundle H. Then
a Q-line bundle L is big on M if and only if there exists a positive ε such that
for any covering family curves C of M, then (L − ε · H) ·C ≥ 0.

Proof See Boucksom et al. (2013). �

Let Cη be the generic fiber of u : U → V . Since XK
n,N,h admits a proper

algebraic space XK
n,N,h,

β−1(Cη ∩ p−1
V (S ◦))
� _

��

// Xn,N,h

��

C′
β

//

55

Cη
// XK

n,N,h

after replacing Cη by a finite cover β : C′ → Cη, the morphism

β−1(Cη ∩ p−1
V (S ◦))→ XK

n,N,h

can be extended to C′ → XK
n,N,h such that its image is contained in the K-

polystable locus by Exercise 8.12. As proving Lemma 9.59 for C′ is the same
as proving Cη, we can replace Cη by C′. Therefore if we shrink V , we may
assume U → XK

n,N,h, which yields a family of log Fano pairs fU : (XU ,∆U)→ U
and fU is a birational pull back of f ◦. Since Supp(∆U) is a reduced subvariety,
fU |Supp(∆U ) is flat over the codimension one point of U. Thus we may shrink V
and assume that

fU |Supp(∆U ) is flat .

Let C be a general fiber of U → V , in particular, the induced family f : (X,∆)→
C are maximal variational with general K-polystable fibers. Moreover, we as-
sume C intersects with the open set O ⊆ S ◦ as in Theorem 9.51, which only
depend on the universal constants, f ◦, S and H (but not u : U → V).

Let (Xt,∆t) be a general fiber, and FHN be the induced Harder-Narasimhan
filtration on ⊕

m∈r·N

H0(−m(KXt + ∆t)).

So we have D(FHN,ξ, δ) ≥ 0 for some ξ ∈ N(T)Q.
By Exercise 8.10, the fiberwise torus T-action on the family over C ∩ S ◦

extends to a fiberwise T-action on f : (X,∆)→ C. Thus we can apply Corollary
9.46, and conclude that there is a finite dominant morphism C′ → C and a ξ-
twist g : (X′ξ,∆

′
ξ)→ C′ of f ′ : (X,∆) ×C C′ → C′ with D(FHN,g, δ) ≥ 0.

Since

degC′ (λg) = degC′ (λ f ′ ) = deg(C′/C) · degC(λ f ) ,
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we can replace f by g and it follows from Proposition 9.38 that

−(KX + ∆) +
δ

V(δ − 1)(n + 1)
f ∗λ f

is nef. Moreover, since λ f = λCM |C , by the choice of r as in (9.23), we know

A := (AXK
n,N,h

)|X = −rM(KX/C + ∆) + r0 f ∗λ f

is Cartier.

9.4.4 Positive intersection with curves

By Lemma 9.59, the following theorem implies the bigness of the pull back of
ΛCM on S .

Theorem 9.60. The setup is as in Section 9.4.3. There exists a constant ε > 0
depending only on the universal constants (see 9.4.1), S → XK

n,N,h and the line
bundle H (but not on U) such that

degC(ΛCM) = λ f ·C ≥ ε · degC(p∗H) . (9.36)

Lemma 9.61. Denote by WC = f∗OX(A). Then WC is a nef vector bundle on
C.

Proof Since D(FHN, δ) ≥ 0,

−(KX/C + ∆) +
δ

(n + 1)V(δ − 1)
· f ∗λ f

is nef by Proposition 9.38. Hence

AC − (KX/C + ∆) = (rM + 1)
(
−(KX/C + ∆) +

δ

(n + 1)V(δ − 1)
f ∗λ f

)
+

(
r0 −

(rM + 1)δ
(n + 1)V(δ − 1)

)
f ∗λ f

is nef and f -ample on Y , as deg λ f ≥ 0 by Corollary 9.37. It follows that WC is
nef by Theorem 9.25. �

The following trick lifts the nontrivial map (9.30) from the base to the fam-
ily.

9.62 (Product trick). Denote by D = Supp(∆), Q0 = f∗OX(dA), Q1 = f∗OD(dA)
and Q = Q0 ⊕ Q1.

By Theorem 9.51, there exists a positive integer m depending only on the
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universal constants, S → XK
n,N,h and the line bundle H such that there exists a

non-zero map

W⊗dqm
C → OC(−p∗H) ⊗ det(Q)⊗m. (9.37)

Let qi = rank(Qi) (i = 0, 1) so q = q0 + q1. Consider the product

Z = X ×C · · · ×C X︸           ︷︷           ︸
q0 times

×C D ×C · · · ×C D︸            ︷︷            ︸
q1 times

.

Since f and f|D are both flat, the same holds for h : Z → C. We also see
Z is reduced as it is generically reduced. Let p j : Z → X (1 ≤ j ≤ q0) and
p′j : Z → D (1 ≤ j ≤ q1) be the natural projections to factors, and

AZ = ⊗
q0
j=1 p∗j(A)

⊗
⊗

q1
j=1 p′j

∗(A|D).

Then by the flatness of f and f|D, the projection formula yields the equality

h∗OZ(dAZ) = Q0 ⊗ · · · ⊗ Q0︸           ︷︷           ︸
q0 times

⊗
Q1 ⊗ · · · ⊗ Q1︸           ︷︷           ︸

q1 times

.

Through the natural embeddings det(Qi) ↪→
⊗qi

j=1 Qi, we then get an em-
bedding

det(Q) = det(Q0) ⊗ det(Q1) ↪→ h∗OZ(dAZ)

over C and hence by adjunction also a non-zero map

h∗ det(Q) ↪→ OZ(dAZ) .

Composing with the map (9.37), we get a nonzero map

h∗W⊗dqm
C → h∗(OC(−p∗H) ⊗ det(Q)⊗m)→ OZ(dmAZ − h∗p∗H) . (9.38)

Lemma 9.63. There exists a0 > 0 depending only on m and the universal
constants such that

(An+1) + (An · ∆) ≥ a0 · degC(p∗H) .

Proof The map (9.38) is non-zero on some irreducible component of Z which
has the form

Z′ = ∆1 ×C · · · ×C ∆q0+q1 ,

where each ∆i is either X or an irreducible component of D. Let pi : Z′ → ∆i

be the natural projections and let A′ = AZ |Z′ , then A′ =
⊗q

i=1 p∗i (A|∆i ) is nef.
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As WC is nef, by (9.38) we see that dmA′ − h∗p∗H is pseudo-effective on Z′.
Hence for a general closed point t ∈ C,

(dm + 1)dim Z′ · vol(A′) = vol((dm + 1)A′)

≥ vol(A′ + h∗p∗H) = (A′ + h∗p∗H)dim Z′

≥ (A′)dim Z′−1 · h∗p∗H = vol(A′t) · degC p∗H

=

q∏
i=1

vol(A|∆i
t
) · degC p∗H

≥ (rM)nqVq
min · degC p∗H .

So there exists a constant a1 > 0 depending only on universal constants and m
such that

vol(A′) ≥ a1 · degC p∗H . (9.39)

On the other hand, we claim

Claim 9.64. There exists a constant a2 > 0 depending only on universal con-
stants, such that

An+1 + An · ∆ ≥ a2 · vol(A′) . (9.40)

Proof We have

vol(A′) = (A′)1+nq0+(n−1)q1 .

The right hand side is equal to∑
(n1,...,nq)

(
1 + nq0 + (n − 1)q1

n1, . . . , nq

)
p∗1(A|∆1 )n1 · · · p∗q(A|∆q )nq , (9.41)

where the sum runs through all (n1, . . . , nq) such that

n1 + · · · + nq = 1 + nq0 + (n − 1)q1.

The only non-zero summands are of the form

(n1, . . . , nq) = (n, . . . , n︸  ︷︷  ︸
q0

, n − 1, . . . , n − 1︸             ︷︷             ︸
q1

) + (0, . . . , 0, 1︸︷︷︸
i−th

, 0, . . . , 0)

for all 1 ≤ i ≤ q. So the quantity (9.41) is less or equal to
q∑

i=1

C · vol(A|∆i ) ,

where C is a constant that depends on q0, q1, r, M, n and Vmax.
The lemma now follows immediately from (9.39) and (9.40). �
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�

Lemma 9.65. Let c be the universal constant given in (9.25). Then

−(KX/C + (1 + c)∆) +
δ

(n + 1)V(δ − 1)
f ∗λ f

is a pseudo-effective Weil Q-divisor.

Proof Since (X,∆) is klt, there exists a proper Q-factorial small modification
π : Z → X which is small. Let ∆Z be the birational transform of ∆ on Z. Denote
by φ = f ◦ π : Z → C.

Z π //

φ
��

X

f
��

C

Since D(FHN, δ) ≥ 0,

µ(FHN, δ) ≥ S (FHN) = −
deg λ f

(n + 1)V
,

for any rational number λ > deg λ f

(n+1)V , by (9.14), there exists an effectiveQ-divisor

D ∼Q −(KX/C + ∆) + λh∗P

such that (X,∆ + δD) is klt along the general fibers of f . It follows that the pair(
Z,Γ := (1 − c(δ − 1))∆Z + δπ∗D

)
is also klt along the general fibers of φ. Since

KZ/C + Γ ∼Q −(δ − 1)π∗
(
KX/C + (1 + c)∆

)
+ δλφ∗P (9.42)

and over a general point t ∈ C,

KZt + Γt = −(δ − 1)π∗(KXt + (1 + c)∆t) ,

hence by our choice of the universal constant c, KZt + Γt is big. By Theorem
9.26, for any sufficiently large and divisible integers m > 0,

Em := φ∗OZ(m(KZ/C + Γ))

is a nef vector bundle.
This means that for any ample line bundle A on C and any positive integer
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a, there exists a positive integer b such that Symab(Em) ⊗ OC(bA) is generated
by global sections. There is a natural map

φ∗
(
Symab(Em) ⊗ OC(bA)

)
� Symab(φ∗Em) ⊗ OZ(bφ∗A)

→ OZ(abm(KZ/C + Γ) + bφ∗A) ,

so it follows that am(KZ/C + Γ) + φ∗A is effective. Letting a → ∞ we see that
KZ/C + Γ is pseudo-effective. Pushing forward to X and letting λ → deg λ f

(n+1)V , by
(9.42),

−(KX/C + (1 + c)∆) +
δ

(n + 1)V(δ − 1)
f ∗λ f

is pseudo-effective. �

Lemma 9.66. We have

An+1 + An · ∆ ≤
(c + 1)(δ + 1)

c(δ − 1)
· degC λ f .

Proof Since by Lemma 9.35,

deg λ f = −(−KX/C − ∆)n+1 ,

we have

An+1 = (−KX/C − ∆)n+1 +
2

δ − 1
deg λ f =

δ + 1
δ − 1

deg λ f . (9.43)

By Lemma 9.65, A − c∆ is pseudo-effective, hence as A is nef we have

An · (A − c∆) ≥ 0, or equivalently cAn · ∆ ≤ An+1. (9.44)

Note that the constants δ and c are universal, hence the result follows directly
from (9.43) and (9.44). �

Proof of Theorem 9.60 This follows directly from Lemma 9.63 and Lemma
9.66. �

Exercise

9.1 Let f : X → S be a family of log Fano pairs over a projective normal
variety S with n-dimensional fibers. Then we have

λ f = − f∗(−(KX/S + ∆))n+1 .
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9.2 For any λ ∈ Z, we define the globally generated filtration to be the Z-
valued multiplicative filtration given by

F λ
g Rm = Im

(
H0(X,mL(−λF))→ H0(Xt,mLt(−λF)) � Rm

)
.

Prove

dνDH,FHN = dνDH,Fg . (9.45)

9.3 Let f : (X,∆) → C and f ′ : (X′,∆′) → C be two families of log Fano
pairs over a smooth projective curve C such that

(X,∆) ×C C◦ � (X′,∆′) ×C C◦ where C◦ = C \ {0} .

Then the difference of the CM degrees

deg(λ f ) − deg(λ f ′ ) = (n + 1)(−KXt − ∆t)n · S (F ) ,

where F is the filtration defined as in Definition 8.27 for R = OC,0.
In particular, if (X0,∆0) is K-semistable, then λ f has the minimal CM-

degree among all families X′/C satisfying

(X,∆) ×C C◦ � (X′,∆′) ×C C◦ .

9.4 Conversely, if a family of log Fano pairs f : (X,∆)→ C satisfies

(a) general fibers over C◦ are K-semistable, and
(b) for any finite morphism d : C′ → C and a family f ′ : (X′,∆′) → C′

with

(X′,∆′) ×C′ π
−1(C◦) � (X,∆) ×C π

−1(C◦) ,

we have deg(λ f ) · deg(d) ≤ deg(λ f ′ ),

then (X0,∆0) is K-semistable.
9.5 Assume that (Xt,∆t) is uniformly K-stable for a general t ∈ C and let

δ = δ(Xt,∆t). Then −(KX/C + ∆) + δ
(n+1)V(δ−1) f ∗λ f ,L is nef.

9.6 Consider the trivial P1-bundle f : X = P1 × P1 → P1 with the canonical
fiberwise Gm-action and let ξ ∈ N � Z be a generator. Then the ξ-twist
of X along a divisor of degree e > 0 on the base P1 is isomorphic to
the ruled surface Fe. (Therefore the construction of twisted family can
be viewed as a generalization of elementary transformations on ruled
surfaces.)

9.7 Let T be a torus, let S be a normal projective variety and let f : (X,∆)→
S be a flat family with maximal variation and a fiberwise T-action. As-
sume −KX/S − ∆ is ample over S and general fibers (Xs,∆s) are reduced
uniformly K-stable with T ⊆ Aut(Xs,∆s) a maximal torus. Then the CM
Q-line bundle λ f on S is big.
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Note on history

After some earlier analytic work (for more discussions on the analytic ap-
proach, see the paper of Li-Wang-Xu Li et al. (2018) and the references therein),
the notion of CM line bundle was first defined in Tian (1997), who initiated to
study the relation between K-stability and positivity of the CM line bundle
(Tian call it “CM stability”). The formula using Mumford-Knudsen expansion
was observed in Paul and Tian (2006).

A number of ideas in the algebraic proof presented in this section are strongly
inspired by the proof of projectivity of moduli spaces of KSBA stable pairs,
i.e. the case when KX + ∆ is ample. See e.g. Viehweg (1989), Kollár (1990),
Fujino (2018), Kovács and Patakfalvi (2017) and Patakfalvi and Xu (2017).
There are three main recipes:

• The nefness of f∗(m(KX/S + ∆)),
• The package called Kollár’s Ampleness Lemma, and
• Techniques to deal with the pair case.

For a family of log Fano pairs, Codogni and Patakfalvi (2021) made the
first key observation of using the Harder-Narasimhan filtration to link stability
of fibers and positivity of the CM line bundle on the base. In particular, they
proved nefness of the CM line bundle. However, while they developed a num-
ber of novel techniques to incorporate the arguments from the KSBA case into
our study of families of Fano varieties with suitable K-stability assumptions,
they used basis type divisors which only suffices to get positivity in the case
when the automorphism group is finite (see also Posva (2022) for the log pair
case).

In Xu and Zhuang (2020), the necessary tools in the K-stability theory, e.g.
Ding invariants D(F , δ) with slope δ, twisting family etc., were invented to get
the nefness of f∗(m(KX/S +∆)) in the case when the fibers are reduced uniformly
K-stable, after a necessary twisting of the family. This make it possible to en-
hance the arguments to treat this more general setting. Later reduced uniformly
K-stability was shown to be equivalent to K-polystability by Liu-Xu-Zhuang
in Liu et al. (2022).



Appendix A
Solutions to Exercises

Chapter 1

Solution to 1.1: Denote by t = v( f ) for some f such that t > 0. Since f d
m
t e ∈

am(v), v(am(v)) ≤ v
(
f d

m
t e) = t · dm

t e.

Solution to 1.2: See Kaveh and Khovanskii (2012).

Solution to 1.3: See e.g. (Kollár and Mori, 1998, Lemma 2.45).

Solution to 1.4: Let µ : Y → (X,∆) be a log resolution. Write

µ∗(KX + ∆) = KY + B − A ,

where A and B are effective Q-divisors without common components, and
µ∗L = µ−1

∗ L + G. So µ∗OY (µ−1
∗ L + bGc) = OX(L). Then

KY + µ∗(L − KX − ∆) = µ−1
∗ L + G − B + A .

By the Kawamata-Viehweg Vanishing Theorem, for any i > 0,

Riµ∗(OY (µ−1
∗ L + dG − B + Ae)) = 0 .

By the Kawamata-Viehweg Vanishing Theorem and the Leray spectral se-
quence, this implies that

0 = Hi(Y,OY (µ−1
∗ L + dG − B + Ae)) = Hi(X, µ∗OY (µ−1

∗ L + dG − B + Ae)) .

Since (X,∆) is klt, dG − B + Ae ≥ bGc. As dG − B + Ae is µ-exceptional,

OX(L) ⊇ µ∗OY (µ−1
∗ L + dG − B + Ae)

⊇ µ∗OY (µ−1
∗ L + bGc)

= OX(L) .

Therefore, Hi(X,OX(L)) = 0 for i > 0.

361
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Solution to 1.5: see (Kollár, 1996, VI, 2.15) or (Lazarsfeld, 2004a, Corollary
1.4.41) for the first statement. Here we present a proof of the second statement.

Let µ : Y → X be a resolution which is isomorphic over the smooth locus
Xsm of X. Since X is normal, codimX(X\Xsm) ≥ 2. There is a spectral sequence

Hi(X,R jµ∗(µ∗L⊗k))
(
= Hi(X,R jµ∗(OY ) ⊗ L⊗k)

)
=⇒ Hi+ j(Y, µ∗L⊗k) .

For any i > 0 and any j, Hi(X,R jµ∗(OY ) ⊗ L⊗k) = 0 for k � 0. Therefore,
for k � 0,∑
j=0

(−1) jh0(X,R jµ∗OY ⊗ L⊗k) =
∑
i=0

(−1)ihi(Y, µ∗L⊗k)

= χ(Y, µ∗L⊗k)

=

∫
Y

ch(µ∗L⊗k) · Td(Y)

=

 n∑
i=0

1
i!

ki(µ∗L)i

 · (1 +
c1(Y)

2
+ · · · )

=
kn

n!
(µ∗L)n +

kn−1

(n − 1)!
(−KY )

2
(µ∗L)n−1 + O(kn−2)

=
kn

n!
Ln −

kn−1

(n − 1)!
KX

2
· Ln−1 + O(kn−2) .

Moreover, for any j > 0, R jµ∗(OY ) is a sheaf supported on X \ Xsm, thus

h0(X,R jµ∗OY ⊗ L⊗k) = O(kn−2) ,

and we conclude that

h0(X, L⊗k) = h0(X, µ∗OY ⊗ L⊗k) =
kn

n!
Ln −

kn−1

(n − 1)!
KX

2
Ln−1 + O(kn−2) .

Solution to 1.6: We may assume λ ∈ (0,T ). Fix x ∈ (0,T ). By (1.6), there
exists x′ > x, such that E * B+(π∗L − x′E). On the other hand, since π∗L is
big and nef, there exists x′′ ∈ [0, x], such that E * B+(π∗L − x′′E). Therefore,
E * B+(π∗L − xE).

For x ∈ (0,T ), let

h(x) = n · volY |E(π∗L − xE) .

Then by Theorem 1.15 and Theorem 1.22, we can extend (1.10) to any x0 ∈

(0,T ), i.e.,
d
dx

vol(µ∗L − xE)
∣∣∣∣
x=x0

= volY |E(π∗L − x0E) .
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Moreover, the function h(x)
1

n−1 is concave and non-negative on (0,T ), thus

h(x)
1

n−1

≥
( x
λ

)
h(λ)

1
n−1 0 < x ≤ λ ,

≤
( x
λ

)
h(λ)

1
n−1 T > x ≥ λ .

Hence ∫ λ

0+

h(x)dx ≥ h(λ) ·
∫ λ

0+

(
x
λ

)n−1dx =
λh(λ)
n + 1

and ∫ T−

λ

h(x)ndx ≤
λh(λ)
n + 1

((T
λ

)n+1

− 1
)
.

Since

vol(L) =

∫ T−

0+

h(x)dx and vol(L) − vol(π∗L − λE) =

∫ λ

0
h(x)dx ,

we have
vol(L) − vol(L − λE)

vol(L)
≥

(
λ

T

)n

.

Solution to 1.7: If (X,D) is lc at x, then AX(E) ≥ ordE(D). So we may assume
the multiplier ideal Jx(X,D) , OX,x. By assumption, we have J(X,D) =

OX in a punctured neighborhood of x. Since −(KX + D) is ample, we have
H1(X,J(X,D)) = 0 by the Nadel Vanishing Theorem and hence a surjection

H0(OX)→ H0(OX/J(X,D))→ H0(OX,x/Jx(X,D)) .

This implies h0(OX,x/Jx(X,D)) = 1, and Jx(X,D) = mx. It follows 1
µ

AX(E) =

ordE(J(X,D)). Since J(X,D) = µ∗(dKY − µ
∗KX − µ

∗De)

ordE(J(X,D)) ≥ ordE(−dKY − µ
∗KX − µ

∗De) ≥ ordE(D) − AX(E) .

Thus AX(E) ≥ µ
µ+1 · ordE(D).

Solution to 1.8: Let µ : Y → (X,∆) be a log resolution. Write µ∗(KX +∆) = KY +

B − A, where A and B are effective Q-divisors without common components.
Since

dAe − bBc = KY − µ
∗(KX + ∆) + {B} + {−A} ,

we have R1( f ◦ µ)∗(OY (dAe − bBc)) = 0. Therefore, from the exact sequence

0→ OY (dAe − bBc)→ OY (dAe)→ ObBc(dAe)→ 0 ,

we conclude that there is a surjection

( f ◦ µ)∗(OY (dAe))→ ( f ◦ µ)∗ObBc(dAe) .
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Since A is µ-exceptional, ( f◦µ)∗(OY (dAe)) = f∗(OX) = OZ . Thus ( f◦µ)∗ObBc(dAe)
is a quotient of OZ , which implies µ(bBc) is connected around any fiber over
z ∈ Z.

Solution to 1.9: (a) The statement is local on Z, thus after shrinking around
z ∈ Z we may assume that L := −(KX +∆) is ample. By assumption, there exists
an effective Q-divisor ∆′ such that (Z,∆′) is klt. Suppose that there are two
minimal lc centers Z1 , Z2 of (X,∆) that intersect f −1(z). They are necessarily
disjoint, otherwise their intersection contains smaller lc centers. Let m > 0 be
a sufficiently large and divisible integer such that OX(mL) ⊗ IZ1∪Z2 is globally
generated, and let G ∈ |OX(mL) ⊗ IZ1∪Z2 | be a general member. Fix some 0 <

ε � 1. Then −(KZ + ∆ + εG) is ample, (Y,∆ + εG) is lc away from Z1 ∪ Z2 (by
Bertini’s theorem), but is not lc at the generic point of Z1 and Z2. Consider the
convex combination

(X,Γ := c∆′ + (1 − c)(∆ + εG))

of (X,∆ + εG) with the klt pair (X,∆′), where 0 < c � 1. Then (X,Γ) is
klt away from Z1 ∪ Z2, its non-klt locus is exactly Z1 ∪ Z2, and −(KX + Γ)
is ample. Since Z1 is disjoint from Z2, this contradicts the Kollár-Shokurov
Connectedness Theorem (see Ex. 1.8).
(b) This follows from the standard tie-break argument.

Solution to 1.10: (a) Let Z be the unique minimal log canonical center of (X,∆+

Ic). Replacing I by I + Ia
Z for 0 < a � 1, we may assume all log canonical

places of (X,∆ + Ic) center over Z.
Let µ0 : Y0 → (X,∆ + I) be a log resolution such that Ex(µ0) supports a µ0-

antiample divisor F. Write µ∗(KX+∆) = KY0 +B−A, where A and B are effective
Q-divisors without common components, and f −1(I) = OY (−EI). Let E be the
sum of all components on Y0 which compute lct(X,∆; I). After perturbing F,
we may assume (Y0, B + (c − ε)EI + ε′F) is plt with, with a unique lc place S ,
for a suitable choice of ε, ε′.

There exist effective Q-divisors ∆1,∆2 on X, such that µ∗0(∆1) = F + H1 and
µ∗0(∆2) = EI + H2 with H1 and H2 being Q-divisors in general position on Y .
Let E′ be the sum of exceptional components except S . We can run a minimal
model program for

KY0 + B + (c − ε)EI + ε′F + (c − ε)H1 + ε′H2 + ε0E′ ∼Q,X A + ε0E′

over X to get a model Y0 d Y1 which contacts all components Ex(Y0/X) ex-
cept S . Then we can run an (−S )-minimal model program Y1 d Y which is
isomorphic in codimension one with µ : Y → X such that −S being µ-ample.
The model Y is the one we seek for.
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(b) If there is a G-action on (X,∆, I, x), we can choose Y0 to be a G-equivariant
log resolution. So it remains to prove we can choose F is G-equivariant such
that (Y0,∆0 + (c − ε)EI + ε′F) plt. The group G acts on the dual complex
DC(Y0, E) via G0 = G/G0 where G0 is the identity component of G. In gen-
eral, the dual complex DC(Y0, E) is a δ-complex, so after a barycentric subdi-
vision of DC(Y0, E), it is a simplicial complex. We can blow up Y0 and assume
DC(Y0, E) is simplicial. Thus G0 is a simplicial action on DC(Y0, E). After an-
other barycentric subdivision of DC(Y0, E), we know the action G0 satisfies the
property that if an element g ∈ G0 fixes a simplex σ of DC(Y0, E), then g fixes
every point in it. We can further blow up Y0 correspondingly. In particular, we
may assume for any component E0 of E, if E0 meets g · E0, then E0 = g · E0.

On Y0, we may choose a G-invariant divisor F, such that (Y0,∆0 +(c−ε)EI +

ε′F) is dlt, and S = b∆0 + (c − ε)EI + ε′Fc is the sum of a single G-orbit. The
above condition of the G-action on Y0 implies that (Y0,∆0 + (c− ε)EI + ε′F) is
plt. So (Y, µ−1

∗ (∆) ∨ S ) is plt, which implies S is irreducible, as S ⊇ Ex(Y/X).

Chapter 2

Solution to 2.1: We have test configuration (X−ξ, L−ξ), and

Fut(X−ξ, L−ξ) = −Fut(Xξ, Lξ) .

Therefore, if (X,∆, L) is K-semistable, then Fut(X−ξ, L−ξ) = −Fut(Xξ, Lξ) = 0.

Solution to 2.2: Rr := H0(X, rL) is a flat k[s]-module, and

Rr := Rr/sRr = H0(X0, rL|X0 ) .

Thus Rr admits a Gm-action and we can take the weight decomposition Rr =∑
Wi where Wi consists of weight i part. Let s0 ∈ Wi ⊆ Rr be an invariant

section. So we can lift s0 to an element s′ ∈ Rr. Since Rr admits an Gm-action,
we can write s′ =

∑
j w j, where w j has weight j. Therefore, we can take s = wi,

whose restriction is s0.

Solution to 2.3: This clearly follows from the definition.

Solution to 2.4: The test configuration degenerates twisted cubic to the nodal
cubic curve with an embedded point, see e.g. (Hartshorne, 1977, III.9.8.4)).
Thus for k � 0, we have

h0(P1, kL) = h0(P1,OP1 (3k)) = 3k + 1 and H0(X0, kL0) = V1 ⊕ V2 ,

where V1 � H0(Xred
0 ,OP(x,y,w)(k)|Xred

0
) and V2 is the one dimensional space
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spanned by z ·wk−1 (or z · f (x, y,w) for any homogeneous polynomial of degree
k−1 such that f (0, 0, 1) , 0). As the total weight of V1 is 0 and the total weight
of V2 is 1, we conclude that b0 = b1 = 0.

Solution to 2.5: (a) Let W ⊆ X be the proper subvariety whose points have
nontrivial stablizers. Let m be sufficiently large, such that mL is very ample
and there exists a nonzero T-invariant section s ∈ H0(X,mL ⊗ IW ). Then the
affine open set Xs := (s , 0) ⊆ X admits a free T-action. We denote by
Xs = Spec(A), and A =

⊕
α∈M(T) Aα where Aα consists of the weight-α part in

A.
The inclusion A0 ⊆ A gives a morphism X → Z = Spec(A0). Over the

generic point η(Z) = Spec(K(Z)), it is a T-torsor, which implies X ×Z η(Z) �
TK(Z) by Hilbert’s Theorem 90. Therefore, X is T-equivariantly birational to
Z × T with T-acting on the second factor.
(b) Since T is faithful, in the above argument, all elements α with Aα , 0
generate a full rank lattice M of M(T). We choose a set of generators α1,...,
αdimT of M ⊆ M(T). For any 1 ≤ j ≤ dim(T), we fix a non-zero element
1α j ∈ Aα j . Then the free abelian group generated by 1α j multiplicatively yields
precisely one non-zero element 1α in Aα for each α ∈ M, with 10 = 1 for
0 ∈ M. Then the function field K(X) is (non-canonically) isomorphic to the
quotient field of

K(Z)[M] =
⊕
α∈Γ

K(Z) · 1α ,

i.e. t∗( f ) = f ◦ t−1 = tα · f for any f ∈ K(Z) · 1α and t ∈ T.

Solution to 2.6: Since L only differs with −(KX + ∆) along the fiber over 0,
L + KX + ∆X supports over X0, and therefore a rational multiple over the pull
back of 0 as X0 is irreducible. This implies that there exists a rational number
a such that

L + K
X/P1 + ∆

X
∼Q aX0 .

We conclude by applying Lemma 2.18.

Solution to 2.7: This directly follows from the definition of I-norm as in (2.2).

Solution to 2.8: It suffices to notice that for a degree d normal base change
(X′,L′) of (X,L) ×A1 A1, we have

Futred(X′,L′) = d · Futred(X,L)

as the pull back Klog
X/P1

is Klog

X
′
/P1

.
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Chapter 3

Solution to 3.1: We can let V to be a two dimensional space with a basis e1, e2.
Then we define three filtrations with only nontrivial subspaces respectively
k · e1, k · e2, and k · (e1 + e2). One easily see, there is no basis compatible with
all three filtrations.

Solution to 3.2 A quasi-coherent sheaf F on A1 = Spec (k[s]) corresponds to a
k[s]-module, and the Gm-action gives a grading, thus we get

⊕
p∈Z Fps−p.The

restriction of F along Spec (k) is isomorphism to
⊕

p∈Z Fps−p/I1, where I1 is
generated by { f − s · f }, i.e.⊕

p∈Z

Fps−p/I1 � colim(· · · → Fp+1
s
−→ Fp → · · · ) .

Similarly, the restriction along 0 is isomorphism to
⊕

p∈Z Fps−p/I0, where I0

is generated by s · f for all f , so it is
⊕

p Fp/sFp+1.
If F is coherent, it corresponds to a finitely generated k[s]-module, thus

Fp = 0 for p � 0. Moreover, Fp/sFp+1 = 0 for p � 0. The flatness implies s
is injective. The converse is similar.

Solution to 3.3: This is clear from the definition.

Solution to 3.4: We use the notation as in Definition 2.8. By definition

I(X,L) =
1
Ln

(
p∗L · q∗Ln

P1 − (p∗L − q∗LP1 ) · (p∗L)n
)
,

and it follows from (3.21) that λmax(FX,L) = 1
Ln p∗L · q∗Ln

P1 , so it suffices to
show that

1
Ln (p∗L − q∗LP1 ) · (p∗L)n ≥ λmin(FX,L) .

Write p∗L−q∗LP1 = λ′q∗(X0)+
∑

i ciEi, such that Ei are distinct prime divisors
supported over 0 and mini ci = 0. Then λ′ = λmin(FX,L). Moreover,

1
Ln (p∗L − q∗LP1 ) · (p∗L)n =

1
Ln

λ′q∗(X0) +
∑

i

ciEi

 · (p∗L)n ≥ λ′ .

If X0 is irreducible, we choose λ′′ such that if we write p∗L − q∗LP1 =

λ′′q∗(X0) +
∑

i c′i Ei, then the coefficient c′i of Supp(X0) is 0. By Lemma 1.73,
c′i ≥ 0. Thus λ′′ = λ′ (and ci = c′i). Moreover,

1
Ln

λ′q∗(X0) +
∑

i

ciEi

 · (p∗L)n = λ′ .
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Solution to 3.5: To deduce the formula for the minimum norm, note that

λmin,m := min{λ ∈ Z |Rm,λ , 0} = min
α∈Pm
〈α, ξ〉 .

Since P = 1
m Pm for m ∈ r · N sufficiently divisible, this implies λmin =

minα∈P〈α, ξ〉 and the formula follows from

‖(Xξ,∆ξ)‖m = −Fut(Xξ,∆ξ) −min
α∈P
〈α, ξ〉 = 〈αbc, ξ〉 −min

α∈P
〈α, ξ〉 .

Solution to 3.6: By Lemma 3.35 and Exercise 3.4, we know

‖(X,L)‖m =
1
Ln

Ln+1

n + 1
− (p∗L − q∗LP1 ) · (p∗L)n


= S (FX,L) − λmin(FX,L) .

By Example 3.3, these two terms can be computed on the graded ring GrFX,LR
where R =

(⊕
m∈r·N H0(mL)

)
. The product test configuration (X0,L0, ξ) has

the same graded ring. Therefore, by Exercise 3.5,

S (FX,L) − λmin(FX,L) = ‖(X0,L0, ξ)‖m .

Solution to 3.7: Let H ∼ L be an effective divisor. For any positive integer k,
we define

F λ
k Rm =

H0(mL − d λk eH) λ ≤ m(1 − 1
k ) ,

H0(mL − dm k−1
k2 + (λ − m(1 − 1

k ))keH) λ ≥ m(1 − 1
k ) .

One can check this is a multiplicative filtration. An elementary calculation
shows that λmin(Fk) = 0, limk→∞ λmax(F ) = 1 and limk→∞ S (Fk) = 1.

Solution to 3.8: This is (Boucksom et al., 2017, Lemma 7.10). Let dν :=
dνDH,F . After a translation by λ, we may assume

∫
R
λdν = 0. Then we have∫

R

|λ|dν = 2
∫ λmax

0
λdν ≤ 2λmax .

After rescaling, we may assume for simplicity that λmax = 1. Set g(λ) satisfies
that dν is the distributional derivative of −g(λ)n. Let a = −g′+(0) ≥ 0 and
b = g(0) ∈ [0, 1]. Since g is concave on (−∞, 1), g(λ) ≥ b(1 − λ). Thus

1
2
‖F ‖1 =

∫ 1

0
λdν =

∫ 1

0
g(λ)ndλ ≥ bn

∫ 1

0
(1 − λ)ndλ =

bn

n + 1
.

As in the proof of Lemma 3.49, we have b ≥ n
n+1 .

Solution to 3.9: This is clear.
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Solution to 3.10: This is clear.

Solution to 3.11: We have

lim sup
m

1
m

dim Vm ≤ lim sup
m

1
m

h0(Cn,mν∗L) = degCn (ν∗L) .

To prove the opposite direction, we may assume L ·C > 0. Then there exists
a positive integer n, such that nL ∼ A + E for an ample divisor A and effective
divisor E with C * Supp(E). Therefore,

lim inf
m

1
m

dim Vm ≥
1
n

A ·C .

Replacing n by n′ ≥ n and A by A + (n′ − n)L, we find a sequence of A and C
such that lim 1

n A ·C = L ·C.

Solution to 3.12: Fix λ > µ+∞(F ), i.e., lct(X,∆; I(λ)
• (F )) < +∞. By Lemma

1.60, there exists a divisor E, such that ordE(I(λ)
• (F )) = c > 0. So

F mλRm ⊆ F
mc
E H0(−m(KX + ∆)) ,

which implies λ > λmin(F ). Therefore, λmin(F ) ≤ µ+∞(F ).
Let λ > λmin(F ), i.e. vol(Vλ

• (F )) < vol(L). By (Székelyhidi, 2015, Theorem
20), there exists ε > 0 and x ∈ X, such that

F λmRm ⊆ H0(L ⊗mbmεcx ) ,

i.e. Im,mλ(F ) ⊆ mbmεcx . In particular, lct(X,∆; Iλ• ) < +∞, which implies λ >

µ+∞(F ). Thus we conclude µ+∞(F ) ≤ λmin(F ).

Solution to 3.13: (a) is clear.
(b) By our assumption, we have an effective Q-divisor D ∼Q L such that

ordFD > η(F , L). Write D =
∑

i aiEi for prime divisors Ei. For any i, Ei ∼ ciL
for some ci > 0 by our assumption. Then by (a), there is a unique one, say E0,
which satisfies that ordF (D0) > η(F , L) for D0 = 1

c0
E0. This implies for any

D ∼Q L, ordF (D) ≤ ordF (D0)/ Thus T (F ,D) = ordF (D0).

Solution to 3.14: For any m, we can choose a basis s1, . . . , sNm which is com-
patible with both F0 and F1. Then

|S m(F0) − S m(F1)| =
1

mNm

∣∣∣∣∣∣∣
Nm∑
i=1

(
ordF0 (si) − ordF0 (si)

)∣∣∣∣∣∣∣
≤

1
mNm

Nm∑
i=1

∣∣∣ordF0 (si) − ordF0 (si)
∣∣∣

=

∫
R

|λ| dνrel
m,F0,F1

(λ) .
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Let m→ ∞, then

|S (F0) − S (F1)| ≤
∫
R

|λ| dνrel
F0,F1

(λ) = d1(F0,F1) .

Solution to 3.15: By Definition 3.55, for any m′ divided by m, F λ
m(Rm′ ) ⊆

F λ(Rm′ ), this implies∫
R

|λ| dνrel
m′,F0,F1

(λ) = S m′ (F ) − S m′ (Fm) .

Thus d1(Fm,F ) = S (F ) − S (Fm), and we conclude by Theorem 3.58.

Solution to 3.16: By Proposition 3.72, we know dνrel
F0,F1

supports on the line of
(x = y) ∈ R2. Thus its projections to x and to y yield the same measure.

Solution to 3.17: Let dim Wm = Nm and dim Vm = N′m, then limm→∞
N′m
Nm

= 1.
Assume F on W• is linearly bounded by e− and e+, we have

(Nm − N′m)me− ≤ S m(W•) − S m(V•) ≤ (Nm − N′m)me+ .

Dividing by mNm, and letting m→ ∞, we conclude S (W•) = S (V•).

Chapter 4

Solution to 4.1: This is a generalization of Lemma 4.17, from which we will
follow the notation. We may write

p∗q∗(LP1 ) ∼Q L +
∑

i

aiEi and X0 =
∑

i

biEi

for components Ei of X0. Consider a section f ∈ H0(mL) for m ∈ r ·N. Let D f

be the closure of Div( f ) × P1 on X × P1. Fix a common log resolution Y of X
and X × P1 So

q∗(D f ) = D̃ f +
∑

i

ordEi ( f̄ ) · Ẽi + E ∈ H0(q∗(mLP1 )) ,

where D̃ f and Ẽi are the birational transforms of D f and Ei on Y and Supp(E)
supporting over 0 do not contain the birational transform of any component Ẽi.
Denote by wi the restriction of ordEi on K(X).

Therefore,

f ∈ F λ
X,LRm ⇐⇒ s−λ f̄ ∈ H0(mL) (by (4.16))

⇐⇒
∑

i

ordEi ( f̄ ) · Ẽi + m
∑

i

aiEi ≥ λ ·
∑

i

biEi ,
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which is equivalent to saying wi( f ) ≥ biλ − mai for all i.

Solution to 4.2: For any degree d hypersurface F, multx(F) ≤ d. It follows
from Lemma 1.43 that

lctx(Pn; S ) ·multx(S ) ≥ 1

for any x ∈ Pn and effective Q-divisor S on Pn. Thus for any S ∼Q O(1) ∼Q
− 1

n+1 KPn , multx(S ) ≤ 1, so lctx(Pn; S ) ≥ 1 for any x.

Solution to 4.3: This was proved in (Birkar, 2021, Theorem 1.7), where the
case α(X,∆) = 1 was also settled.

Let r ∈ N such that r(KX + ∆) is Cartier and m ∈ r · N be sufficiently large.
Denote by

α := α(X,∆) and αm := αm(X,∆) ,

then α = infm αm. Choose a subsequence of m such that αm ↘ α, and we may
assume αm < 1. Then for each m, we can find a Q-factorial birational model
µm : Ym → X extracting an lc place Em of (X,∆+ αm

m Dm) for Dm ∈ |−m(KX +∆)|.
Fix m0 such that | − m0(KX + ∆)| is base point free. Let Am ∈ | − m0(KX + ∆)|
be a general divisor such that (X,∆ + αm

m Dm +
(1−αm)

m0
Am) is log canonical. Then

we can run a minimal model program for −(KYm + µ−1
∗ ∆ ∨ Em + 1−α

m0
µ∗mAm) to

get Y ′m. If −(KYm + µ−1
∗ ∆ ∨ Em + 1−α

m0
µ∗mAm) is not pseudo-effective, then Y ′m

admits a morphism to a lower dimensional variety ρm : Y ′m → Zm such that
ρ(Y ′m/Zm) = 1. Then there exists α′m ∈ (α, αm], such that the pushforward of
−(KYm + µ−1

∗ ∆ ∨ Em +
1−α′m

m0
µ∗mAm) is trivial over Z, which contradicts to the

Global ACC Theorem 1.77 unless there are only finitely such m .
So Y ′m is a minimal model of −(KYm +µ−1

∗ ∆∨Em + 1−α
m0
µ∗mAm) for m � 0, i.e.

we can find a Q-complement Mm of KYm +µ−1
∗ ∆∨Em + 1−α

m0
µ∗mAm. In particular,

Em is an lc place of a divisor Dm ∼Q −α(KX + ∆).

Solution to 4.4: (a) By Theorem 4.23, X admits a nontrivial weakly special
degeneration with an irreducible fiber if and only if (X,∆) has aQ-complement
D such that (X,∆ + D) is lc not not klt. This is equivalent to α(X,∆) ≤ 1 (cf.
Exercise 4.3).

(b) If (X,∆) admits a special valuation, then α(X,∆) < 1 by Theorem 4.28.
Conversely, if α(X,∆) < 1, there exists an effective Q-divisor D ∼Q −KX − ∆

such that t = lct(X,∆; D) < 1. By Exercise 1.9, there exists t′ < 1 and an
effective Q-divisor D′ ∼Q −KX −∆ such that (X,∆ + t′D′) is plt but not klt. By
Theorem 4.28(ii), its lc place gives a special valuation. .

Solution to 4.5: For a general member D ∈ H0 (OX(−m(KX + ∆)) ⊗ I), (X,∆ +
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1
m D) is log canonical and v is its lc place (see Lemma 1.41). Thus v is a weakly
special divisor.

Solution to 4.6: By assumption, there exists D′ such that AX,∆(v) < v(D′). Set

c = min
v∈LCP(X,∆+D)

{
AX,∆(v)
v(D′)

< 1
}
.

Let µ : Y → X be a log resolution such that Ex(µ) supports an µ-anti-ample
divisor. By tie-break, we can replace D′ by a perturbation, such that the mini-
mum of AX,∆(v)

v(D′) on LCP(X,∆ + D) is achieved by a unique valuation ordE (up to
rescaling). Then

t = lct(X,∆ + (1 − ε)D; D′) < ε ,

and for a sufficiently small ε, (X,∆ + (1 − ε)D + tD′) has a unique lc place E.

Solution to 4.7: Let v = c · ordE be the valuation induced by X. So by Lemma
4.20, Fut(X) = AX,∆(v) − S (v). It follows from Lemma 4.17 and Exercise 3.4
that

‖X‖m = I(FX,L) − J(FX,L) = S (v) .

Solution to 4.8: (a) For any point P ∈ X, P ∼ −KX , S X(P) = 1
2 . So δ(X) = 2.

(b) Similarly, for P ∈ P1(R), S X,∆(P) = 1 − a. For P a non-real point, then
S X,∆(P) = 1−a

2 . Moreover, AX,∆(P) = 1 − a for P = (x2 + 1 = 0) and otherwise
AX,∆(P) = 1. So δ(X,∆) = 1

1−a when a ≤ 1
2 ; and δ(X,∆) = 2, a ≥ 1

2 .

Solution to 4.9: vK is the vanishing order along the divisor D = (x− t = 0). Let
v = (vK)|K(P1). Then v( f (t)) = 0 for any function f (t).

Solution to 4.10: ⇐ By taking the limit under the Gm-action, we see that any
effective Q-divisor D ∼Q −(KX0 + ∆0) degenerates to some Gm-invariant di-
visor D0. By the semi-continuity of log canonical thresholds, lct(X0,∆0; D) ≥
lct(X0,∆0; D0). Hence α(X0,∆0) ≥ α if and only if lct(X0,∆0; D0) ≥ α for all
Gm-invariant divisors D0 ∼Q −(KX0 + ∆0). Any such D0 is also the specializa-
tion of some divisor 0 ≤ D ∼Q −(KX + ∆) on X. By our assumption, E is an
lc place of the lc pair (X,∆ + αD + (1 − α)D′) for some 0 ≤ D′ ∼Q −KX − ∆,
which implies (X0,∆0 + αD0 + (1 − α)D′0) is also log canonical. In particular,
(X0,∆0 + αD0) is log canonical.
⇒ If α(X0,∆0) ≥ α, then for any 0 < ε � 1, and 0 ≤ D ∼Q −KX − ∆, (X,∆ +

(α − ε)D) is a log Fano pair, whose degeneration is also a log Fano pair. Thus
E is an lc place of a Q-complement D′ε of the log Fano pair (X,∆ + (α − ε)D).
In particular, we can extract E over X to get a Fano type variety µ : Y → X,
such that (Y, µ−1

∗ (∆ + (α− ε)D)∨ E) admits a Q-complement. By Lemma 4.50,
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(Y, µ−1
∗ (∆ + αD)∨ E) admits a Q-complement, whose pushforward on X yields

(1 − α)D′.

Solution to 4.11: (a)⇒(b) We apply Theorem 4.64 to the torus T-action on
(X,∆). The only T-invariant divisorial valuation is ξ ∈ NZ. Since FL(ξ) =

Fut(Xξ,∆ξ) = 0 by Lemma 2.40. (X,∆) is K-semistable.
(b)⇒(a): we can just reverse the above argument.

Solution to 4.12: (a) was proved in Fujita (2018) and (b) was proved in Liu
(2018).
(a) follows from (b) as we can choose a smooth p ∈ X and I = mp. Then
mult(X, I) = 1 and lct(X,∆; I) = n.
(b) Consider the exact sequence

0→ Ip → OX → OX/Ip → 0.

So for any m such that m(KX + ∆) is Cartier,

dim H0(−m(KX + ∆) ⊗ Ip) ≥ dim H0(−m(KX + ∆)) − length(OX/Ip).

Define a filtration F λRm = H0(−m(KX + ∆) ⊗ Idλe). Since

lim
m→∞

n!
mn length(OX/Idmλe) = λnmult(I),

we have

lim
m→∞

n!
mn dimF λmRm ≥ (−KX − ∆)n − λnmult(I) .

We conclude that

S (F ) ≥
∫ (

(−KX−∆)n

mult(I)

) 1
n

0

(
1 −

mult(I)
(−KX − ∆)n tn

)
dt =

n
n + 1

(
(−KX − ∆)n

mult(I)

) 1
n

.

On the other hand, µ(F ) ≤ lct(X,∆, I). As (X,∆) is K-semistable,

lct(X,∆, I) ≥ µ(F ) ≥ S (F ) ≥
n

n + 1

(
(−KX − ∆)n

mult(I)

) 1
n

,

which is (b).

Solution to 4.13: This directly follows from Lemma 4.12.

Solution to 4.14: Since v is an lc place of some complement we have TX,∆(v) ≥
AX,∆(v), we may assume that α(Xv,∆v) > 0, otherwise it is trivial. Let α <

α(Xv,∆v) be a rational number. Choose some effective divisor D ∼Q −(KX +∆)
whose support does not contain CX(v). Let Dv be the degeneration of D. Then
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(Xv,∆v +α ·Dv) is klt as α < α(Xv,∆v). Therefore, there exists some 0 ≤ D′ ∼Q
−(KX + ∆) such that v is an lc place of (X,∆ + αD + (1 − α)D′). In particular,

(1 − α)v(D′) = v(αD + (1 − α)D′) = AX,∆(v),

which implies AX,∆(v) ≤ (1 − α)TX,∆(v). This implies α(Xv,∆v) ≤ 1 − AX,∆(v)
TX,∆(v) .

Solution to 4.15: This was first proved in Fujita (2019a). If X is not K-stable,
then as δ(X) ≥ n+1

n α(X) ≥ 1, there exists a divisor E over X such that δ(E) =

δ(X) = 1 and we must have A = n
n+1 T , where T := T (E) and A := AX(E).

Consider the restricted volume function

Q := −
1
n

d
dt

vol(−µ∗KX − tE) for t ∈ [0,T ),

By Theorem 1.22, Q
1

n−1 is concave. Thus Q(t) ≥ ( t
A )n−1Q(A) for t ∈ [0, A] and

Q(t) ≤ ( t
A )n−1Q(A) for t ∈ [A,T ). So

0 = FL(E)

=

∫ T−

0
(t − A)Q(t)dt ≤ Q(A)

∫ T

0
(t − A)(

t
A

)n−1dt

=
Q(A)T n

An−1

( T
n + 1

−
A
n

)
≤ 0 .

This implies that Q(t) = ( t
A )n−1Q(A) for t ∈ [0,T ].

To proceed, since E computes δ(X) = 1, there exists a model µ : Y → X with
−E being µ-ample by Theorem 4.49. Thus we know that for t � 1,

Q = −
1
n

d
dt

vol(−µ∗KX − tE) = E · (−µ∗KX − tE)n−1.

Compared to Q(t) = ( t
A )n−1Q(A), we know Ei · (µ∗KX)n−i = 0 and all 0 ≤ i ≤

n − 1, which implies cX(E) is a point. Moreover, Q = tn−1(−E|E)n−1, which
implies for t ∈ [0,T ],

vol(−µ∗KX − tE) = n
∫ T

t
Qdu = (T n − tn)E(−E)n−1 = (−KX)n − tnE(−E)n−1.

This implies T is equal to the nef threshold of E with respect to µ∗(−KX) by
(Liu, 2018, Lemma 10).

As µ∗(−KX) − T E is semi-ample but not big, and µ∗(−KX) − T E is ample
on E, we know a sufficiently divisible multiple of µ∗(−KX) − T E will give a
fibration struction ρ : Y → Z, whose restrict on E is finite. Thus a general fiber
of ρ is a curve l. Since Y is normal, ` is in the smooth locus. Thus KY · ` = −2
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and

0 = (µ∗(−KX) − T E) · ` = (−KY + (A − 1 − T )E) · `

= 2 − (1 +
T

n + 1
)E · ` ,

which implies E · ` = 1, T = n + 1 and A = n. So Y → X is the blow up of the
smooth point, and E is a section. Thus that Y � PE(O(−1) ⊕ O), X � Pn, and
α(Pn) = 1

n+1 .

Solution to 4.16: This was first proved in Cheltsov (2001); Cheltsov and Park
(2002). We follow the proof of (Zhuang, 2020, Corollary 1.7). Let D ∼Q OX(1)
be an effective Q-divisor. Let b < n

n+1 . Then (X, n+1
n bD) is klt in a punctured

neighborhood of any x ∈ X by Paragraph 4.94.
As (X, n · mx) is plt, AX(E) ≥ n · ordE(mx) for any E centered at x. Since

−KX −
(n+1)b

n D is ample, by Exercise 1.7,

AX(E)
ordE(D)

≥
n

(n + 1)b
AX(E)

AX(E) + ordE(mx)
≥

1
b
.

Thus (X, bD) is log canonical, and we can let lim b→ n
n+1 .

Solution to 4.17: This was first proved in Liu and Xu (2019) by a different
method. Also see (Abban and Zhuang, 2022, Lemma 4.10) for an argument
using the method in Section 4.5.

Solution to 4.18: This follows from the proof of Theorem 4.23.

Solution to 4.19: Let I
( 1
δ AX,∆(E))
• be the ray, then vE(I

( 1
δ AX,∆(E))
• ) ≥ 1

δ
AX,∆(E), thus

µ(FE , δ) ≤ 1
δ
AX,∆(E) for any δ.

On the other hand, let D be a Q-complement, such that AX,∆(E) = ordE(D).
So for any t ∈ [0, 1] and a sufficiently divisible m, the ideal of mtD+m(1− t)D′

for a general D ∼Q −KX − ∆ is contained in the base ideal of F mtAX,∆(E)
E Vm for

Vm = | − m(KX + ∆)|. So for t = 1
δ
,

lct(X,∆; I
( 1
δ AX,∆(E))
• ) ≥ lct(X,∆;

1
δ

D + (1 −
1
δ

)D′) = lct(X,∆;
1
δ

D) = δ .

Solution to (4.20): Since

µ(FX,L) = L(FX,L) = L(X,L) ,

µ := µ(FX,L) is a rational number. Let v be a divisorial valuation computing the
log canonical threshold of I(µ)

• which is equal 1 = lct(X,∆; 1
m Im,mµ) for a suffi-

ciently divisible m. As −m(KX + ∆) ⊗ Im,mµ is finitely generated by definition,
by Exercise 4.5, v is weakly special.

We can rescale v and shift FX,L by AX,∆(v) − µ to get F such that µ(F ) =
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AX,∆(v) and v(I(t)
• (F )) ≥ t for any t (cf. (4.11)). So v(F λRm) ≥ λ, i.e. F λRm ⊆

F λ
v Rm.

Solution to (4.21): There exists an integer d such that dv for v in Exercise 4.20
is an integral multiple of ordE for some divisor E over X. This yields a weakly
special test configuration Xws, which satisfies that

1
d

(
Ding(Xws) − δ · J(Xws)

)
= AX,∆(v) − S (F )

≤ Ding(X) − δ · J(X) .

To get the special test configuration, if AX,∆(v) = T (v), then AX,∆(vξ) =

T (vξ), we can choose Xs to be the trivial test configuration. So we may assume
AX,∆(v) < T (v). Then by Exercise 4.6, for a sufficiently divisible m, (X,∆ +
1
m Im,mAX,∆(v)(Fv)) admits an lc place which is special valuation vs. The above
argument shows that for the special test configuration Xs induced by vs, we
have

1
d

(
Ding(Xs) − δ · J(Xs)

)
≤ Ding(Xws) − δ · J(Xws)

for some positive integer d.

Solution to (4.22): This was proved in (Xu, 2023, Theorem 3.4). There exists
an ample Q-divisor A and t > 0 such that −KX − ∆ − A ∼Q E1 and A − t(KX +

∆) ∼Q A0 is ample. Fix m0 ∈ N such that |m0A| is base-point-free. Then for any
prime divisor H ∈ |m0A|,

S (H) =
1

m0
S X,∆(A) ≥

1
m0

S X,∆(−m0(KX + ∆)) =
1

m0(n + 1)
.

We can choose an m-basis type Q-divisor Dm compatible with H, so we can
write Dm = Fm + bmH, where limm bm = limm S m(H) = S (H) ≥ 1

m0(n+1) .
Since limm δm(X,∆) = δ(X,∆), we can find a sufficiently large m and a posi-

tive δ′ such that δ′ < min{δm(X,∆), 1} and 1−δ′ < tm0bmδ
′. Then (X,∆+δ′Fm)

is klt, as (X,∆ + δ′Dm) is klt and Dm = Fm + bmH. Moreover,

−KX − ∆ − δ′Fm ∼Q −(1 − δ′)(KX + ∆) + δ′bmH

is ample, which implies (X,∆ + δ′Fm) is a log Fano pair.
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Chapter 5

Solution to 5.1: Let U ⊂ Ap consist of points (t1, ..., tp) with at most ti equal to
0. Clearly, codimAp (Ap \ U) ≥ 2 and

U =

p⋃
i=1

Ui where Ui :=
(
Gi−1

m × A1 × G
p−i
m

)
.

Therefore, πp∗OX(mL) = j∗(πp∗OX(mL)|U), where j : U → Ap. The restriction
of πp∗OX(mL) to (Gm)p is ⊕

(m1,...,mp)∈Zp

Rmt−m1
1 · · · t−mp

p ,

and to Ui is ⊕
(m1,...,mp)∈Zp

F
mi

i Rmt−m1
1 · · · t−mp

p .

Therefore its restriction to U is
p⋂

i=1

πp∗OX(mL)|Ui =
⊕

(m1,...,mp)∈Zp

(F m1
1 Rm ∩ · · · ∩ F

mp
p Rm)t−m1

1 · · · t−mp
p .

Solution to 5.2: Let λ1 < λ2 < · · · < λm be the jumping numbers of Fv

on V and I1 ( I2 ( · · · ( Im be the ideals corresponding the filtrations.
Let (Y ′, E′) → (Y, E) → X be a log resolution which also resolves all Ii.
Then the minimal face QM◦η(Y

′, E′) of QM(Y ′, E′) containing v, intersected by
E′1, . . . , E

′
r, also contains an open set of P. We denote by ~α = {α1, . . . , αp} the

vector corresponding to v with respect to E′i . For any s ∈ V , v(s) = β if and
only if β =

∑r
i=1 αiβi where βi := ordE′i (s). This implies that for two sections

s1, s2 ∈ V ,

v(s1) ≥ v(s2)⇐⇒ s1 ∈ F
v(s2)V

⇐⇒ ordE′i (s1) ≥ ordE′i (s2) for any E′i
⇐⇒ v′(s1) ≥ v′(s2) for any v′ ∈ QM◦η(Y

′, E′) ,

with equality holding if and only if all “≥” are“=”. This implies that for any
v′ ∈ QM◦η(Y

′, E′), the induced filtration Fv′ is the same as Fv.

Solution to 5.3: For any such Ep,q , we have AX,∆(Ep,q) = (p + q)(1 − a) and
S (Ep,q) = (p + q)(1 − 2

3 a). By Theorem 4.64, to compute δ(X,∆), it suffices
to compute all toroidal divisors, and a straightforward calculation shows that
δ(X,∆) = 1−a

1− 2
3 a

.
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Solution to 5.4: By Lemma 5.9, there exists µ : Y → X and a divisor D on Y
such that (Y,D) is log Fano, and D ≥ µ∗A + µ−1

∗ ∆ for some ample divisor A on
X. We immediately see that (X,∆) is of Fano type.

Solution to 5.5: We follow the proof of Claim 5.15. Let ` be a positive integer
such that `Ei is Cartier at the generic point of Z and let m > 0 be a sufficiently
divisible integer such that a general member G− (resp. G+) of |mL− `Ei| (resp.
|mL + `Ei|) does not contain Z in its support. Thus none of the lc centers of
(Y,D + E) are contained in Supp(G− +G+). Then as in the proof of Claim 5.15,
this implies there exists a divisor |mLp − `Ep,i| whose support does not contain
Z0. Since this is true if for any `, Ep,i is Cartier along the generic point ofZ0,
and we conclude by Lemma 5.3.

Solution to 5.6: By Theorem 5.34, there exists a divisor E which induces a
special test configuration X such that δ(X,∆) =

AX,∆(E)
S (E) . Since

FL(E) = AX,∆(E) − S (E) = Fut(X)

is rational and AX,∆(E) is rational, so S (E) is rational. Therefore, δ(X) is ratio-
nal.

Solution to 5.7: Let q be the rational rank of v. Since v is quasi-monomial, we
may find a log smooth model π : (Y, E) → (X,∆) such that v ∈ QMη(Y, E) for
some codimension q point η ∈ Y , and we may assume the exceptional locus
supports a π-ample divisor F such that v ∈ QM(Y, E). Choose some 0 < ε � 1
such that L := −π∗(KX + ∆) + εF is ample and let G be a general divisor in the
Q-linear system |L|Q whose support does not contain any stratum of (Y, E). Let
D = π∗G ∼ −(KX + ∆). By construction, the strict transform of D is larger or
equal to G, so D is a special Q-complement with respect to (Y, E).

We have D = 1
m0r { f = 0} for some m0 ∈ N and some f ∈ H0(X,−m0r(KX +

∆)). By assumption, there exists some f0 := f , f1, . . . , f` ∈ R whose restrictions
form a (finite) set of generators f̄0, . . . , f̄` of Grv(R) (in particular, f0, . . . , f`
generates R). By enlarging the set of generators, we may also assume that all
I∆i ⊆ R are generated by the restrictions of some elements from f0, . . . , f`.

By assumption, (Xv,∆v + εDv) is klt for some rational constant 0 < ε � 1,
thus by Theorem 5.19, (Xw,∆w + εDw) � (Xv,∆v + εDv) is also klt for diviso-
rial valuations w in a sufficiently small neighbourhood U ⊆ Σ := QMη(Y, E)
of v. In particular, since v lies in the interior of Σ (by construction), we may
assume that the closure Ū is a compact subset of int(Σ). By Lemma 4.25,
there exists an integer N that only depends on dim(X) and the coefficients
of ∆ + εD such that any divisorial valuation w0 ∈ U is an lc place of an N-
complement 0 ≤ Γ0 ∼Q −(KX + ∆ + εD). Recall that v( f ) is computed as the
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smallest weight of monomials in the power series expansion of f at the point
η. As Γ varies among the N-complements and w varies in a small neighbour-
hood of v, we have a · multηπ∗Γ ≤ w(Γ) < C for some constant a,C > 0
that only depends on v. Since there are only finitely many monomials with
bounded multiplicity, we conclude that the value of w(Γ) is determined by
only finitely many such monomials. Hence by shrinking the neighbourhood
U, we may assume that whenever Γ is an N-complement of (X,∆ + εD) and
v(Γ) , AX,∆+εD(v), then w(Γ) , AX,∆+εD(w) for any w ∈ U. In particular, for
w0 ∈ U, since w0(Γ0) = AX,∆+εD(w0) for an N-complement Γ0 of (X,∆ + εD),
v(Γ0) = AX,∆+εD(v) and therefore v is also an lc place of (X,∆ + Γ′), where
Γ′ = εD + Γ0. Since π−1

∗ Γ′ ≥ εG and G is ample, it is a special Q-complement
with respect to (Y, E) by construction. In other words, v is a monomial lc place
of a special Q-complement.

Solution to 5.8: Since C is normal crossing, any lc place of (P2,C) is a multi-
ple of ordC or vt (t ∈ (0,∞)) where vt is the quasi-monomial valuation with the
coordinate (1, t). It is proved in (Liu et al., 2022, Theorem 6.1) that the asso-
ciated graded ring Grvt R is non-finitely generated if and only if t is a irrational
number in (0, 7−3

√
5

2 ) ∪ ( 7+3
√

5
2 ).

Solution to (5.9): This was proved in (Zhuang, 2021, Section 3). Let Z1 and Z2

be two distinct δ-minimizing centers. Then there are two divisors E1 and E2

such that cX(Ei) = Zi and Ei computes δ(X,∆) for i = 1, 2.
Let m0 such that OX(−m0(KX + ∆)) ⊗ IZ1∪Z2 is globally generated. We can

choose a basis type divisor Dm compatible with both E1 and E2. Denote δm(X,∆)
(resp. δ(X,∆)) by δm (resp. δ). Then for a sufficiently large m, sufficiently small
ε and a general H ∈ H0(OX(−m0(KX+∆))⊗IZ1∪Z2 ),

(
X,∆ + (δm − ε)Dm + 1−δ

2m0
H

)
is klt outside Z1 ∪ Z2, and non-klt along Z1 ∪ Z2. It follows from the Kollár-
Shokurov Connectedness Theorem (see Exercise 1.8) that Z1∪Z2 is connected,
i.e. Z1 meets Z2. Let Z be any component of Z1 ∩ Z2.

Let µ : Y → X extract E1, E2 such that −(KY + µ−1
∗ ∆ ∨ (E1 + E2)) is ample

over X. Let

am := µ∗
(
−m(KY + µ−1

∗ ∆ ∨ (E1 + E2))
)

= µ∗
(
−m(AX,∆(E1)E1 + AX,∆(E2)E2)

)
.

So there exists a positive integer m1 such that apm1 = (am1 )p for p ∈ N. Since Z1

and Z2 are non-klt centers of (X,∆ + a
1

m1
m1 ), it follows from the Kollár-Shokurov

Connectedness Theorem that there is a divisor E with cX(E) = η(Z) such that
1

m1
ordE(am1 ) ≥ AX,∆(E). Let v = 1

AX,∆(E) ordE . For any f ∈ ap,

v( f m1 ) ≥ v(am1 p) = v(ap
m1 ) ≥ pm1 ,
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which implies v( f ) ≥ p, i.e.

v( f ) ≥
{

1
AX,∆(E1)

ordE1 ( f ),
1

AX,∆(E2)
ordE2 ( f )

}
.

Thus by evaluating on Dm, we see S m(v) ≥ min
{

1
AX,∆(E1) S m(E1), 1

AX,∆(E2) S m(E2)
}
.

Taking a limit, we conclude v computes δ(X,∆).

Chapter 6

Solution to 6.1: If X is K-polystable, then FL(D) > 0 for any T-invariant D
which is not the pull back of a toric divisor over a toric compactification of T.

Conversely, for any divisor E over X which is not the pull back of a toric
divisor over a toric compactification of T is of the form ordE = vP,ξ with P ∈ C
and ξ ∈ N(T). Then there exists ξ′ ∈ N(T) such that vP,ξ+ξ′ corresponds to a
divisor on X over P ∈ C. Then by Lemma 6.22 and Corollary 6.25, it follows
from our assumption that

0 < FL(vP,ξ+ξ′ ) = FL(vP,ξ) + Fut(X,∆, ξ′) = FL(vP,ξ) .

Solution to 6.2: We choose a basis s1, · · · , sNm of Rm such that each si ∈ Rm,αi

for some αi ∈ M(T). In other words, {s1, · · · , sNm } is a disjoint union of bases
of Rm,α over all α ∈ M(T). From the definition of wtξ we know that F λ

wtξRm is a
direct sum of some of the Rm,α’s for every λ ∈ R≥0. Thus the basis s1, · · · , sNm

is compatible with wtξ for every ξ ∈ NR(T). Hence we have

S m(wtξ) =
1

mNm

Nm∑
i=1

wtξ(si) =
1

mNm

Nm∑
i=1

(
〈ξ, αi〉 − λξm

)
.

The above equation implies that ξ 7→ S m(wtξ) is linear on V . Therefore, ξ 7→
S (X,∆)(wtξ) is linear on V as S (X,∆)(wtξ) = limm→∞ S m(wtξ). Note AX,∆(wtξ) −
S X,∆(wtξ) = Fut(X,∆, ξ) is always linear on NR(T).

Solution to 6.3: Since GrFR is a finitely generated Z-valued filtration, we know
there exists m0 such that

GrF
⊕

m∈m0N

H0(−mKX − m∆) � GrFξ
⊕

m∈m0N

H0(−mKX − m∆)

is generated by GrFH0(−m0(KX +∆)). So P is the convex closure of 1
m0

Γm0 and
the image of the log concave functions GF : P→ R and GFξ : P→ R satisfies

λmax(F ) = max
Pi∈Γm0

1
m0

GF (Pi) and λmax(Fξ) = max
Pi∈Γm0

1
m0

GF (Pi) + 〈pW (Pi), ξ〉
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(see Lemma 6.5). So by Lemma 6.4,

J(Fξ) − J(F ) = λmax(Fξ) − λmax(F ) − 〈αbc, ξ〉

= max
Pi∈Γm0

(
1

m0
GF (Pi) + 〈pW (Pi), ξ〉 − 〈αbc, ξ〉 − λmax(F )

)
.

By Lemma 2.35, αbc ∈ MQ(T). Thus minξ J(Fξ) minimizes the maximum of
finitely many linearly functions on NR(T) with rational coefficients. Therefore,
it can be achieved by points in NQ(T).

Solution to 6.4: By Lemma 6.5, we have

νDH,Fξ ,T =
(
pW ,

1
vol(∆)

GF + pξ ◦ pW

)
∗
(ρ) .

So

min
α∈P
〈α, ξ − ξ′〉 ≤ λ(Fξ) − λ(Fξ′ ) ≤ max

α∈P
〈α, ξ − ξ′〉 .

We conclude as P is a bounded convex domain.

Solution to 6.5: This follows from the proof of Lemma 6.24.

Solution to 6.6: As ξ → AX,∆(wtξ) is piecewise rational linear, there exists a
unique element α0 ∈ NQ(T), such that for any small rational perturbation ξi of
ξ, we have

〈ξi, α0〉 = AX,∆(wtξi ).

Using the boundedness of complements, we know that wtξ is an lc place of
a (not necessarily equivariant) N-complement Γ for some N divided by r, i.e.
(X,∆+Γ) is lc, and Γ = 1

N div(s) for some s ∈ H0(−N(KX +∆)). Write s =
∑

sα,
where sα ∈ RN,α. Since

〈ξ,Nα0〉 = NAX,∆(wtξ) = wtξ(s) = min
sα,0
〈ξ, α〉,

and ξ is not contained in any rational proper subspace of NR(T), we know
sNα0 , 0 and for any other sα , 0 and α , Nα0,

〈ξ, α〉 > NAX,∆(wtξ) = 〈ξ,Nα0〉 .

Pick up basis {ξi} of NQ(T) sufficiently close to ξ such that the above in-
equality still holds. Consider Gm generated by ξi, it degenerates s to a section
s′ =

∑
α′ sα′ with 〈ξi, α

′〉 = NAX,∆(wtξi ). Let Γ′ = 1
N div(s′), we know (X,∆+Γ′)

is lc. Moreover, all wtξi , wtξ are its lc places. So we can replace s by si. Ap-
plying this argument dimQ(NQ(T)) times, we get an element sNα0 ∈ RN,Nα0

providing the sought for Q-complement.
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Chapter 7

Solution to 7.1: Let S k̄ → S be the base change to the algebraically closed
field. Then geometrically K-stable log Fano pairs over S k̄ are parametrized by
the uniformly K-stable locus U ⊆ S k̄. So there is a finite extension k ⊆ k′, such
that U is defined over k′, and under the finite morphism S ′ → S , the image of
U is open in S .

Solution to 7.2: It is similar to the proof of Theorem 7.29, using Proposition
4.33.

Solution to 7.3: The openness follows from Exercise 7.2. By Theorem 7.25, it
is finite type.

Solution to 7.4: See (Kollár, 2016, Theorem 11.6) or (Kollár, 2023, Theorem
5.5).

Solution to 7.5: Replace (X,∆) by (X,∆ + tD), we may assume t = 0. For any
E, we have

FLX,∆+sD(E) = AX,∆+sD(E) − S X,∆+sD(E)

= (1 − s)(AX,∆(E) − S X,∆(E)) + s · AX,∆+D(E)

> 0 .

So (X,∆ + sD) is K-stable.

Solution to 7.6: This question is open.

Solution to 7.7: This notion of the volume of a valuation was introduced in Ein
et al. (2003). See (Cutkosky, 2013, Theorem 6.5) for the proof of the state-
ments.

Solution to 7.8: This was proved in (Li, 2018, Theorem 1.1 and Theorem 1.2).

Solution to 7.9: This was first proved in (Liu, 2018, Theorem 27). Let a be
an mx-primary ideal and E a divisor computing the log canonical threshold
c = lct(X,∆; a), i.e., c · ordE(a) = AX,∆(E). Therefore for any m,

a
m ⊆ am·AX,∆(E)/c(ordE) .

Thus

e(a) = lim
m

n!
mn length(R/am)

≥ lim
m

n!
mn length(R/am·AX,∆(E)/c(ordE)) =

An
X,∆(E)

cn vol(ordE) .
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We conclude that

e(a) · cn ≥ v̂ol(ordE) ≥ v̂ol(X,∆, x) .

Let v be a valuation centered at x with AX,∆(v) < +∞. Since v(a•(v)) = 1
(see Exercise 1.1), lct(X,∆; a•(v)) ≤ AX,∆(v). Thus

v̂ol(v) ≥ lim
m

lct(X,∆; am(v))n · e(am(v)) ,

where we use vol(v) = lim 1
mn e(am(v)) (by Exercise 7.7).

Solution to 7.10: See (Xu, 2020, Theorem 1.2).

Solution to 7.11: See (Xu and Zhuang, 2021, Theorem 1.1).

Chapter 8

Solution to 8.1: See (Mumford et al., 1994, Corollary 1.2). By Theorem 8.6,
we may assumeY = [Spec(A)/G] and Y = Spec(AG). We assume there are two
distinct closed points y1, y2 with π(yi) = y for a closed point y ∈ Y , i.e. there
are two minimal (reduced) orbits Z1 and Z2 of G on Spec(A) over y. Let I ⊂ A
be the ideal corresponding to Z := Z1 ∪ Z2. Then the G-module morphisms

0→ I → A→ A/Z → 0

yields an exact sequence of sheaves on Y. As its pushforward on Y is exact, we
conclude

0→ IG → AG → (A/I)G → 0 .

However, we have my ⊂ IG, and (A/I)G surjects to k ⊕ k, which is a contradic-
tion.

Solution to 8.2: This is clear from Exercise 8.1.

Solution to 8.3: Assume a K-polystable log Fano pair (X,∆) admits a special
test configurationX degeneration to a K-semistable Fano variety (Y,∆Y ). Since
Fut(X) = Fut(Y,∆Y ; ξ) = 0, where ξ is the Gm-action on (Y,∆Y ), we conclude
that (X,∆) � (Y,∆Y ).

Conversely, if (X,∆) is K-semistable but not K-polystable, then it admits
a special test configuration X degeneration to a K-semistable Fano variety
(Y,∆Y ) with Fut(X) = 0 and (X,∆) is not isomorphic to (Y,∆Y ). So it suffices
to show (Y,∆Y ) is K-semistable, which follows from Proposition 5.37.

Solution to 8.4: Let R be a DVR with the fractional field K and the residue
field κ. It suffices to show that for any two families f : (X,∆) → Spec(R) and
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f ′ : (X′,∆′)→ Spec(R) of log Fano pairs with δ(Xκ,∆κ), δ(X′κ,∆
′
κ) > 1 with an

isomorphism

ϕ◦ : (XK ,∆K)→ (X′K ,∆
′
K) ,

then ϕ◦ can be extended to an isomorphism ϕ : (X,∆)→ (X′,∆′). Let {s1, ..., sNm }

be an R-basis for f∗(−mKX − m∆) such that its restriction over κ is compatible
with F defined in Definition 8.27. So their birational transforms yield a basis
{s′1, ..., s

′
Nm
} of f ′∗ (−mKX′ − m∆′). Since δ(Xκ,∆κ), δ(X′κ,∆

′
κ) > 1, for m � 0,

there exists c > 1 such that (Xκ,∆κ + cDκ) and (X′κ,∆
′
κ + cD′κ) are log canonical,

where

D =
1

mNm
(div(s1)+· · ·+div(sNm ))

(
resp. D′ =

1
mNm

(div(s′1) + · · · + div(s′Nm
))
)
.

Thus

(X,∆ + D) � (X′,∆′ + D′) .

The existence of the coarse moduli space follows from Keel and Mori (1997).

Solution to 8.5: By our assumption there exists a rational number c > 1
2 such

that α(X′κ,∆
′
κ) ≥ c. Let D1 ∼Q −KX − ∆ and D′2 ∼Q −KX′ − ∆′ be general

Q-divisors. Let D′1 (resp. D2) be the birational transform of D1 (resp. D′2) to X′

(resp. X). Denote by D = c(D1 + D2) and its birational transform D′ = c(D′1 +

D′2). Since (Xκ,∆κ+ Dκ) (resp. (X′κ,∆
′
κ+ D′κ)) is log canonical and KXκ +∆κ+ Dκ

(resp. KX′κ +∆′κ+D′κ) is ample, the isomorphism (XK ,∆K +DK) � (X′K ,∆
′
K +D′K)

can be extended to an isomorphism

(X,∆ + D) � (X′,∆′ + D′) .

Solution to 8.6: Let U ⊂ SL2 be the subgroup of upper triangular matrices.

The stabilizer of (0, 1) ∈ A2 \ {(0, 0)} by the action SL2 is Ga =

(
1 t
0 1

)
. So we

have

ST(k[π]) \ 0 =
(
A2 \ {(0, 0)}

)
/Gm = U\SL2 .

Since k is algebraically closed, it suffices to show any group homomorphism
U → Gy can be extended to SL2 → Gy, since otherwise the unipotent radi-
cal Gu

y contains a normal subgroup Ga (see (Springer, 1998, 14.3.9)), but the
morphism

U → Ga → Gu
y → Gy

can not be extended to SL2 → Gy.
Fix a group homomorphism ρ : Ua → Gy, then Gy×U SL2 yields a Gy-torsor
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G◦ over U\SL2. By our assumption on the lifting assumption, G◦ extends to a
torsor G over ST(k[π]).

G ×U SL2

��

� // G◦

��

� � // G

��

U\SL2
� // ST(k[π]) \ 0 �

�
// ST(k[π])

The SL2-action on G◦ = Gy ×U SL2 extends to G. Over 0, we obtain a right
action of SL2 on Gy, which computes with the left action by Gy, thus it extends
ρ to a group homomorphism SL2 → Gy.

Solution to 8.7: This was proved in (Zhuang, 2021, Theorem 1.1). Assume
G is reductive and (X,∆) is G-equivariantly K-polystable. Then (Xk̄,∆k̄) is K-
semistable by Theorem 4.64. By Theorem 7.36, (X,∆) corresponds to a k-
point [(X,∆)] ∈ X≥1

n,N,h which is a disjoint component of XK
n,N,V . Its closure

[(X,∆)] is defined over k, and therefore so is the unique closed point [(X0,∆0)].
By (Kempf, 1978, Corollary 4.5), there exists a subgroup Gm in PGL(N + 1)
commuting with G which degenerates (X,∆) to (X0,∆0) over k. This implies
(X,∆) is K-polystable.

Solution to 8.8: Aut((X,∆)/S ) is an algebraic group scheme over S . So after re-
placing S by a nonempty open set S ◦, we may assume Aut((X,∆)/S ) is smooth.
Then there exists an étale morphism U → S such that Aut((X,∆)/S ) ×S U =

Aut((XU ,∆U)/U) has fiberwise splitting maximal torus (combining (Conrad,
2014, Proposition 3.1.9, Corollary 3.2.7, Proposition B.3.4)).

Solution to 8.9: Since XK
n,N,V → XK

n,N,V is a good moduli space, it suffices to
prove the polystable locus in Y = Spec(A) with a reductive group G-action
is constructible. Let φ : Y → Y ′ := Spec(AG). There is a locally closed locus
Y ′i ⊂ Y ′, whose preimage Yi → Y ′i is precisely the locus with fiber dimension i.
Then the intersection of the polystable locus with Yi, is the closed subset with
the maximal fiber dimension for the action

G × Yi → Yi .

Solution to 8.10: It suffices to prove the case T = Gm. A Gm,K-action induces
a product test configuration XK . By Theorem 8.19, this can be extended to a
family of test configurations XR of (XR,∆R). Since (Xκ,∆κ) is K-polystable, Xκ
is a product test configuration. We conclude that Gm,R ⊆ Aut((XR,∆R)/R).

Solution to 8.11: We may first assume Spec(K′) is lifted to map into the closed
point over X ×X Spec(K). Then we conclude by applying (Alper et al., 2023,
Theorem A.8).
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Solution to 8.12: Let C be the smooth projective compactification of C◦ and
C \ C◦ = {x1, ..., xm}. Denote by Spec(Ri) the DVR for xi ∈ C. Since XX

n,N,V is
proper, we have Spec(Ri) → XK

n,N,V . It follows from Exercise 8.10 that there
exists a finite Galois extension K ⊆ Ki, such that for any DVR R̃i with K(R̃i) =

Ki and dominating R, we can extend

Spec(Ki)

��

// Spec(K) // XK
n,N,V

��

Spec(R̃i)

55

// XK
n,N,V

such that Spec(Ri) is mapped into the K-polystable locus.
We can find a common Galois extension K′ containing all Ki. Let C′ be the

smooth projective curve with the function field K′. Then we can decompose
C′ = C′◦

⋃
∪m

i=1 ∪ j Ti j, where β◦ : C′◦ → C◦ is finite and Ti j → Spec(Ri)
is induced by maps between DVRs. Since Ti j → Spec(Ri) factors through
Spec(R̃i)→ Spec(Ri), we can extend the family induced by f ◦ to a family over
C′.

Chapter 9

Solution to 9.1: See e.g. (Codogni and Patakfalvi, 2021, Proposition 3.7(b)).

Solution to 9.2: This follows from Lemma 9.7, which implies

F λ
g (Rm) ⊆ F λ

HNRm ⊆ F
λ−2g

g (Rm) .

Solution to 9.3: Denote by V = (−KXt − ∆t)n. Let Fg be the globally generated
filtration defined in as in Exercise 9.2 on

R =
⊕
m∈r·N

Rm =
⊕
m∈r·N

H0(−mKX0 + ∆0) .

Then by (9.13) and (9.45),

λ f = −(n + 1)V · S (FHN) = −(n + 1)V · S (Fg) .

Let {s1, . . . , sNm } be a basis of Rm compatible with Fg and F . Their birational
transforms yields a basis {s′1, . . . , s

′
Nm
} of R′m compatible with F ′g , where F ′g is

the globally generated filtration for f ′ : (X′,∆′)→ C. By Lemma 8.26,

ordF ′g (s′i) = (ordX′0 (si) − mAX,∆(X′0)) + ordFg (si) .

Therefore, S (Fg) − S (F ′g ) = −S (F ) and λ f − λ f ′ = (n + 1)V · S (F ).
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If (X0,∆0) is K-semistable, then S (F ) = −D(F ) + µ(F ) ≤ 0 by Lemma
8.30, so λ( f ) ≤ λ( f ′).

Solution to 9.4: It follows from the properness of XK
n,N,V , there is a base change

of π : C′ → C, and a family of Fano varieties f ′ : (X′,∆′)→ C′ compactifying
(X,∆) ×C π−1C◦ such that over any p with π(p) = 0, the fiber (X′p,∆

′
p) is K-

semistable. So if we replace f by f × π, it follows from Exercise 9.3 that

deg(λ f ′ ) = deg(λ f ) ,

which implies S (F ) = S (F ′) = 0. By Lemma 8.30, µ(F ′) ≤ 0. Then as
(X′p,∆

′
p) is K-semistable, µ(F ′) = 0.

We can then follow the proof of Corollary 8.31, where all we need is µ(F ′) =

0. So we conclude that F ′ induces a finitely generated associated graded ring
GrF ′R′ where R′ =

⊕
m H0(−m(KX′p + ∆′p)). Moreover, by Theorem 8.32, this

induces a special test configuration of (X′p,∆
′
p) with Futaki invariant 0. Then

its special fiber (Y,∆Y ) is K-semistable by Proposition 5.37, which implies
(Xp,∆p) is K-semistable as (Y,∆Y ) is also its special degeneration.

Solution to 9.5: We have D(FHN, δ − ε) ≥ 0 by Theorem 4.13 for 0 < ε � 1,
so we can apply Proposition 9.38.

Solution to 9.6: We have⊕
m

f∗(O(m)) = OP1 ⊗ k[x0, x1] .

By Example 2.15, we know that the Gm-action on xn−i
0 xi

1 has weight −i. Thus
the twisting Xξ with respect to a divisor D is given by

Xξ � ProjP1 (O + O(−D)) � Fe .

Solution to 9.7: The proof of Theorem 9.47 implies that for any ample line
bundle H, there exists a positive ε > 0, such that for any covering family {Ct},
(λ f − εH) ·Ct ≥ 0.
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Mihnea. 2006. Asymptotic invariants of base loci. Ann. Inst. Fourier (Grenoble),
56(6), 1701–1734.

Ein, Lawrence, Lazarsfeld, Robert, Mustaţă, Mircea, Nakamaye, Michael, and Popa,
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Li, Chi, Wang, Xiaowei, and Xu, Chenyang. 2021. Algebraicity of the metric tangent
cones and equivariant K-stability. J. Amer. Math. Soc., 34(4), 1175–1214.

Li, Chi, Tian, Gang, and Wang, Feng. 2022. The uniform version of Yau-Tian-
Donaldson conjecture for singular Fano varieties. Peking Math. J., 5(2), 383–426.

Liu, Yuchen. 2018. The volume of singular Kähler-Einstein Fano varieties. Compos.
Math., 154(6), 1131–1158.

Liu, Yuchen. 2022. K-stability of cubic fourfolds. J. Reine Angew. Math., 786, 55–77.
Liu, Yuchen, and Xu, Chenyang. 2019. K-stability of cubic threefolds. Duke Math. J.,

168(11), 2029–2073.
Liu, Yuchen, Xu, Chenyang, and Zhuang, Ziquan. 2022. Finite generation for valua-

tions computing stability thresholds and applications to K-stability. Ann. of Math.
(2), 196(2), 507–566.

Lyu, Shiji, and Murayama, Takumi. 2022. The relative minimal model program
for excellent algebraic spaces and analytic spaces in equal characteristic zero.
arXiv:2209.08732.

Mabuchi, Toshiki. 1986. K-energy maps integrating Futaki invariants. Tohoku Math. J.
(2), 38(4), 575–593.

Mabuchi, Toshiki, and Mukai, Shigeru. 1993. Stability and Einstein-Kähler metric of
a quartic del Pezzo surface. Pages 133–160 of: Einstein metrics and Yang-Mills
connections (Sanda, 1990). Lecture Notes in Pure and Appl. Math., vol. 145.
Dekker, New York.

Matsumura, Hideyuki. 1989. Commutative ring theory. Second edn. Cambridge Stud-
ies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge.
Translated from the Japanese by M. Reid.

Matsushima, Yozô. 1957. Sur la structure du groupe d’homéomorphismes analytiques
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Glossary

V t
•(F ) graded subseries with slope t. 101

L(F ) L-invariant of a filtration. 118
Im(F ) base ideal on XA1 . 117
dνrel
F0,F1

relative measure. 132
εx(L) Seshadri constant. 3
cm(F , e+) log canonical threshold of the m-level. 117
c∞(F , e+) limiting log canonical threshold. 117
(W~k)• sub graded linear series along ~k. 25
(Xξ, Lξ) product test configurations. 58
(X,Lr) test configurations. 58
(Xξ,Lξ) ξ-twisting of (X,L). 240
AX,∆ log discrepancy function. 36
D1 ∨ D2 the minimal divisor greater than D1 and D2. 1
D1 ∧ D2 the maximal divisor smaller than D1 and D2. 1
I(t)
• (F ) base ideal sequence of slope t. 111

Im,i(F ) base ideal. 111
Mµ stability function induced by a numerical invariant. 305
R(X, L, r) section ring. 100
S (F ,V) S -invariant of a filtration on a vector space. 97
S (F ,V•) S -invariant of a filtration on a graded linear system. 104
S (F ,W•,~•) S -invariant of a filtration on a multi-graded linear series. 184
S (F ,V) S -function of a filtration on a weighted multi linear series. 174
S m(F ,V•) S m-invariant of a filtration on a graded linear system. 105
S m(F ,W•,~•) S m-invariant of a filtration on a multi-graded linear series. 184
T (F ,V) T -invariant of a filtration on a vector space. 95
T (F ,V•) T of a graded filtration. 101
Tm(F ,V•) Tm of a graded filtration. 101
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X+K
n,N,V uniform K-moduli space. 317

XK
n,N,V K-moduli space. 293

XK
n,N,h K-moduli space with a fixed Hilbert function. 293

[λmin(F ,V•), λmax(F ,V•)] the support of the Duistermaat-Heckman measure. 103
DC(Y, E) dual complex. 32
D(F ) Ding invariant of a filtration. 113
D(F , δ) Ding invariant of a filtration with slope δ. 113
∆(V t

•) Okounkov body of graded subseries. 102
∆(V•) Okounkov body of a graded linear series. 21
Ding(X,L) Ding invariants. 69
FLX,∆(v,V•) Fujita-Li invariant. 145
Fut(X,L) Futaki invariants. 65
FutX,∆(X,∆,L) Futaki invariants. 65
J(F ,V•) J-norm of filtrations. 110
LCP(X,∆) lc places of (X,∆). 36
LCP(Γ; Y, E) monomial lc places. 224
ΛCM CM line bundle on the K-moduli space. 336
Σ(V•) convex cone of a graded linear series. 21
Val∗X nontrivial valuations. 32
Val<+∞

X valuations of finite log discrepancies. 36
ValTX T-invariant valuations. 241
ValX the valuation space. 32
αX,∆(L) : α-invariant of (X,∆) with respect to L. 109
αbc the weighted barycenter of P. 72
I(X,L) I-norm of test configurations. 60
J(X,L) J-norm of test configurations. 60
F λ(V) decreasing filtration of a weighted multi linear series. 174
F λV real valued filtration of a vector space V . 95
F λV• F λ-part of V•. 100
F λ

C C-shift of a filtration. 101
F λ

v filtration induced by a valuation. 141
F λ
X,L

filtration associated to a test configuration. 108
FHN, f ,L Harder-Narasimhan filtration induced by a family. 326
Ftriv trivial filtration. 103
Fξ ξ-twist of the filtration F . 238
Fa,F0,F1 interpolation of two filtrations. 131
I(F ,V) base ideal of a filtration. 98
I(F ,V) base ideal of a filtration on a weighted multi linear series. 175
J(X,∆; aλ•) multiplier ideal of a graded sequence of ideals. 43
J(X,∆; ac) the multiplier ideal. 42
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δ(X,∆) stability threshold of a log Fano pair. 144
δ(X,∆, L) stability threshold of a klt pair. 144
δ(X,∆,V) δ-invariant of a linear system. 98
δ(X,∆,V•) stability threshold of graded linear seriess. 144
δ(V) δ-function of a weighted multi linear series. 174
δred

X,∆,T(v) reduced δ-invariant of a valuation. 252
δred
T (X,∆) reduced δ-invariant of a pair. 252
δm(X,∆,V•) m-stability threshold of graded linear seriess. 143
δG(X,∆,V) G-equivariant δ-invariant of a weighted multi linear series. 175
δX,∆(v,V•)

AX,∆(v)
S (v,V•)

. 144
δZ,X,∆,m(W•,~•) local m-stability threshold around a reducible subscheme. 186
δZ,X,∆,m(W•,~•,F ) local m-stability threshold around a reducible subscheme com-

patible with a filtration. 186
δZ,X,∆(W•,~•) local stability threshold around a reducible subscheme. 186
δZ,X,∆(W•,~•,F ) local stability threshold around a reducible subscheme com-

patible with a filtration. 186
δη,X,∆,m(W•,~•) local m-stability threshold around a point. 186
δη,X,∆(W•,~•) local stability threshold around a point. 186
η(W) generic point of W. 1
η(F , L) movable threshold of a filtration. 138
a• � b• box sum of two graded sequences of ideals. 133
aλ(v) valuative ideal sheaf. 32
v̂ol(X,∆, x) volume of a singularity. 284
v̂ol(v) normalized volume of a valuation. 284
X+K

n,N,V uniform K-moduli stack. 317
X
α≥α0
n,N,V stack of log Fano pairs with. 283
X≥δn,N,V stack of δ-semistable log Fano pairs. 264
X≥δn,N,h stack of δ-semistable log Fano pairs with a fixed Hilbert function. 272
XFano

n,N,V stack of log Fano pairs. 264
XK

n,N,V K-moduli stack. 264
λ f CM line bundle. 335
λCM CM line bundle on the K-moduli stack. 336
lct(X,∆ + a•; D) log canonical threshold with a boundary of a sequence of

graded ideals. 42
P moment polytope. 72
µ(F ) log canonical slope. 113
µ(F , δ) δ-log canonical slope. 113
µ+∞(F ) +∞-log canonical slope. 112
νDH,F ,V• Duistermaat-Heckman measure. 103
νDH,F0,F1 compatible Duistermaat-Heckman measure of F0,F1 on R2. 131
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ordF (s) order of a section with respect to a filtration F . 96
φξ one parameter group generated by ξ. 70
dνDH,T equivariant Duistermaat-Heckman measure over torus. 72
θξ(v) difference of log discrepancies. 244
vol(V•) volume of a graded linear series. 20
vol(v) volume of a valuation. 284
volW~•

volume function associated to a multi-graded linear series. 27
wtξ valuation attached to a coweight ξ. 241
{Fm}m∈r·N approximating filtration sequence. 122
c1(W•,~•) Chern class of multi-graded linear series. 183
c1(V) first Chern class of a weighted multi linear series. 174
cX(v) center of a valuation. 31
d1(F0,F1) L1-distance of F0 and F1. 133
q[∗]

X reflexive pull back. 262
v(a•) value on a graded sequence of ideals. 41
v(s) taking value of a section. 34
vµ,ξ T-invariant valuation induced by µ and ξ. 242
vξ ξ-twist of the valuation v. 244
B(L) stable base locus. 2
B+(L) augmented base locus. 2
B−(L) restricted base locus. 2
DivValX divisorial valuations. 32
Fut(X, L, ξ) Futaki invariant for a coweight. 75
GrF (V•) associated graded ring. 101
QM(Y, E) quasi-monomial valuations from a log resolution. 32
QM∗,TX non-weight T-invariant quasimonomial valuations. 242
QMT

X T-invariant quasimonomial valuations. 241
ReeF (R) Rees construction of a filtered ring. 121
ReeF (V) Rees construction of a filtered module. 96
lct(X,∆; ac) log canonical threshold. 37
lct(X,∆; a•) log canonical threshold of a graded sequence. 41
lctx(X,∆; ac) log canonical threshold around x. 37
supp(W~•) support of a multi-graded linear series. 25
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L1-distance, 133
S -invariant, 104

multi-graded linear series, 184
S m-invariant, 105
L-invariant, 118
QMη(Y, E), 32
α-invariant, 109
Gm-equivariant degeneration, 57
I-norm, 60
J-norm, 60, 110
δ-semistable, 148
ε-lc, 52
ξ-twist, 238, 340
m-basis type divisor, 142

Abban-Zhuang method, 182
Abhyankar inequality, 29
admissible flag, 19
algebraic stack

Θ-reductive, 289
S-complete, 290

almost isomorphic, 61
approximating filtration

m-th minimal, 122
approximating sequence, 122
associated graded ring, 101
asymptotic vanishing order, 46
asymptotically equivalent, 187

base ideal, 98
base ideal sequence, 111
base locus

augmented, 2
restricted, 2
stable, 2

basis type divisor, 98
compatible, 98

ofV, 174

center, 32
Chow-Mumford line bundle, 335
co-weight

lattice, 71
compatible basis, 96
complement, 53

special, 224
component, 174
concave transform, 104, 184
covering family of curves, 353

degeneration
special, 70

destabilization property, 305
Ding invariant, 69
Ding polystable, 70
Ding semistable, 70

for (X,∆, L), 129
Ding stable, 70

uniformly, 70
uniformly for (X,∆, L), 129
uniformly of level η, 70
uniformly of level η for (X,∆, L), 129

divisor
toroidal, 2
dreamy, 150

divisorial sheaf, 260
dual complex, 32
Duistermaat-Heckman measure, 103
T-equivariant, 72
compatible, 131

equidistributed module 1, 167
equivalent filtrations, 133
equivariant K-stability, 66

Fano pair

401
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a family of, 264
Fano type, 2
filtration, 95
Z-value, 96
graded multiplicative, 100
linearly bounded, 100
trivial, 103

flat
generically, 259
mostly, 259

flat family
of divisorial sheaves, 260

Fujita-Li invariant, 145
function

log discrepancy, 36
Futaki invariant, 65

reduced, 93

general basis type Q-divisor, 98
generically globally generated, 326
geodesic segment, 131
geometric invariant theory

semistable locus, 287
good minimal model, 49
good moduli space, 287
graded linear series, 20

contains an ample series, 20
graded sequence of ideals, 40

Harder-Narasimhan filtration, 305, 326
HN-filtration, 304
hull, 259

pull-back, 260

Izumi inequality, 275

jumping number, 96

K-equivalent, 1
K-flat, 263
K-moduli space, 293

uniform, 317
K-moduli stack, 264

uniform, 317
K-polystable, 66
K-semistable, 66
K-stable, 66

uniformly, 68
uniformly of level δ, 68

Kollár component, 55

lc place, 36
monomial, 224

linear series
multi-graded bounded support, 182
restricted, 22

restricted multi-graded, 188
linearization, 2
locally stable

family of klt pairs marked by N, 264
family of klt varieties, 261

locally stable family
over a smooth base, 208
with klt fibers, 209
with plt fibers, 209
with qdlt fibers, 209

log canonical slope, 113
δ-, 113

log canonical threshold
divisor, 38
graded sequence, 41
ideal sheaf, 37

log Fano pair, 2
log resolution, 2

fiberwise, 159
log smooth, 2

maximal destabilizing subbundle, 322
minimal log discrepancy, 36
minimal model program

with scaling, 47
model

qdlt Fano type, 210
moment polytope, 72
morphism

log smooth, 2
mostly flat family

of divisorial sheaves, 260
movable threshold of a filtration, 138
multi linear series

G-invariant, 175
weighted, 174

multi-graded linear series, 25
contains an ample series, 26
support, 25

multiplier ideal, 42

norm
Lp, 73
minimum, 60, 73

numerical invariant, 305

Okounkov body, 21
optimal destabilization, 232
µ-, 313

order function, 274
asymptotic, 274

pair, 1
log, 1
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polarized, 57
singular, 1

pointed curve, 78
potentially klt, 1

quotient-dlt (qdlt), 208

rational rank, 29, 32
reduced δ-invariant

of a pair, 252
of a valuation, 252

reduced uniformly
Ding-stable, 249
K-stable, 249

Rees construction, 121
reflexive pull back, 262
relative effective Q-Cartier Q-divisor, 1
relative effective Cartier Weil divisor, 1
relative Mumford divisor, 262

S-equivalent, 303
saturation, 321
Seshadri constant, 3
shift, 101
stability function, 305
stability threshold

of a log Fano pair, 144
strata, 2

test configuration, 58
∞-trivial compactification, 59
almost trivial, 61
index r, 58
normalized blow-up, 125
product, 59
rational index one, 59
special, 70
trivial, 59
weakly special, 70

twisted test configuration, 240

uniform K-moduli stack, 317

valuation, 29
Gm-invariant, 35
Abhyankar, 31
attached to a flag, 19
computing lct(X,∆; ac), 38
computing lct(X,∆; a•), 45
divisorial, 32
geometrically irreducible, 161
ideal sheaf, 33
map, 19
quasi-monomial, 32
ring, 29
special, 211

special divisorial, 152
toroidal, 32
trivial, 29
twisting, 244
vector, 19
weakly special divisorial, 152
computing δ(X,∆,V•), 145

valuation on variety, 32
valuative idea sheaf, 32
variety, 1
vector bundle

ample, 324
Harder-Narasimhan filtration, 322
nef, 324
semistable, 320

volume
restricted, 22

weight
lattice, 71

weighted barycenter, 72

Zariski decomposition, 197
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